Spectroscopic and Physicochemical Characterization of Poultry Waste-Based Composts and Charcoal–Compost Mixtures for the Prediction of Dry Matter Yield of Giant of Italy Parsley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Amendments
2.1.1. Production of Composts
2.1.2. Physicochemical Characterization of Composts and Organic Amendments
2.1.3. Fractionation and Spectroscopic Characterization of Organic Amendments
2.2. Giant of Italy Parsley Production
2.3. Statistical Analysis
3. Results and Discussion
3.1. Spectroscopic Characterization—Functional Groups
3.2. Spectroscopic Characterization—Humification Degree
3.3. DM of the Aboveground Plant Body of Giant of Italy Parsley
3.4. Physicochemical Characteristics of the Organic Amendments
3.5. Modeling of the Relationship between DM Yield and Physicochemical Characteristics of the Organic Amendments
3.6. Modeling of the Relationship between DM, FM Yield and Amount of Charcoal Added to the Organic Amendments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABPA. Anual Report 2020, 1st ed.; Associação Brasileira de Proteína Animal: São Paulo, Brazil, 2020; pp. 1–116. Available online: https://abpa-br.org/wp-content/uploads/2021/04/ABPA_Relatorio_Anual_2021_web.pdf (accessed on 9 December 2021).
- Chiarelotto, M.; Damaceno, F.M.; Lorin, H.E.F.; Tonial, L.M.S.; de Mendonça Costa, L.A.; Bustamante, M.A.; Moral, R.; Marhuenda-Egea, F.C.; Costa, M.S.S.M. Reducing the composting time of broiler agro-industrial wastes: The effect of process monitoring parameters and agronomic quality. Waste Manag. 2019, 96, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Sosa, L.L.; Benítez, E.; Girón, J.; Madejón, E. Agro-industrial and urban compost as an alternative of inorganic fertilizers in traditional rainfed olive grove under mediterranean conditions. Agronomy 2021, 11, 1223. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef] [PubMed]
- Guilabert, F.J.; Barber, X.; Pérez-Murcia, M.D.; Agulló, E.; Andreu-Rodríguez, F.J.; Moral, R.; Bustamante, M.Á. Management of green waste streams from different origins: Assessment of different composting scenarios. Agronomy 2021, 11, 1870. [Google Scholar] [CrossRef]
- Santos, C.; Goufo, P.; Fonseca, J.; Pereira, J.L.; Ferreira, L.; Coutinho, J.; Trindade, H. Effect of lignocellulosic and phenolic compounds on ammonia; nitric oxide and greenhouse gas emissions during composting. J. Clean. Prod. 2018, 171, 548–556. [Google Scholar] [CrossRef]
- Adamczewska-Sowińska, K.; Sowiński, J.; Jamroz, E.; Bekier, J. Combining willow compost and peat as media for juvenile tomato transplant production. Agronomy 2021, 11, 2089. [Google Scholar] [CrossRef]
- de Mendonça Costa, M.S.S.; Bernardi, F.H.; Costa, L.A.M.; Pereira, D.C.; Lorin, H.E.F.; Rozatti, M.A.T.; Carneiro, L.J. Composting as a cleaner strategy to broiler agro-industrial wastes: Selecting carbon source to optimize the process and improve the quality of the final compost. J. Clean. Prod. 2017, 142, 2084–2092. [Google Scholar] [CrossRef]
- Paula, F.S.; Tatti, E.; Abram, F.; Wilson, J.; O’Flaherty, V. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. J. Environ. Manag. 2017, 196, 476. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Monte, J.; Vilaça, N.; Fonseca, J.; Trindade, H.; Cortez, I.; Goufo, P. Evaluation of the Potential of Agro-Industrial Waste-Based Composts to Control Botrytis Gray Mold and Soilborne Fungal Diseases in Lettuce. Processes 2021, 9, 2231. [Google Scholar] [CrossRef]
- Santos, F.T.; Fehmberger, C.; Aloisio, C.M.; Bautitz, J.R.; Hermes, E. Composting of swine production chain wastes with addition of crude glycerin: Organic matter degradation kinetics, functional groups, and carboxylic acids. Environ. Sci. Pollut. Res. 2021, 28, 50542–50553. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, F.T.; Ludwig, F.; Costa, L.A.M.; Costa, M.S.S.M.; Remor, M.B.; Silva, P.E.R. Growth analysis of potted gerbera conducted with mineral fertilization and organic fertigation. Cienc. Investig. Agrar. 2016, 43, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Fehmberger, C.; Santos, F.T.; Aloisio, C.M.; Hermes, E.; Zenatti, D.C.; Bautitz, I.R. Effectiveness of incorporation of crude glycerin as a source of labile carbon in the composting of poultry production residues. J. Clean. Prod. 2020, 251, 119739. [Google Scholar] [CrossRef]
- Santos, F.T.; Trindade, H.; Costa, M.S.S.M.; Costa, L.A.M.; Goufo, P. Effects of composts made from broiler chicken residues and blended with biochar on the minerals and phenolic compounds in parsley (Petroselinum crispum Mill.). Agriculture 2021, 11, 1168. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, J.; Hu, Y.; Fang, Y.; Zhang, H.; Xing, L.; Wang, Y.; Zeng, G. Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. J. Hazard. Mater. 2019, 366, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Dieckow, J.; Bayer, C.; Conceição, P.C.; Zanatta, J.A.; Martin-Neto, L.; Milori, D.B.M.; Salton, J.C.; Macedo, M.M.; Mielniczuk, J.; Hernani, L.C. Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. Eur. J. Soil Sci. 2009, 60, 240–249. [Google Scholar] [CrossRef]
- El Ouaqoudi, F.Z.; El Fels, L.; Lemée, L.; Amblés, A.; Hafidi, M. Evaluation of lignocellulose compost stability and maturity using spectroscopic (FTIR) and thermal (TGA/TDA) analysis. Ecol. Eng. 2015, 75, 217–222. [Google Scholar] [CrossRef]
- Tahiri, A.; Richel, A.; Destain, J.; Druart, P.; Thonart, P.; Ongena, M. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Anal. Bioanal. Chem. 2016, 408, 1917–1928. [Google Scholar] [CrossRef]
- Segnini, A.; Posadas, A.; Quiroz, R.; Milori, D.M.B.P.; Saab, S.C.; Martin-Neto, L.; Vaz, C.M.P. Spectroscopic assessment of soil organic matter in wetlands from the high Andes. Soil Sci. Soc. Am. J. 2010, 74, 2246–2253. [Google Scholar] [CrossRef]
- Burnett, S.E.; Mattson, N.S.; Wiliams, K.A. Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States). Sci. Hort. 2016, 208, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, F.H.; Costa, M.S.S.M.; Costa, L.A.M.; Damaceno, F.M.; Chiarelotto, M. Microbiological activity during the composting of wastes from broiler productive chain. Engenharia Agricola 2018, 38, 741–750. [Google Scholar] [CrossRef]
- Lorin, H.E.; Costa, M.S.D.M.; Chiarelotto, M.; Santos, F.T.; Costa, L.A.M. Addition of boiler charcoal waste to compost for use as substrate for vegetable seedlings. Engenharia Agrícola 2019, 39, 753–762. [Google Scholar] [CrossRef]
- Graceson, A.; Hare, M.; Hall, N.; Monaghan, J. Use of inorganic substrates and composted green waste in growing media for green roofs. Biosyst. Eng. 2014, 124, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Gu, J.; Zhang, S.Q.; Shi, L.X.; Sun, W.; Gian, X.; Duan, M.L.; Yin, Y.N.; Wang, X.J. Effects of adding compound microbial inoculum on microbial community diversity and enzymatic activity during co-composting. Environ. Eng. Sci. 2018, 35, 270–278. [Google Scholar] [CrossRef]
- Santos, F.T.; Goufo, P.; Santos, C.; Botelho, D.; Fonseca, J.; Queirós, A.; Costa, M.S.S.M.; Trindade, H. Comparison of five agro-industrial waste–based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C. Food Chem. 2016, 209, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Di Lonardo, S.; Baronti, S.; Vaccari, F.P.; Albanese, L.; Battista, P.; Miglietta, F.; Bacci, L. Biochar-based nursery substrates: The effect of peat substitution on reduced salinity. Urban For. Urban Green. 2017, 23, 27–34. [Google Scholar] [CrossRef]
- Huang, L.; Niu, G.; Feagley, S.E.; Gu, M. Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Ind. Crops Prod. 2019, 129, 549–560. [Google Scholar] [CrossRef]
- Fascella, G.; D’Angiolillo, F.; Ruberto, G.; Napoli, E. Agronomic performance, essential oils and hydrodistillation wastewaters of Lavandula angustifolia grown on biochar-based substrates. Ind. Crops Prod. 2020, 154, 112733. [Google Scholar] [CrossRef]
- Nocentini, M.; Panettieri, M.; Barragan, J.M.G.C.; Mastrolonardo, G.; Knicker, H. Recycling pyrolyzed organic waste from plant nurseries, rice production and shrimp industry as peat substitute in potting substrates. J. Environ. Manag. 2021, 277, 111436. [Google Scholar] [CrossRef] [PubMed]
- Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef]
- MAPA. Official Analytical Methods for the Analysis of Substrates and Soil Conditioners of Ministry of Agriculture, Livestock and Supply, 1st ed.; Official Gazette of the Federative Republic of Brazil: Brasília, Brazil, 2007; p. 8. [Google Scholar]
- Lana, M.C.; Fey, R.; Francoloso, J.F.; Richart, A.; Fontaniva, S. Chemical Analysis of Soil and Plant Tissue: Laboratory Practices, 1st ed.; Edunioeste: Cascavel, Brazil, 2010; pp. 1–130. [Google Scholar]
- Malavolta, E. ABC of Fertilization, 5th ed.; Agronômica Ceres: São Paulo, Brazil, 1989. [Google Scholar]
- Cunha-Queda, A.C.; Vallini, G.; Sousa, R.F.X.B.; Duarte, E.C.N.F.A. Study of the evolution of enzymatic activities during the composting of residues from fruit and vegetable markets. An. Inst. Super. Agron. 2003, 49, 193–208. [Google Scholar]
- Lorin, H.E.F.; Costa, M.S.S.M.; Costa, L.A.D.M.; Pereira, D.C.; Carneiro, L.J. Stabilization of confined beef cattle manure: Characteristics of produced fertilizers. Eng. Agrícola 2016, 36, 877–885. [Google Scholar] [CrossRef] [Green Version]
- EMBRAPA. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa Solos—Empresa Brasileira de Pesquisa Agropecuária: Brasília, Brazil, 2009; Available online: https://livimagens.sct.embrapa.br/amostras/00083136.pdf (accessed on 9 December 2021).
- Benites, V.M.; Madari, B.; Machado, P.L.O.A. Extração e Fracionamento Quantitativo de Substâncias Húmicas do Solo: Um Procedimento Simplificado de Baixo Custo; Embrapa Solos—Empresa Brasileira de Pesquisa Agropecuária: Rio de Janeiro, Brazil, 2003; pp. 1–7. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/cnps/11578/1/comtec16_2003_extracao.pdf (accessed on 9 December 2021).
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Milori, D.M.P.B.; Galeti, H.V.A.; Martin-Neto, L.; Diekow, J.; González-Peréz, M.; Bayer, C.; Salton, J. Organic matter study of whole soil samples using laser-induced fluorescence spectroscopy. Soil Sci. Soc. Am. J. 2006, 70, 57–63. [Google Scholar] [CrossRef]
- Primo, D.C.; Menezes, T.O.; Silva, T.O. Substâncias húmicas da matéria orgânica do solo: Uma revisão de técnicas analíticas e estudos no nordeste brasileiro. Scientia Plena 2011, 7, 1–13. [Google Scholar]
- Jindo, K.; Martim, S.A.; Navarro, E.C.; Pérez-Alfocea, F.; Hermandez, T.; Garcia, C.; Aguiar, N.O.; Canellas, L.P. Root growth promotion by humic acids from composted and non-composted urban organic waste. Plant Soil 2012, 353, 209–220. [Google Scholar] [CrossRef]
- Maia, C.M.B.F.; Fukamachi, C.R.B.; Piccolo, A.; Mangrich, A.S. EPR and DRIFT spectroscopic characterization of humic fractions during composting of sawdust and paper mill sludge. Pesquisa Florestal Brasileira 2012, 32, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, X.; He, C.; Chen, C.L.; Bai, J.; Ren, N.; Wang, J.Y. Transformation of dissolved organic matters in swine, cow and chicken manures during composting. Bioresour. Technol. 2014, 168, 222–228. [Google Scholar] [CrossRef]
- Fan, Y.V.; Lee, C.T.; Klemes, J.J.; Chua, L.S.; Sarmidi, M.R.; Leow, C.W. Evaluation of effective microorganisms on home scale organic waste composting. J. Environ. Manag. 2018, 216, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, N.; Sbdiaga, E.; Orsetti, S.; Rosa, J.M.; Knocker, H.; Schimidt, H.P.; Kappler, A.; Behrens, S. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure. Sci. Total Environ. 2018, 613, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Awasthi, M.K.; Zhao, J.C.; Ren, X.N.; Li, R.H.; Wang, Z.; Wang, M.J.; Zhang, Z.Q. Improvement of pig manure compost lignocellulose degradation, organic matter humification and compost quality with medical stone. Bioresour. Technol. 2017, 243, 771–777. [Google Scholar] [CrossRef]
- Guo, X.; Li, C.; Zhu, Q.; Huang, T.; Cai, Y.; Li, N.; Liu, J.; Tan, X. Characterization of dissolved organic matter from biogas residue composting using spectroscopic techniques. Waste Manag. 2018, 78, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Wang, X.; Liu, Q.; Li, T.; Chen, X.; Chai, L.; Liu, D.; Shen, Q. Evolution of various fractions during the windrow composting of chicken manure with rice chaff. J. Environ. Manag. 2018, 207, 366–377. [Google Scholar] [CrossRef]
- Fialho, L.L.; Silva, W.T.L.; Milori, D.M.B.P.; Martin-Neto, L.; Saab, S.C. Interference of lignin in the quantification of free radicals in the process of composting. Rev. Química Nova 2010, 33, 364–369. [Google Scholar] [CrossRef]
- Jouraiphy, A.; Amir, S.; Gharous, M.; Revel, J.C.; Hafidi, M. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int. Biodeterior. Biodegrad. 2005, 56, 101–108. [Google Scholar] [CrossRef]
- Portes, M.L.; Dick, D.P.; Dalolin, R.S.D.; Knicker, H.; Rosa, A.S. Soil organic matter in highland leptosols: Influence of pasture management on composition and content. Rev. Bras. Ciências Solo 2010, 34, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.; Baigorri, R.; Garcia-Mina, J.M. Maturation in composting process, an incipient humification-like step as multivariate statistical analysis of spectroscopic data shows. Environ. Res. 2020, 189, 109981. [Google Scholar] [CrossRef] [PubMed]
- Martín-Mata, J.; Lahoz-Ramos, C.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Moral, R.; Santos, A.; Sáez, J.Á.; Bernal, M.P. Thermal and spectroscopic analysis of organic matter degradation and humification during composting of pig slurry in different scenarios. Environ. Sci. Pollut. Res. 2016, 23, 17357–17369. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ta, Q.; Dong, D.; Strong, P.J.; Wang, H.; Sun, B.; Wu, W. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. 2014, 280, 409–416. [Google Scholar] [CrossRef]
- Ren, X.; Wang, W.; Li, R.; Chang, C.C.; Pan, J.; Zhang, Z. Effect of clay on greenhouse gas emissions and humification during pig manure composting as supported by spectroscopic evidence. Sci. Total Environ. 2020, 737, 139712. [Google Scholar] [CrossRef]
- Norhafizah, M.Z.; Ismail, B.S.; Chuah, T.S. Herbicidal activity of pennisetum purpureum (Napier grass). Afr. J. Biotechnol. 2012, 11, 6269–6273. [Google Scholar] [CrossRef] [Green Version]
- Ismail, B.S.; Tan, P.W.; Chuah, T.S. Assessment of the potential allelopathic effects of Pennisetum purpureum schumach. On the germination and growth of Eleusine indica (L.) Gaertn. Sains Malaysiana 2015, 44, 269–274. [Google Scholar] [CrossRef]
- Trani, P.E.; Raij, B.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Boletim Técnico 100: Recomendações de Adubação e Calagem Para o Estado de São Paulo, 2nd ed.; Instituto Agronômico & Fundação IAC: Campinas, Brazil, 1997; pp. 1–285. [Google Scholar]
- Moraes, P.L.D.; Dias, N.S.; Oliveira, A.M.; Sousa-Neto, O.N.; Sarmento, J.D.A.; Gonzaga, M.I.S. Effects of nutrient solution salinity on the physiological performance of melon cultivated in coconut fiber. Revista Caatinga 2018, 31, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Luz, J.M.Q.; Andrade, L.V.; Dias, F.F.; Silva, M.A.; Haber, L.L.; Olviveira, R.C. Hydroponic production of coriander and curly parsley under concentrations of nutrient solution and plant positions in hydroponic profiles. Biosci. J. 2012, 28, 589–597. [Google Scholar]
- Seo, M.W.; Yang, D.S.; Kays, S.J.; Kim, J.H.; Wood, J.H.; Park, K.W. Effects of nutrient solution electrical conductivity and sulfur, magnesium, and phosphorus concentration on sesquiterpene lactones in hydroponically grown lettuce (Lactuca sativa L.). Sci. Hort. 2009, 122, 369–374. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D.; Chen, Y. Differentiation of carbonate, chloride, and sulfate salinity responses in tall fescue. Sci. Hort. 2012, 139, 1–7. [Google Scholar] [CrossRef]
- Hikashi, M.; Ishikawa, K. Analysis of deep groundwater in the Sambagawa belt in relation to growth of Komatsuna (Brassica rapa var. Perviridis). Environ. Control Biol. 2014, 52, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Gupta, S.; Gupta, N.K.; Khandelwal, S.K.; Bhargava, R. Effect of sodium chloride on gas exchange, antioxidative defense mechanism and ion accumulation in different cultivars of Indian jujube (Ziziphus mauritiana L.). Photosynthetica 2013, 51, 95–101. [Google Scholar] [CrossRef]
- Carmo, A.I.; Antonino, A.C.D.; Martins, J.M.F.; Silva, V.L.; Morel, M.C.; Gaudet, J.P. Leaching transport of naphthalene in urban soils from the metropolitan region of Recife, Pe. Rev. Bras. Ciências Solo 2013, 37, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Anower, M.R.; Mottb, I.W.; Peel, M.D.; Wu, Y. Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiol. Biochem. 2013, 71, 103–111. [Google Scholar] [CrossRef]
Compost * | Stabilization Time (Days) | Maturation Time (Days) | C:N |
---|---|---|---|
TR | 91 | 375 | 15 |
BA | 91 | 375 | 15 |
SA | 154 | 312 | 23 |
CO | 84 | 382 | 11 |
NA | 91 | 375 | 16 |
Charcoal Amount | Organic Amendments | |||||
---|---|---|---|---|---|---|
TR | BA | SA | CO | NA | ||
60% | DM | 1.61 ± 0.07 cA | 4.33 ± 0.18 aA | 3.11 ± 0.39 bC | 2.81 ± 0.74 bA | 1.73 ± 0.14 cA |
FM | 11.80 ± 3.05 cB | 29.04 ± 2.34 aA | 19.06 ± 1.90 bC | 22.49 ± 2.40 bA | 10.21 ± 1.20 cA | |
45% | DM | 1.82 ± 0.92 cA | 3.88 ± 0.57 aA | 4.38 ± 0.35 aB | 2.81 ± 0.52 bA | 0.47 ± 0.02 dB |
FM | 12.29 ± 2.69 cB | 23.84 ± 5.85 abB | 30.65 ± 0.09 aB | 21.99 ± 3.83 bA | 3.76 ± 0.04 dB | |
30% | DM | 2.64 ± 0.03 bA | 3.80 ± 0.73 aA | 4.33 ± 0.53 aB | 3.20 ± 0.15 bA | 0.03 ± 0.41 cB |
FM | 18.20 ± 3.26 bA | 23.51 ± 2.62 abB | 26.88 ± 5.81 aB | 26.63 ± 1.48 aA | 0.24 ± 3.34 cB | |
15% | DM | 2.49 ± 0.76 bA | 2.74 ± 1.58 bB | 5.65 ± 0.84 aA | 0.41 ± 0.79 cB | 0.02 ± 0.07 cB |
FM | 17.78 ± 1.80 bA | 17.80 ± 1.83 bC | 38.64 ± 3.80 aA | 2.42 ± 3.84 cB | 0.18 ± 0.41 cB | |
0% | DM | 1.79 ± 0.27 bA | 2.34 ± 0.92 bB | 3.85 ± 0.29 aB | 0.27 ± 0.23 cB | 0.03 ± 0.11 cB |
FM | 14.72 ± 5.12 bAB | 15.76 ± 2.38 bC | 29.77 ± 3.25 aB | 1.52 ± 1.58 cB | 0.42 ± 0.40 cB |
Source of Variation | Degrees of Freedom (DF) | Sum of Squares (SS) | Mean Square (MS) | p Value |
---|---|---|---|---|
Regression | 7 | 1418.69 | 202.67 | 0.001 |
Error | 17 | 525.70 | 30.92 | - |
Total | 24 | 1944.39 | - | - |
Explanatory variable | Least-squares (Coef) | Standard deviation (SD) | Two-sided test (T) | p value |
CONSTANT | 116.050 | 49.970 | 2.32 | 0.033 |
N | 3.683 | 4.913 | 0.75 | 0.464 |
P | 0.006 | 0.005 | 1.28 | 0.217 |
K | 0.002 | 0.001 | 1.13 | 0.275 |
pH | −10.304 | 5.990 | −1.72 | 0.104 |
EC | −3.778 | 1.406 | −2.69 | 0.016 |
TOC | −1.239 | 0.594 | −2.09 | 0.052 |
HLIF | −0.000 | 0.003 | −0.08 | 0.937 |
Compost | Regression Equation | R2 |
---|---|---|
TR | DM = −0.0009x2 + 0.0459x + 1.8844 | 0.7739 |
FM = −0.0048x2 + 0.2074x + 14.291 | 0.9311 | |
BA | DM = −0.0003x2 + 0.0176x + 4.3221 | 0.9513 |
FM = −0.0029x2 + 0.317x + 17.703 | 0.7777 | |
SA | DM = −0.0015x2 + 0.0726x + 4.1324 | 0.6926 |
FM = −0.0074x2 + 0.3134x + 28.244 | 0.6027 | |
CO | DM = −0.0011x2 + 0.1163x − 0.093 | 0.7854 |
FM = −0.0065x2 + 0.6629x + 0.1381 | 0.7683 | |
NA | DM = 0.0262x − 0.339 | 0.6970 |
FM = 0.0768x − 0.896 | 0.7863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, F.T.; Costa, M.S.S.M.; Costa, L.A.M.; Trindade, H.; Tonial, L.M.S.; Lorin, H.E.F.; Goufo, P. Spectroscopic and Physicochemical Characterization of Poultry Waste-Based Composts and Charcoal–Compost Mixtures for the Prediction of Dry Matter Yield of Giant of Italy Parsley. Agronomy 2022, 12, 256. https://doi.org/10.3390/agronomy12020256
Santos FT, Costa MSSM, Costa LAM, Trindade H, Tonial LMS, Lorin HEF, Goufo P. Spectroscopic and Physicochemical Characterization of Poultry Waste-Based Composts and Charcoal–Compost Mixtures for the Prediction of Dry Matter Yield of Giant of Italy Parsley. Agronomy. 2022; 12(2):256. https://doi.org/10.3390/agronomy12020256
Chicago/Turabian StyleSantos, Francielly T., Mônica S. S. M. Costa, Luiz A. M. Costa, Henrique Trindade, Larissa M. S. Tonial, Higor E. F. Lorin, and Piebiep Goufo. 2022. "Spectroscopic and Physicochemical Characterization of Poultry Waste-Based Composts and Charcoal–Compost Mixtures for the Prediction of Dry Matter Yield of Giant of Italy Parsley" Agronomy 12, no. 2: 256. https://doi.org/10.3390/agronomy12020256
APA StyleSantos, F. T., Costa, M. S. S. M., Costa, L. A. M., Trindade, H., Tonial, L. M. S., Lorin, H. E. F., & Goufo, P. (2022). Spectroscopic and Physicochemical Characterization of Poultry Waste-Based Composts and Charcoal–Compost Mixtures for the Prediction of Dry Matter Yield of Giant of Italy Parsley. Agronomy, 12(2), 256. https://doi.org/10.3390/agronomy12020256