Efficacy of Selected Insecticides for Chemical Control of the African Citrus Psyllid, Trioza erytreae (Psylloidea: Triozidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insecticides
2.2. Insects
2.3. Laboratory Bioassays
2.3.1. Contact Laboratory Bioassays
2.3.2. Systemic Laboratory Bioassays
2.4. Semi-Field Trial
2.5. Field Trial
2.5.1. Winter
2.5.2. Spring
2.6. Statistical Analysis
3. Results
3.1. Laboratory Bioassays
3.1.1. Contact Bioassays
3.1.2. Systemic Bioassays
3.2. Semi-Field Trial
3.3. Field Trials
3.3.1. Winter
3.3.2. Spring
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aubert, B.; Garnier, M.; Cassin, J.C.; Bertin, Y. Citrus greening disease survey in East and West African countries South of Sahara. In International Organization of Citrus Virologists Conference Proceedings (1957–2010); Timmer, L.W., Garnsey, S.M., Navarro, L., Eds.; University of California: Riverside, CA, USA, 1988; Volume 10. [Google Scholar]
- Jagoueix, S.; Bové, J.M.; Garnier, M. PCR detection of the two “Candidatus” Liberibacter species associated with greening disease of citrus. Mol. Cell. Probes 1996, 10, 43–50. [Google Scholar] [CrossRef]
- Ajene, I.J.; Khamis, F.; Mohammed, S.; Rasowo, B.; Ombura, F.L.; Pietersen, G.; Ekesi, S. First Report of Field Population of Trioza erytreae Carrying the Huanglongbing-Associated Pathogen, Candidatus Liberibacter asiaticus, in Ethiopia. Plant Dis. 2019, 103, 1766. [Google Scholar] [CrossRef]
- Duran-Vila, N.; Bové, J.M. Citrus HLB is an mergint disease transmitted by psyllid vectors. Can it be prevented? If not, can it be managed? Int. Cent. Adv. Mediterr. Agron. Stud. Watch Lett. 2015, 3, 1–9. [Google Scholar]
- Cocuzza, G.E.M.; Alberto, U.; Hernández-Suárez, E.; Siverio, F.; Di Silvestro, S.; Tena, A.; Rapisarda, C. A review on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of huanglongbing (HLB) in citrus. J. Pest Sci. 2017, 90, 1–17. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar] [CrossRef]
- Richard, K.; Abdel-Rahman, E.M.; Mohamed, S.A.; Ekesi, S.; Borgemeister, C.; Landmann, T. Importance of Remotely-Sensed Vegetation Variables for Predicting the Spatial Distribution of African Citrus Triozid (Trioza erytreae) in Kenya. ISPRS Int. J. Geo-Inf. 2018, 7, 429. [Google Scholar] [CrossRef] [Green Version]
- Pole, F.N.; Ndung’u, J.M.; Kimani, J.M.; Kagunu, E. Citrus farming in Kwale district: A case study of Lukore location. In Proceedings of the 12th KARI Bienniel Conference: Transforming Agriculture for Improved Livelihoods through Agricultural Product Value Chains, Nairobi, Kenya, 8–12 November 2010; pp. 629–635. [Google Scholar]
- CABI. Citrus Huanglongbing (Greening) Disease (Citrus Greening). 2020. Available online: https://www.cabi.org/isc/datasheet/16567 (accessed on 14 July 2021).
- EPPO Global Database. EPPO Reporting Service no. 08-2020. 164—Update of the Situation of Trioza erytreae in Spain. Available online: https://gd.eppo.int/taxon/TRIZER/distribution/ES (accessed on 14 July 2021).
- De Carvalho, J.P.; Aguiar, A.M.F. Pragas dos Citrinos na Ilha da Madeira. Funchal. RAM/SRAFP, INIA/EAN (Poseima); Secretaria Regional de Agricultura, Florestas e Pescas: Madeira, Portugal, 1997; 410p. [Google Scholar]
- González-Hernández, A.D. Trioza erytreae (Del Guercio 1918): Nueva plaga de los cítricos en Canarias. Phytoma España 2003, 153, 112–118. [Google Scholar]
- Pérez-Otero, R.; Mansilla, J.P.; del Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arcq. Entomol. 2015, 13, 119–122. [Google Scholar]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Is the presence of Trioza erytreae, vector of huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. J. Plant Pathol. 2019, 101, 1151–1157. [Google Scholar] [CrossRef]
- Hernández-Suárez, E.; Pérez-Rodríguez, J.; Suárez-Méndez, L.; Urbaneja-Bernat, P.; Rizza, R.; Siverio, F.; Piedra-Buena, A.; Urbaneja, A.; Tena, A. Control de Trioza erytreae en las Islas Canarias por el parasitoide Tamarixia dryi. Phytoma España 2020, 319, 28–32. [Google Scholar]
- Monzo, C.; Stansly, P.A. Economic injury levels for Asian citrus psyllid control in process oranges from mature trees with high incidence of huanglongbing. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catling, H.D. The control of citrus psylla Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). S. Afr. Citrus J. 1969, 420, 9–16. [Google Scholar]
- Deacon, V.E.; Berg, M.A. Van den, B. Sutherland A further comparison of chitin synthesis inhibitors for the control of Trioza erytreae (Hemiptera: Triozidae) in South Africa. Ann. Appl. Biol. 1989, 10, 6–7. [Google Scholar]
- Pyle, K.R. Control of citrus psylla Trioza erytreae (Del G.) with sprays of endosulfan on Mazoe Citrus Estates. Citrus Subtrop. Fruit J. 1977, 520, 7–11. [Google Scholar]
- Wortmann, G.B.; Schafer, E. The control of sucking insects with particular reference to citrus psylla (Trioza erytreae Del G.) by means of a soil applied systemic insecticide. Citrus Subtrop. Fruit J. 1977, 520, 14–16. [Google Scholar]
- MAPA Registro de Productos Fitosanitarios. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro/productos/consusact.asp (accessed on 18 July 2021).
- EUR-Lex Regulation (EU) 2018/785 of 29 May 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0785 (accessed on 18 July 2021).
- Tiwari, S.; Mann, R.S.; Rogers, M.E.; Stelinski, L.L. Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Manag. Sci. 2011, 67, 1258–1268. [Google Scholar] [CrossRef]
- Srinivasan, R.; Hoy, M.A.; Singh, R.; Rogers, M.E. Laboratory and field evaluations of Silwet L-77 and kinetic alone and in combination with imidacloprid and abamectin for the management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Fla. Entomol. 2008, 91, 87–100. [Google Scholar] [CrossRef]
- Prabhaker, N.; Castle, S.; Byrne, F.; Henneberry, T.J.; Toscano, N.C. Establishment of baseline susceptibility data to various insecticides for Homalodisca coagulata (Homoptera: Cicadellidae) by comparative bioassay techniques. J. Econ. Entomol. 2006, 99, 141–154. [Google Scholar] [CrossRef]
- Henderson, C.F.; Tilton, E.W. Tests with Acaricides against the Brown Wheat Mite12. J. Econ. Entomol. 1955, 48, 157–161. [Google Scholar] [CrossRef]
- Schneider-Orelli, O. Practical entomology: An introduction to agricultural and forest entomology. In Entomologisches Praktikum: Einfuhrung die Land-Und forstwirtschaftliche Insektenkunde, 2nd ed.; Sauerländer & Co.: Aarau, Switzerland, 1947; p. 237. [Google Scholar]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Catling, H.D. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae) I. The influence of the flushing rhythm of citrus and factors which regulate flushing. J. Entomol. Soc. S. Afr. 1969, 32, 191–208. [Google Scholar]
- Catling, H.D. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). 6. Final population studies and a discussion of population dynamics. J. Entomol. Soc. S. Africa 1972, 35, 235–251. [Google Scholar]
- Beattie, G.A.C.; Clift, A.D.; Allender, W.J.; Jiang, L.; Wang, Y.A. Efficacies of low- to high-volume (960-10 700 litre ha− 1) citrus sprayers for applying petroleum spray oil to control chinese wax scale. Pestic. Sci. 1991, 32, 47–56. [Google Scholar] [CrossRef]
- Martínez-Ferrer, M.T.; Campos, J.M.; Fibla, J.M. Sustainable management of two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) on clementine citrus groves. IOBC/WPRS Bull. 2011, 62, 77–81. [Google Scholar]
- Jacas, J.A.; Garcia-Marí, F. Side-effects of pesticides on selected natural enemies occurring in citrus in Spain. Pestic. Benef. Ortanisms IOBC/Wprs Bull. 2001, 24, 103–112. [Google Scholar] [CrossRef]
- Rae, D.J.; Liang, W.G.; Watson, D.M.; Beattie, G.A.C.; Huang, M.D. Evaluation of petroleum spray oils for control of the Asian citrus psylla, Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae), in China. Int. J. Pest Manag. 1997, 43, 71–75. [Google Scholar] [CrossRef]
- Khan, A.; Afzal, M.; Raza, A.; Khan, A.; Iqbal, J.; Tahir, H.; Qureshi, J.; Khaliq, A.; Zia-ul-Haq, M.; Aqeel, M. Toxicity of botanicals and selective insecticides to Asian citrus psylla, Diaphorina citri K. (Homoptera: Psyllidae) in laboratory conditions. Jokull J. 2013, 63, 52–72. [Google Scholar]
- Tiwari, S.; Stelinski, L.L. Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions. Pest Manag. Sci. 2013, 69, 1066–1072. [Google Scholar] [CrossRef]
- Qureshi, J.A.; Kostyk, B.C.; Stansly, P.A. Insecticidal suppression of asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of huanglongbing pathogens. PLoS ONE 2014, 9, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ammar, E.D.; Hall, D.G.; Alvarez, J.M. Effect of cyantraniliprole, a novel insecticide, on the inoculation of Candidatus liberibacter asiaticus associated with citrus huanglongbing by the Asian citrus psyllid (Hemiptera: Liviidae). J. Econ. Entomol. 2015, 108, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, B.A.; Isaac, N.J.B.; Bullock, J.M.; Roy, D.B.; Garthwaite, D.G.; Crowe, A.; Pywell, R.F. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacci, L.; Convertini, S.; Rossaro, B. A review of sulfoxaflor, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J. Entomol. Acarol. Res. 2018, 50, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Nauen, R.; Jeschke, P.; Velten, R.; Beck, M.E.; Ebbinghaus-Kintscher, U.; Thielert, W.; Wölfel, K.; Haas, M.; Kunz, K.; Raupach, G. Flupyradifurone: A brief profile of a new butenolide insecticide. Pest Manag. Sci. 2015, 71, 850–862. [Google Scholar] [CrossRef] [Green Version]
- Nauen, R.; Reckmann, U.; Thomzik, J.; Thielert, W. Biological profile of spirotetramat (Movento)-a new two way systemic (amimobile) insecticide against sucking pests Studies on the susceptibility of Tuta absoluta to novel and diamide insecticides View project Biological profile of spirotetramat (Movento®). Bayer Crop. J. 2007, 61, 245–278. [Google Scholar]
- Urbaneja, A.; Grout, T.G.; Gravena, S.; Wu, F.; Cen, Y.; Stansly, P.A. Chapter 16—Citrus pests in a global world. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G.B.T.-T.G.C., Eds.; Woodhead Publishing: Cambrige, UK, 2020; pp. 333–348. ISBN 978-0-12-812163-4. [Google Scholar]
- Jacas, J.A.; Karamaouna, F.; Vercher, R.; Zappalà, L. Citrus Pest Management in the Northern Mediterranean Basin (Spain, Italy and Greece). In Integrated Management of Arthropod Pests and Insect Borne Diseases; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 3–27. ISBN 978-90-481-8606-8. [Google Scholar]
- Dionisio, M.A.; Hernández-Suárez, E.; Siverio, F.; Arjona-López, J.M.; Hervalejo, A.; Arenas-Arenas, F.J. Laboratory and field trials to identify sustainable chemical control strategies for Trioza erytreae in European Citrus Orchads. Agronomy 2021, 11, 1982. [Google Scholar] [CrossRef]
- Brar, G.S.; Martini, X.; Stelinski, L.L. Lethal and sub-lethal effects of a novel sulfoximine insecticide, sulfoxaflor, against Asian citrus psyllid and its primary parasitoid under laboratory and field conditions. Int. J. Pest Manag. 2017, 63, 299–308. [Google Scholar] [CrossRef]
- Monzó, C.; Qureshi, J.A.; Stansly, P.A. Insecticide sprays, natural enemy assemblages and predation on Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Bull. Entomol. Res. 2014, 104, 576–585. [Google Scholar] [CrossRef] [Green Version]
Trade Name | Active Ingredient | Formulation a | IRAC Subgroup b | Rate (%) | Manufacter | Type of Trial | ||||
---|---|---|---|---|---|---|---|---|---|---|
LC | LS | SF | FW | FS | ||||||
Gazel Plus® | Acetamiprid | 20% SG | 4A | 0.025 | BASF | x | x | |||
Apache® | Abamectin | 1.8% EC | 6 | 0.04 | Afrasa | x | x | |||
Sulfocal® | Calcium polysulfide | 18.5% SL | UN | 0.08 | Agrotecnología | x | ||||
Exirel® | Cyantraniliprole | 10% SE | 28 | 0.1 | FMC | x | x | |||
Perfekthion Top® | Dimethoate | 40% EC | 1B | 0.1 | BASF | x | x | x | x | |
Teppeki® | Flonicamid | 50% WG | 29 | 0.005 | Belchim Crop Protection | x | x | |||
Sivanto® | Flupyradifurone | 20% SL | 4D | 0.05 | Bayer CropScience | x | x | |||
Confidor® | Imidacloprid | 20% SL | 4A | 0.8 | Bayer CropScience | x | x | |||
Kenotrin® | Lambda cyhalothrin | 2.5% WG | 3A | 0.08 | Kenogard | x | x | x | x | |
Ovitex® | Paraffin oil | 83% EC | UN | 1.5 | Belchim Crop Protection | x | ||||
Plenum® | Pymetrozine | 50% WG | 9B | 0.04 | Syngenta | x | x | |||
Delegate® | Spinetoram | 25%WG | 5 | 0.04 | Corteva Agriscience | x | ||||
Movento 150 O-TEC® | Spirotetramat | 15% OD | 23 | 0.04 | Bayer CropScience | x | x | x | x | |
GF-2626® | Sulfoxaflor | 12% SC | 4C | 0.04 | Dow Agroscience | x | x | |||
Actara 25 WG® | Thiamethoxam | 25% WG | 4A | 0.03 | Syngenta Crop Protection | x | x |
Active Ingredient | Eggs | t | Nymphs | t | Adults | t |
---|---|---|---|---|---|---|
Acetamiprid | 0 | 2.44 | 69.4 | 6.12 * | 78.4 | 8.99 * |
Cyantraniliprole | 0 | 1.44 | 65.1 | 8.97 * | 0 | 0.38 |
Dimethoate | 71.6 | 3.23 * | 93.7 | 15.41 * | 100 | 19.66 * |
Flonicamid | 0 | 0.90 | 62.9 | 6.20 * | 0 | 0.10 |
Flupyradifurone | 64.2 | 2.69 * | 0 | 2.02 | 54.2 | 4.39 * |
Lambda cyhalothrin | 65.8 | 3.06 * | 99.2 | 7.86 * | 79 | 6.47 * |
Paraffin oil | 0 | 0.80 | 100 | 20.45 * | 95.8 | 2.85 * |
Pymetrozine | 0 | 0.43 | 0 | 0.86 | 0 | 0.60 |
Spinetoram | 81 | 4.29 * | 95.8 | 18.18 * | 95.8 | 2.85 * |
Spirotetramat | 0 | 1.50 | 0 | 0.41 | 0 | 0.75 |
Sulfoxaflor | 0 | 0.50 | 60 | 10.39 * | 0 | 0.90 |
Active Ingredient | Nymphs | Adults |
---|---|---|
Control | 19.4 ± 7.5 a | 7.5 ± 4.8 A |
Acetamiprid | 49 ± 3.9 ab (0) | 27.5 ± 8.5 A (0) |
Cyantraniliprole | 95.4 ± 1.9 c (93.7) | 5 ± 5 A (0) |
Dimethoate | 96 ± 3.4 c (94.5) | 80 ± 4.1 B (90.6) |
Flonicamid | 46.6 ± 6.7 ab (0) | 12.5 ± 6.3 A (0) |
Flupyradifurone | 57.9 ± 5.1 b (51.8) | 15 ± 8.7 A (0) |
Pymetrozine | 50.9 ± 8.2 ab (0) | 5 ± 5 A (0) |
Spirotetramat | 73.9 ± 13.3 bc (77.1) | 5 ± 2.9 A (0) |
Sulfoxaflor | 79.3 ± 7.8 bc (78.8) | 22.5 ± 8.5 A (0) |
F | 12.35 | 14.36 |
df | (8, 27) | (8, 27) |
p-value | <0.001 | <0.001 |
Active Ingredient | 3 Daa | 7 Daa | 14 Daa | 21 Daa | 28 Daa |
---|---|---|---|---|---|
Control | 2.4 ± 1.8 a | 8.3 ± 4.5 a | 22.3 ± 10.9 a | 33.0 ± 11.6 a | 47.8 ± 19.0 a |
Abamectin | 16.4 ± 7.7 b (14.3) | 25.4 ± 9.7 ab (0) | 35.2 ± 9.5 ab (0) | 42.8 ± 8.5 ab (0) | 91.2 ± 5.5 bc (79.5) |
Dimethoate | 85.2 ± 1.5 e (84.8) | 88.9 ± 2.3 e (84.8) | 89.7 ± 2.1 e (86.5) | 90.5 ± 1.4 d (85.5) | 99.5 ± 0.9 c (98.5) |
Lambda cyhalothrin | 65.6 ± 4.9 d (64.9) | 74.2 ± 7.6 d (71.3) | 77.5 ± 9.6 de (70.9) | 78.6 ± 8.6 d (66.9) | 93.6 ± 4.6 c (84.6) |
Pymetrozine | 37.7 ± 3.8 c (38.8) | 51.5 ± 5.5 c (59.3) | 53.3 ± 8.4 bc (40.9) | 54.1± 8.8 b (32.5) | 70.5 ± 7.8 ab (0) |
Spirotetramat | 48.1 ± 3.1 c (49.9) | 53.4 ± 4.3 c (52.6) | 61.8 ± 1.6 cd (50.0) | 62.4 ± 1.4 bc (43.0) | 90.6 ± 6.4 bc (79.5) |
Imidacloprid | 72.2 ± 4.9 de (71.4) | 74.7 ± 3.5 d (71.5) | 76.3 ± 2.1 de (68.9) | 80.4 ± 3.5 d (70.7) | 99.1 ± 0.7 c (98.2) |
Thiamethoxam | 73.6 ± 7.5 de (72.9) | 77.9 ± 5.5 de (75.1) | 82.1 ± 2.1 e (76.8) | 85.2 ± 3.4 d (77.6) | 99.3 ± 0.4 c (98.5) |
F | 93.80 | 67.62 | 30.93 | 24.01 | 18.86 |
df | (7, 24) | (7, 24) | (7, 24) | (7, 24) | (7, 24) |
p-value | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 |
Active Ingredient | Individuals per Shoot | Infested Shoots | |||||||
---|---|---|---|---|---|---|---|---|---|
14 Daa | 28 Daa | 48 Daa | 62 Daa | 14 Daa | 28 Daa | 48 Daa | 62 Daa | ||
Control | Eggs | 122.2 ± 40.4 a | 128.2 ± 25.3 a | 369.3 ± 76.3 a | 524.8 ± 103.9 a | 57 ± 5.2 a | 86.7 ± 8.6 a | 100 ± 0 a | 100 ± 0 a |
Nymphs | 32.7 ± 12.0 A | 17.7 ± 5.8 A | 81.8 ± 5.3 A | 103.1 ± 18.8 A | |||||
Dimethoate | Eggs | 16.9 ± 5.9 b (89.5) | 110.4 ± 16.2 a (0) | 284.7 ± 69.4 ab (0) | 408.4 ± 102.7 ab (0) | 23.3 ± 4.6 b | 57.5 ± 10.5 b | 78.8 ± 10.6 ab | 73 ± 12.2 b |
Nymphs | 0.5 ± 0.2 C (99.7) | 14.1 ± 3.9 A (0) | 53.4 ± 18.9 A (0) | 62.1 ± 31.6 A (0) | |||||
Calcium polysulphide | Eggs | 17.4 ± 2.7 b (92.8) | 25.94 ± 15.4 b (19.2) | 281.1 ± 79.3 ab (0) | 425.2 ± 106.9 ab (0) | 60.5 ± 8.1 a | 81.9 ± 5.8 a | 97.9 ± 2.1 a | 97.8 ± 2.2 ab |
Nymphs | 0.1 ± 0.06 C (98.7) | 2.6 ± 0.9 A (0) | 39.9 ± 16.6 A (0) | 62.1 ± 31.6 A (0) | |||||
Lambda cyhalothrin | Eggs | 10.7 ± 3.6 b (89.4) | 34.0 ± 13.2 b (72.3) | 92.3 ± 17.5 b (70.3) | 119.6 ± 21.6 b (72.3) | 11.4 ± 4.8 b | 27.9 ± 8.4 c | 73.6 ± 11.7 b | 85.5 ± 2.1 ab |
Nymphs | 3.2 ± 1.2 B (91.9) | 14.4 ± 10.7 A (0) | 26.9 ± 7.4 A (0) | 28.7 ± 9.9 A (0) | |||||
F | Eggs | 4.43 | 12.90 | 5.24 | 4.82 | 17.61 | 19.62 | 4.01 | 4.76 |
Nymphs | 49.86 | 1.49 | 2.41 | 2.08 | |||||
df | Eggs | (3, 9) | (3, 9) | (3, 9) | (3, 9) | (3, 60) | (3, 60) | (3, 51) | (3, 60) |
Nymphs | (3, 9) | (3, 9) | (3, 9) | (3, 9) | |||||
p-value | Eggs | 0.03 | 0.001 | 0.02 | 0.03 | <0.001 | <0.001 | <0.05 | ˂0.05 |
Nymphs | <0.001 | n.s. | n.s. | n.s. |
Active Ingredient | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|
7 Daa | 14 Daa | 21 Daa | 28 Daa | 7 Daa | 14 Daa | 21 Daa | 28 Daa | |
Control | 86.6 ± 1.2 a | 91.9 ± 10.6 a | 105.4 ± 27.1 a | 80.4 ± 37.9 a | 25.2 ± 10.1 a | 45.0 ± 7.7 a | 54.0 ± 17.4 a | 56.2 ± 8.8 a |
Abamectin | 79.5 ± 14.7 a (0) | 56.8 ± 7.0 a (0) | 44.9 ± 12.2 ab (0) | 43.1 ± 22.9 ab (0) | 69.1 ± 3.6 bc (49.1) | 65.6 ± 15.6 ab (0) | 71.7 ± 15.6 ab (0) | 79.18 ± 7.2 ab (0) |
Imidacloprid | 9.1 ± 0.5 c (89.5) | 19.4 ± 8.5 b (75.8) | 15.2 ± 5.8 bc (86.1) | 21.7 ± 16.9 ab (0) | 88.9 ± 7.9 c (83.2) | 92.2 ± 6.9 c (92.9) | 94.9 ± 5.6 bc (93.9) | 95.8 ± 5.5 bc (94.9) |
Lambda cyhalothrin | 20.1 ± 0.3 b (76.8) | 18.6 ± 1.9 b (79.3) | 19.7 ± 1.8 bc (78.2) | 1.9 ± 4.8 b (89.0) | 77.7 ± 16.4 bc (83.4) | 79.5 ± 13.6 bc (74.8) | 85.1 ± 20.9 abc (0) | 92.6 ± 7.1 bc (89.6) |
Spirotetramat | 59.1 ± 11.6 a (0) | 41.4 ± 5.8 ab (0) | 30.0 ± 7.0 bc (64.8) | 44.8 ± 22.3 ab (0) | 55.7 ± 18.9 ab (0) | 84.2 ± 9.3 bc (32.7) | 91.1 ± 3.9 abc (0) | 84.9 ± 9.1 b (58.3) |
Thiamethoxam | 10.4 ± 1.5 c (88.0) | 5.2 ± 0.6 c (94.1) | 8.4 ± 1.0 c (91.3) | 1.8 ± 0.9 b (96.4) | 94.6 ± 2.9 c (86.2) | 98.5 ± 0.9 c (96.8) | 99.5 ± 0.4 c (97.7) | 99.7 ± 0.1 c (98.9) |
F | 61.76 | 21.84 | 11.48 | 4.35 | 13.20 | 12.11 | 6.44 | 13.84 |
df | (5, 12) | (5, 12) | (5, 12) | (5, 12) | (5, 12) | (5, 12) | (5, 12) | (5, 12) |
p-value | <0.001 | <0.001 | <0.001 | 0.017 | <0.001 | <0.001 | <0.005 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, P.; Hernández-Suárez, E.; Rizza, R.; Martínez-Ferrer, M.T.; Campos-Rivela, J.M.; Agustí, N.; Siverio, F.; Hervalejo, A.; Arenas-Arenas, F.J. Efficacy of Selected Insecticides for Chemical Control of the African Citrus Psyllid, Trioza erytreae (Psylloidea: Triozidae). Agronomy 2022, 12, 441. https://doi.org/10.3390/agronomy12020441
Molina P, Hernández-Suárez E, Rizza R, Martínez-Ferrer MT, Campos-Rivela JM, Agustí N, Siverio F, Hervalejo A, Arenas-Arenas FJ. Efficacy of Selected Insecticides for Chemical Control of the African Citrus Psyllid, Trioza erytreae (Psylloidea: Triozidae). Agronomy. 2022; 12(2):441. https://doi.org/10.3390/agronomy12020441
Chicago/Turabian StyleMolina, Paula, Estrella Hernández-Suárez, Rositta Rizza, María Teresa Martínez-Ferrer, José Miguel Campos-Rivela, Nuria Agustí, Felipe Siverio, Aurea Hervalejo, and Francisco José Arenas-Arenas. 2022. "Efficacy of Selected Insecticides for Chemical Control of the African Citrus Psyllid, Trioza erytreae (Psylloidea: Triozidae)" Agronomy 12, no. 2: 441. https://doi.org/10.3390/agronomy12020441
APA StyleMolina, P., Hernández-Suárez, E., Rizza, R., Martínez-Ferrer, M. T., Campos-Rivela, J. M., Agustí, N., Siverio, F., Hervalejo, A., & Arenas-Arenas, F. J. (2022). Efficacy of Selected Insecticides for Chemical Control of the African Citrus Psyllid, Trioza erytreae (Psylloidea: Triozidae). Agronomy, 12(2), 441. https://doi.org/10.3390/agronomy12020441