Effect of Eucalyptus-Wood-Based Compost Application Rates on Avocado (Persea americana Mill) Foliar Nutrient Content and Fruit Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Experimental Treatments
2.2. Eucalyptus Compost Preparation, Sampling, and Analysis
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Leaf Macronutrients (N, P, K, Ca, and Mg)
3.2. Leaf Micronutrients (Fe, Mn, Na, Cu, and Zn)
3.3. Avocado Fruit Yield
3.4. Avocado Fruit Size Distribution
4. Discussion
4.1. Leaf Macronutrients (N, P, K, Ca, and Mg)
4.2. Leaf Micronutrients (Fe, Mn, Na, Cu, and Zn)
4.3. Avocado Fruit Yield and Size Distribution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lovatt, C.J. Hass avocado nutrition research in California. Cali Avocado Soc. 2014, 96, 74–105. [Google Scholar]
- Gwenzi, W.; Muzuva, M.; Mapanda, F.; Tauro, T.P. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe. J. Integ. Agric. 2016, 15, 1395–1406. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, B.S.; Ball, B.C.; Daniell, T.J.; Neilson, R.; Wheatley, R.E.; Osler, G.; Bohanec, M. Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Appl. Soil Ecol. 2010, 46, 43–53. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Shindo, H. Effects of different levels of compost application on amounts and distribution of organic nitrogen forms in soil particle size fractions subjected mainly to double cropping. Agric. Sci. 2011, 2, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Wolstenholme, B.N.; Moore-Gordon, C.; Ansermino, S.D. Some pros and cons of mulching avocado orchards. SA Avocado Growers’ Assoc. 1996, 19, 87–91. [Google Scholar]
- El-Shamma, M.S.; Mona, E.M.H.; Maksoud, M.A.; Fekria, H.K.; Mansour, A.E.M. Effect of some bio-stimulants on nutritional status, yield and fruit quality of avocados. Mid. East J. Agric. Res. 2017, 6, 692–699. [Google Scholar]
- Angelova, V.R.; Akova, V.I.; Artinova, N.S.; Ivanov, K.I. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci. 2013, 19, 958–971. [Google Scholar]
- Fujihiro, A.; Nkkiko, K.; Chio, K. Effects of compost and organic green manure on soil fertility and nutrient uptake in wheat-rice cropping system. Int. J. Man. Fert. 2013, 2, 407–412. [Google Scholar]
- Wolsterholme, B.N.; Moore-Gordon, C.; Cowan, A.K. Orchard mulching effects on avocado fruiting. In Proceedings of the Conference ’97: Searching for Quality. Joint Meeting of the Australian Avocado Grower’s Federation and New Zealand Avocado Growers Association, Rotorua, New Zealand, 23–25 September 1997; pp. 119–130. [Google Scholar]
- Moore-Gordon, C.; Cowan, A.K.; Wostenholme, B. Mulching of avocado orchards to increase Hass yield and fruit size and boost financial rewards a three season summary of research findings. SA Avocado Growers’ Assoc. 1997, 20, 46–49. [Google Scholar]
- Bonilla, N.; Vida, C.; Martínez-Alonso, M.; Landa, B.B.; Gaju, N.; Cazorla, F.M.; de Vicente, A. Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities. Appl. Environ. Microbiol. 2015, 81, 3405–3418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duong, T.T.T.; Verma, S.; Penfold, C.; Marschner, P. Nutrient release from composts into surrounding soil. Geoder 2013, 195–196, 42–47. [Google Scholar] [CrossRef]
- Sahoo, R.; Bhardwaj, D.; Tuteja, N. Biofertilizers: A sustainable eco-friendly agricultural approach to crop improvement. In Plant Acclimation to Environmental Stress; Tuteja, N., Singh Gill, S., Eds.; Springer: New York, NY, USA, 2013; pp. 403–432. [Google Scholar]
- Krasniqi, A.L.; Blanke, M.M.; Kunz, A.; Damerow, L.; Lakso, A.N.; Meland, M. Alternate bearing in fruit tree crops: Past, present and future. Acta Hortic 2017, 1177, 241–248. [Google Scholar] [CrossRef]
- Scaffer, B.; Wolstenholme, N.B.; Whiley, A. Avocado Botany, Production and Uses, 2nd ed.; CABI Publishing: New York, NY, USA, 2013; pp. 15–19. [Google Scholar]
- Hartigh, W. ZZ2’s, 10,000 Tons of Avocados Using Nature-Friendly Methods; Farmer’s Weekly Magazine: Pretoria, South Africa, 2016; pp. 34–42. [Google Scholar]
- Oldfield, E.E.; Wood, S.A.; Bradford, M.A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. J. Plant Soil 2018, 423, 363–373. [Google Scholar] [CrossRef]
- Mohale, M.P.; Manyevere, A.; Dube, E.; Zerizghy, M. Short-term Effect of Eucalyptus Wood-based Compost on Biological Fertility of Soils under Avocado Plantations. Comm. Soil Sci. Plant Anal. 2021, 52, 1574–1589. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Castagna, A.; Ranieri, A.; di Toppi, L.S. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Phys. Biochem. 2012, 57, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A manual for the West Asia and North Africa Region, 3rd ed.; ICARDA: Beirut, Lebanon, 2013; p. 244. [Google Scholar]
- Whiley, A.W.; Smith, I.E.; Wolstenholme, B.N.; Saranah, J.B. Boron nutrition of avocados. SA Avocado Growers’ Assoc. 1996, 20, 1–7. [Google Scholar]
- Barbosa, M.A.; Ferreira, N.M.; Bertino, A.M.P.; Mesquita, E.F.; Chaves, L.H.G.; Cavalcante, L.F.; Rigobelo, E.C. Effect of organic matter, irrigation and soil mulching on the nutritional status and productivity of okra (Abelmoschus esculentus L.) in the semiarid region of Brazil. Afric. J. Biotech. 2016, 15, 2720–2728. [Google Scholar]
- Parwada, C.; Mandumbu, R.; Tibugari, H.D.; Badze, D.; Mhungu, S. Effect of soil fertility amendment, planting density and growing season on Chenopodium quinoa Willd (Quinoa) in Zimbabwe. Cogent Food Agric. 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Villena, R.; Castellanos, M.T.; Cartagena, M.C.; Ribas, F.; Arce, A.; Cabello, M.J.; Requejo, M.I. Winery distillery waste compost effect on the performance of melon crop. Sci. Agric. 2018, 75, 494–503. [Google Scholar] [CrossRef] [Green Version]
Nutrient Element | Unit | Ranges for Mature Avocado Trees | Reference | ||
---|---|---|---|---|---|
Low | Sufficient | High | |||
N | (%) | <1.8 | 2.0–2.2 | >2.2 | Whiley et al., 1996 |
P | (%) | 0.05–0.09 | 0.10–0.25 | 0.26–0.3 | Lahav and Kadman, 1980 |
K | (%) | 0.34–0.74 | 0.75–2.0 | 2.1–2.9 | Lahav and Kadman, 1980 |
Ca | (%) | 0.50–0.99 | 1.00–3.00 | 3.1–4.0 | Whiley et al., 1996; Lahav and Kadman, 1980 |
Mg | (%) | 0.15–0.24 | 0.25–0.80 | 0.9–1.0 | Whiley et al., 1996; Lahav and Kadman, 1980 |
Mn | (%) | 0.015–0.029 | 0.030–0.050 | >0.0500 | Whiley et al., 1996; Lahav and Kadman, 1980 |
Fe | (%) | 0.020–0.049 | 0.20 | >0.200 | Whiley et al., 1996; Lahav and Kadman, 1980 |
Zn | (%) | <0.020 | 0.030–0.035 | >0.035 | Whiley et al., 1996; Lahav and Kadman, 1980 |
Cu | (%) | <0.05 | 0.05–0.065 | >0.065 | Whiley et al., 1996; Lahav and Kadman, 1980 |
Na | (%) | - | - | 0.05–0.19 | Whiley et al., 1996; Lahav and Kadman, 1980 |
Mooketsi Orchard | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variation | Yield | Fruit Size | N | P | K | Ca | Mg | Na | Mn | Cu | Zn | Fe | |
Compost rate (R) | Fprob. | 2.10 | 4.33 | 1.31 | 1.58 | 1.05 | 3.11 | 1.35 | 1.05 | 2.17 | 1.36 | 1.36 | 1.15 |
p | 0.01 | 0.03 | <0.01 | <0.01 | 0.01 | 0.02 | 0.02 | <0.01 | <0.01 | 0.01 | 0.01 | 0.01 | |
Time (Y) | Fprob. | 1.32 | 2.30 | 2.10 | 1.37 | 1.12 | 2.15 | 0.62 | 0.60 | 1.50 | 6.12 | 3.16 | 3.16 |
p | <0.01 | 0.01 | 0.02 | <0.01 | 0.02 | <0.01 | 0.01 | 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | |
R × Y | Fprob. | 1.71 | 2.07 | 1.92 | 2.21 | 1.31 | 2.23 | 1.12 | 1.12 | 2.42 | 1.34 | 2.33 | 1.31 |
p | 0.02 | 0.01 | 0.03 | 0.02 | 0.01 | <0.01 | <0.01 | 0.03 | <0.01 | 0.01 | 0.01 | 0.01 | |
Politsi Orchard | |||||||||||||
Compost rate (R) | Fprob. | 2.13 | 1.30 | 1.20 | 1.19 | 1.10 | 2.44 | 1.18 | 1.13 | 3.43 | 2.30 | 1.46 | 0.83 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
Time (Y) | Fprob. | 2.16 | 1.76 | 2.00 | 1.12 | 1.56 | 1.76 | 0.65 | 1.30 | 2.27 | 1.41 | 3.17 | 2.55 |
p | 0.01 | 0.01 | <0.01 | 0.04 | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.01 | 0.02 | |
R × Y | Fprob. | 2.04 | 2.16 | 3.18 | 4.29 | 1.14 | 2.54 | 1.03 | 2.28 | 1.48 | 5.25 | 2.10 | 3.20 |
p | <0.01 | 0.01 | 0.01 | <0.01 | 0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Mooketsi Orchard | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | N | P | K | Ca | Mg | ||||||||||
% | |||||||||||||||
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
0 t ha−1 | 1.20 a | 1.06 a | 0.71 a | 0.17 | 0.10 | 0.18 | 0.92 a | 0.80 a | 0.72 a | 0.80 a | 0.74 a | 0.60 a | 0.62 | 0.45 a | 0.43 a |
5 t ha−1 | 2.44 b | 2.60 b | 2.93 a | 0.18 | 0.21 | 0.36 | 1.47 a | 2.14 b | 2.22 b | 0.95 a | 0.96 a | 1.88 b | 0.75 | 0.72 a | 0.90 b |
10 t ha−1 | 2.46 b | 2.62 b | 3.09 b | 0.17 | 0.27 | 0.58 | 1.44 a | 2.48 b | 2.20 b | 1.66 b | 2.54 b | 2.94 c | 0.83 | 1.11 a b | 1.10 b |
15 t ha−1 | 2.49 b | 2.71 b | 3.15 b | 0.18 | 0.31 | 0.66 | 1.65 b | 2.50 b | 2.23 b | 1.78 b | 2.73 b | 3.08 c | 0.90 | 1.24 b | 1.18 b |
HSD | 0.91 | 1.02 | 1.43 | 0.56 | 0.57 | 0.68 | 0.71 | 0.65 | 0.73 | 0.68 | 0.97 | 1.04 | 0.54 | 0.44 | 0.40 |
Politsi Orchard | |||||||||||||||
0 t ha−1 | 1.21 a | 1.00 a | 0.82 a | 0.14 | 0.13 | 0.11 | 0.83 | 0.70 a | 0.63 a | 0.70 a | 0.81 a | 0.80 a | 0.36 | 0.33 a | 0.29 a |
5 t ha−1 | 2.42 b | 2.82 b | 2.93 b | 0.15 | 0.27 | 0.36 | 1.06 | 1.64 b | 1.71 b | 0.96 a | 0.98 a | 1.90 b | 0.45 | 0.56 a | 0.60 b |
10 t ha−1 | 2.49 b | 2.71 b | 2.98 b | 0.16 | 0.28 | 0.59 | 1.14 | 1.86 b | 1.94 b | 1.62 b | 2.58 b | 2.90 c | 0.53 | 0.95 a b | 0.87 b |
15 t ha−1 | 2.46 b | 2.87 b | 3.16 b | 0.17 | 0.30 | 0.65 | 1.13 | 1.94 b | 2.15 b | 1.76 b | 2.65 b | 3.10 d | 0.55 | 1.02 b | 0.86 b |
HSD | 1.01 | 1.00 | 1.41 | 0.46 | 0.55 | 0.65 | 0.68 | 0.62 | 0.91 | 0.61 | 1.01 | 0.98 | 0.58 | 0.43 | 0.46 |
Mooketsi Orchard | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Fe | Mn | Na | Cu | Zn | ||||||||||
% | |||||||||||||||
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
0 t ha−1 | 0.136 | 0.112 | 0.089 a | 0.252 | 0.235 a | 0.136 a | 0.039 | 0.026 | 0.028 a | 0.028 | 0.021 | 0.016 | 0.27 a | 0.21 a | 0.18 a |
5 t ha−1 | 0.145 | 0.151 | 0.170 b | 0.265 | 0.273 b | 0.286 b | 0.045 | 0.057 | 0.091 b | 0.039 | 0.040 | 0.049 | 0.36 b | 0.48 b | 0.53 b |
10 t ha−1 | 0.149 | 0.179 | 0.192 b | 0.289 | 0.293 b | 0.310 b | 0.047 | 0.063 | 0.096 b | 0.041 | 0.043 | 0.048 | 0.38 b | 0.49 b | 0.59 b c |
15 t ha−1 | 0.150 | 0.193 | 0.209 b | 0.297 | 0.312 b | 0.336 b | 0.049 | 0.070 | 0.099 b | 0.045 | 0.043 | 0.047 | 0.40 b | 0.52 b | 0.63 c |
HSD | 0.075 | 0.061 | 0.064 | 0.068 | 0.070 | 0.081 | 0.040 | 0.032 | 0.034 | 0.030 | 0.032 | 0.036 | 0.06 | 0.062 | 0.06 |
Politsi Orchard | |||||||||||||||
0 t ha−1 | 0.142 | 0.110 | 0.081 a | 0.256 | 0.238 a | 0.130 a | 0.035 | 0.026 | 0.019 a | 0.029 | 0.027 | 0.014 | 0.26 a | 0.21 a | 0.16 a |
5 t ha−1 | 0.151 | 0.160 | 0.171 b | 0.268 | 0.276 b | 0.279 b | 0.046 | 0.055 | 0.096 b | 0.035 | 0.041 | 0.058 | 0.36 b | 0.40 b | 0.51 b |
10 t ha−1 | 0.149 | 0.163 | 0.188 b | 0.285 | 0.294 b | 0.292 b | 0.049 | 0.068 | 0.093 b | 0.041 | 0.054 | 0.065 | 0.41 b | 0.53 b | 0.58 a b |
15 t ha−1 | 0.150 | 0.167 | 0.206 b | 0.298 | 0.318 b | 0.335 b | 0.049 | 0.074 | 0.098 b | 0.047 | 0.063 | 0.074 | 0.45 b | 0.57 b | 0.62 c |
HSD | 0.074 | 0.060 | 0.065 | 0.065 | 0.072 | 0.075 | 0.086 | 0.085 | 0.084 | 0.071 | 0.074 | 0.075 | 0.062 | 0.063 | 0.062 |
Treatments | Avocado Fruit Yield (t ha−1) | |||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
0 t ha−1 | 6.4 a | 5.9 a | 4.5 a | |
Mooketsi orchard | 5 t ha−1 | 8.1 b | 12.6 b | 13.7 b |
10 t ha−1 | 9.8 c | 13.6 c | 18.7 c | |
15 t ha−1 | 10.2 d | 14.2 d | 19.9 d | |
HSD | 0.94 | 0.92 | 0.91 | |
0 t ha−1 | 6.0 a | 4.9 a | 3.6 a | |
Politsi orchard | 5 t ha−1 | 7.9 b | 11.9 b | 13.5 b |
10 t ha−1 | 9.1 c | 12.8 c | 17.8 c | |
15 t ha−1 | 9.9 d | 15.7 d | 19.4 d | |
HSD | 0.93 | 0.91 | 0.91 |
Mooketsi Orchard | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Class 1 (>274 g) | Class 2 (197–274 g) | Class 3 (148–196 g) | Class 4 (0–147 g) | ||||||||
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
0 t ha−1 | 4.3 a | 3.3 a | 0.8 a | 9.2 a | 7.3 a | 5.7 a | 38.0 a | 20.0 a | 15.0 a | 40.7 a | 45.5 a | 56.6 a |
5 t ha−1 | 25.3 b | 26.0 b | 27.0 b | 44.0 b | 45.0 b | 46.3 b | 32.0 a | 32.3 b | 35.3 b | 30.0 b | 33.4 b | 24.8 b |
10 t ha−1 | 26.0 b | 27.7 b | 28.2 b | 26.7 c | 27.0 c | 30.0 c | 21.0 b | 26.3 b c | 27.3 b c | 20.0 c | 14.1 c | 11.3 c |
15 t ha−1 | 44.4 b | 43.0 b | 44.0 b | 20.2 c | 19.6 c | 18.0 c | 9.0 c | 21.4 c | 22.4 c | 9.3 d | 7.9 c | 7.3 c |
HSD | 19.6 | 21.4 | 17.2 | 13.4 | 12.6 | 11.7 | 10.8 | 9.5 | 8.3 | 7.1 | 6.3 | 7.4 |
Politsi Orchard | ||||||||||||
0 t ha−1 | 5.3 a | 4.1 a | 1.6 a | 8.2 a | 7.3 a | 6.2 a | 36.2 a | 21.0 a | 15.0 a | 39.0 a | 42.6 a | 55.4 a |
5 t ha−1 | 24.3 b | 25.0 b | 25.4 b | 42.0 b | 44.3 b | 45.3 b | 33.0 a | 30.6 b | 35.3 b | 32.5 b | 35.4 b | 25.2 b |
10 t ha−1 | 27.0 b | 27.9 b | 28.8 b | 28.7 c | 27.8 c | 29.5 c | 22.9 b | 27.3 b c | 28.3 b c | 19.5 c | 14.0 c | 12.6 c |
15 t ha−1 | 43.4 b | 43.0 b | 44.2 b | 21.1 c | 20.6 c | 19.0 c | 7.6 c | 21.1 c | 22.0 c | 9.0 d | 8.0 c | 6.8 c |
HSD | 18.3 | 20.1 | 16.5 | 12.4 | 10.7 | 9.3 | 11.1 | 8.4 | 7.9 | 6.8 | 7.0 | 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohale, M.P.; Manyevere, A.; Parwada, C.; Zerizghy, M. Effect of Eucalyptus-Wood-Based Compost Application Rates on Avocado (Persea americana Mill) Foliar Nutrient Content and Fruit Yield. Agronomy 2022, 12, 477. https://doi.org/10.3390/agronomy12020477
Mohale MP, Manyevere A, Parwada C, Zerizghy M. Effect of Eucalyptus-Wood-Based Compost Application Rates on Avocado (Persea americana Mill) Foliar Nutrient Content and Fruit Yield. Agronomy. 2022; 12(2):477. https://doi.org/10.3390/agronomy12020477
Chicago/Turabian StyleMohale, Mmatshaka Phillimon, Alen Manyevere, Cosmas Parwada, and Mussie Zerizghy. 2022. "Effect of Eucalyptus-Wood-Based Compost Application Rates on Avocado (Persea americana Mill) Foliar Nutrient Content and Fruit Yield" Agronomy 12, no. 2: 477. https://doi.org/10.3390/agronomy12020477
APA StyleMohale, M. P., Manyevere, A., Parwada, C., & Zerizghy, M. (2022). Effect of Eucalyptus-Wood-Based Compost Application Rates on Avocado (Persea americana Mill) Foliar Nutrient Content and Fruit Yield. Agronomy, 12(2), 477. https://doi.org/10.3390/agronomy12020477