Alternative Solution to Synthetic Fertilizers for the Starter Fertilization of Bread Wheat under Mediterranean Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Experimental Design
2.2. Sampling and Measurements
2.3. Statistical Analysis
3. Results
3.1. Crop Density, Aerial Dry Biomass Accumulation, and Plant Height
3.2. Tiller Density and Leaf Area Index (LAI)
3.3. Leaf P Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Grant, C.A.; Flaten, D.N.; Tomasiewicz, D.J.; Sheppard, S.C. The importance of early season phosphorus nutrition. Can. J. Plant Sci. 2001, 81, 211–224. [Google Scholar] [CrossRef]
- Quinn, D.J.; Lee, C.D.; Poffenbarger, H.J. Corn yield response to sub-surface banded starter fertilizer in the U.S.: A meta-analysis. Field Crops Res. 2020, 254, 107834. [Google Scholar] [CrossRef]
- Jing, J.; Rui, Y.; Zhang, F.; Rengel, Z.; Shen, J. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Res. 2010, 119, 355–364. [Google Scholar] [CrossRef]
- Wang, X.X.; Liu, S.; Zhang, S.; Li, H.; Maimaitiaili, B.; Feng, G.; Rengel, Z. Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Field Crops Res. 2018, 217, 75–81. [Google Scholar] [CrossRef]
- Kaiser, D.E.; Mallarino, A.P.; Bermudez, M. Corn Grain Yield, Early Growth, and Early Nutrient Uptake as Affected by Broadcast and In-Furrow Starter Fertilization. Agron. J. 2005, 97, 620–626. [Google Scholar] [CrossRef]
- Kaiser, D.E.; Coulter, J.A.; Vetsch, J.A. Corn hybrid response to in-furrow starter fertilizer as affected by planting date. Agron. J. 2016, 108, 2493–2501. [Google Scholar] [CrossRef]
- Grant, C.; Bittman, S.; Montreal, M.; Plenchette, C.; Morel, C. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci. 2005, 85, 3–14. [Google Scholar] [CrossRef]
- Mascagni, H.J.; Boquet, D.J. Starter fertilizer and planting date effects on corn rotated with cotton. Agron. J. 1996, 88, 975–982. [Google Scholar] [CrossRef]
- Willer, H.; Meier, C.; Schlatter, B.; Dietemann, L.; Kemper, L.; Trávníček, J. The World of Organic Agriculture 2021: Summary. In The World of Organic Agriculture. Statistics and Emerging Trends 2021; Willer, H., Trávníček, J., Meier, C., Schlatter, B., Eds.; Research Institute of Organic Agriculture FiBL, Frick, and IFOAM—Organics International: Bonn, Germany, 2021; pp. 20–30. ISBN 9783037363935. [Google Scholar]
- Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. Attribution of crop yield responses to application of organic amendments: A critical review. Soil Tillage Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Vann, R.A.; Reberg-Horton, S.C.; Poffenbarger, H.J.; Zinati, G.M.; Moyer, J.B.; Mirsky, S.B. Starter fertilizer for managing cover crop-based organic corn. Agron. J. 2017, 109, 2214–2222. [Google Scholar] [CrossRef]
- Regueiro, I.; Siebert, P.; Liu, J.; Müller-Stöver, D.; Jensen, L.S. Acidified animal manure products combined with a nitrification inhibitor can serve as a starter fertilizer for maize. Agronomy 2020, 10, 1941. [Google Scholar] [CrossRef]
- Sacco, D.; Moretti, B.; Monaco, S.; Grignani, C. Six-year transition from conventional to organic farming: Effects on crop production and soil quality. Eur. J. Agron. 2015, 69, 10–20. [Google Scholar] [CrossRef]
- Tosti, G.; Farneselli, M.; Benincasa, P.; Guiducci, M. Nitrogen fertilization strategies for organic wheat production: Crop yield and nitrate leaching. Agron. J. 2016, 108, 770–781. [Google Scholar] [CrossRef] [Green Version]
- Fagnano, M.; Fiorentino, N.; D’Egidio, M.G.; Quaranta, F.; Ritieni, A.; Ferracane, R.; Raimondi, G. Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy. Sci. World J. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dawson, J.C.; Huggins, D.R.; Jones, S.S. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Res. 2008, 107, 89–101. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic effect of sulfur and nitrogen in the organic and mineral fertilization of durum wheat: Grain yield and quality traits in the Mediterranean environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Latiri, K.; Lhomme, J.P.; Annabi, M.; Setter, T.L. Wheat production in Tunisia: Progress, inter-annual variability and relation to rainfall. Eur. J. Agron. 2010, 33, 33–42. [Google Scholar] [CrossRef]
- Bel Hadj Chedli, R.; Ben M’Barek, S.; Souissi, A.; Yahyaoui, A.; Rezgui, S.; Chaabane, H. Screening for resistance of Tunisian, Moroccan and Algerian wheat cultivars to Zymoseptoria tritici in Northern Tunisia. J. Plant Pathol. 2020, 102, 1085–1095. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef] [PubMed]
- Varley, J.A. Automated method for the determination of nitrogen, phosphorus and potassium in plant material. Analyst 1966, 91, 119–126. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Rossini, F.; Provenzano, M.E.; Kuzmanović, L.; Ceoloni, C.; Ruggeri, R. Assessing the Ability of Durum Wheat-Thinopyrum ponticum Recombinant Lines to Suppress Naturally Occurring Weeds under Different Sowing Densities. Agronomy 2020, 10, 709. [Google Scholar] [CrossRef]
- Kuzmanović, L.; Ruggeri, R.; Able, J.A.; Bassi, F.M.; Maccaferri, M.; Tuberosa, R.; De Vita, P.; Rossini, F.; Ceoloni, C. Yield of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines in a range of contrasting rain-fed environments. Field Crops Res. 2018, 228, 147–157. [Google Scholar] [CrossRef]
- Kuzmanović, L.; Mandalà, G.; Tundo, S.; Ciorba, R.; Frangella, M.; Ruggeri, R.; Rossini, F.; Gevi, F.; Rinalducci, S.; Ceoloni, C. Equipping Durum Wheat—Thinopyrum ponticum Recombinant Lines With a Thinopyrum elongatum Major QTL for Resistance to Fusarium Diseases Through a Cytogenetic Strategy. Front. Plant Sci. 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Kuzmanović, L.; Rossini, F.; Ruggeri, R.; Pagnotta, M.; Ceoloni, C. Engineered Durum Wheat Germplasm with Multiple Alien Introgressions: Agronomic and Quality Performance. Agronomy 2020, 10, 486. [Google Scholar] [CrossRef] [Green Version]
- Ceoloni, C.; Kuzmanović, L.; Ruggeri, R.; Rossini, F.; Forte, P.; Cuccurullo, A.; Bitti, A. Harnessing genetic diversity of wild gene pools to enhance wheat crop production and sustainability: Challenges and opportunities. Diversity 2017, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Lemerle, D.; Gill, G.; Murphy, C.; Walker, S.; Cousens, R.; Mokhtari, S.; Peltzer, S.; Coleman, R.; Luckett, D. Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Aust. J. Agric. Res. 2001, 52, 527–548. [Google Scholar] [CrossRef]
- Kuzmanović, L.; Giovenali, G.; Ruggeri, R.; Rossini, F.; Ceoloni, C. Small “nested” introgressions from wild Thinopyrum species, conferring effective resistance to fusarium diseases, positively impact durum wheat yield potential. Plants 2021, 10, 579. [Google Scholar] [CrossRef]
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Schmidt, C.; Shotton, P.; Volakakis, N.; Cakmak, I.; et al. The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Mayer, J.; Gunst, L.; Mäder, P.; Samson, M.-F.; Carcea, M.; Narducci, V.; Thomsen, I.K.; Dubois, D. Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland. Eur. J. Agron. 2015, 65, 27–39. [Google Scholar] [CrossRef]
- Goos, R.J.; Johnson, B.E. Response of spring wheat to phosphorus and sulphur starter fertilizers of differing acidification potential. J. Agric. Sci. 2001, 136, 283–289. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, K.; Ahammed, G.J.; Li, M.; Yin, H. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellet, G.; Pilotto, L.; Marchiol, L.; Braidot, E. Tools for nano-enabled agriculture: Fertilizers based on calcium phosphate, silicon, and chitosan nanostructures. Agronomy 2021, 11, 1239. [Google Scholar] [CrossRef]
- Marchiol, L.; Filippi, A.; Adamiano, A.; Esposti, L.D.; Iafisco, M.; Mattiello, A.; Petrussa, E.; Braidot, E. Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Lemerle, D.; Verbeek, B.; Cousens, R.; Coombes, N. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Aharon, S.; Fadida-Myers, A.; Nashef, K.; Ben-David, R.; Lati, R.N.; Peleg, Z. Genetic improvement of wheat early vigor promote weed-competitiveness under Mediterranean climate. Plant Sci. 2021, 303, 110785. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Jensen, C.R.; Liu, F. Improving crop production in the arid Mediterranean climate. Field Crops Res. 2012, 128, 34–47. [Google Scholar] [CrossRef]
- Richards, R.A. Genetic opportunities to improve cereal root systems for dryland agriculture. Plant Prod. Sci. 2008, 11, 12–16. [Google Scholar] [CrossRef]
- Nunes, A.P.P.; Santos, C.F.; Guelfi, D. Interfaces between biodegradable organic matrices coating and MAP fertilizer for improve use efficiency. Sci. Total Environ. 2022, 804, 149896. [Google Scholar] [CrossRef]
- Santos, C.F.; da Silva Aragão, O.O.; Silva, D.R.G.; Jesus, E.d.C.; Chagas, W.F.T.; Correia, P.S.; de Souza Moreira, F.M. Environmentally friendly urea produced from the association of N-(n-butyl) thiophosphoric triamide with biodegradable polymer coating obtained from a soybean processing byproduct. J. Clean. Prod. 2020, 276, 123014. [Google Scholar] [CrossRef]
- Pauly, D.G.; Nyborg, M.; Malhi, S.S. Controlled-release P fertilizer concept evaluation using growth and P uptake of barley from three soils in a greenhouse. Can. J. Soil Sci. 2002, 82, 201–210. [Google Scholar] [CrossRef]
- Aziz, M.Z.; Yaseen, M.; Naveed, M.; Wang, X.; Fatima, K.; Saeed, Q.; Mustafa, A. Polymer-Paraburkholderia phytofirmans PsJN coated diammonium phosphate enhanced microbial survival, phosphorous use efficiency, and production of wheat. Agronomy 2020, 10, 1344. [Google Scholar] [CrossRef]
- Harris, D.; Rashid, A.; Miraj, G.; Arif, M.; Yunas, M. “On-farm” seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil 2008, 306, 3–10. [Google Scholar] [CrossRef]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, H. The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Rengel, Z.; Graham, R.D. Importance of seed Zn content for wheat growth on Zn-deficient soil—I. Vegetative growth. Plant Soil 1995, 173, 259–266. [Google Scholar] [CrossRef]
- Rodríguez, D.; Andrade, F.H.; Goudriaan, J. Effects of phosphorus nutrition on tiller emergence in wheat. Plant Soil 1999, 209, 283–295. [Google Scholar] [CrossRef]
- Andrew, I.K.S.; Storkey, J.; Sparkes, D.L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 2015, 55, 239–248. [Google Scholar] [CrossRef]
- Pask, A.; Pietragalla, J. Leaf area, green crop area and senescence. In Physiological Breeding II: A Field Guide to Wheat Phenotyping; Pask, A., Pietragalla, J., Mullan, D., Reynolds, M., Eds.; CIMMYT: Texcoco, Mexico, 2012; pp. 58–62. ISBN 978-970-648-182-5. [Google Scholar]
- Schillinger, W.F. Rainfall impacts winter wheat seedling emergence from deep planting depths. Agron. J. 2011, 103, 730–734. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, F.; Ahmad, R.; Waraich, E.A.; Naeem, M.S.; Shabbir, R.N. Nutrient uptake, physiological responses, and yield attributes of wheat (Triticum aestivum L.) exposed to early and late drought stress. J. Plant Nutr. 2012, 35, 961–974. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.Z.; Mu, H.F.; Dang, T.H. Inorganic Phosphorus Fractions and Phosphorus Availability in a Calcareous Soil Receiving 21-Year Superphosphate Application. Pedosphere 2010, 20, 304–310. [Google Scholar] [CrossRef]
- Lan, Z.M.; Lin, X.J.; Wang, F.; Zhang, H.; Chen, C.R. Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization. Biol. Fertil. Soils 2012, 48, 579–588. [Google Scholar] [CrossRef]
2018–2019 | 2019–2020 | 2020–2021 | ||||
---|---|---|---|---|---|---|
Experiment Information | L1 | L2 | L1 | L2 | L1 | L2 |
Sowing date | 22 October | 22 October | 21 October | 21 October | 21 October | 21 October |
Preceding crop | Barley | Barley | Wheat | Wheat | Wheat | Wheat |
Sowing density (seeds m−2) | 300 | 300 | 300 | 300 | 300 | 300 |
Plot size (m2) | 6 | 6 | 6 | 6 | 6 | 6 |
Wheater data | ||||||
Total rainfall (mm) | 28 | 31 | 44 | 49 | 32 | 36 |
Mean air temperature (°C) | 16.3 | 16.0 | 15.7 | 15.2 | 15.0 | 14.7 |
Soil features | ||||||
Clay (Ø < 2 µm, %) | 30 | 40 | ||||
Silt (2.0 < Ø < 20 µm, %) | 64 | 58 | ||||
Sand (2.0 > Ø > 0.02 mm, %) | 6 | 2 | ||||
Soil texture | Silty clay loam | Silty clay | ||||
Available P (%) | 0.94 | 0.91 | ||||
Total CaCO3 (%) | 3.73 | 2.91 | ||||
Organic matter (%) | 1.42 | 2.00 | ||||
SiO2 (%) | 30.2 | 42.1 | ||||
Al2O3 (%) | 18.7 | 23.2 | ||||
Fe2O3 (%) | 9.19 | 11.4 | ||||
pH | 7.45 | 7.32 |
Sampling Day | Crop Density | Aerial Biomass | Plant Height | Number of Tillers | LAI | Leaf P Concentr. | |
---|---|---|---|---|---|---|---|
Year (Y) | 7 | ns | * | ||||
14 | *** | ns | *** | ||||
21 | * | ns | |||||
28 | ns | *** | |||||
35 | * | *** | |||||
42 | *** | *** | |||||
49 | *** | *** | |||||
56 | *** | *** | |||||
63 | *** | *** | |||||
70 | *** | *** | *** | *** | *** | ||
Location (L) | 7 | ns | * | ||||
14 | ns | *** | * | ||||
21 | * | ** | |||||
28 | ns | ** | |||||
35 | ns | *** | |||||
42 | * | ns | |||||
49 | * | ns | |||||
56 | *** | ns | |||||
63 | *** | ns | |||||
70 | * | ns | ns | * | ** | ||
Fertilizer (F) | 7 | *** | *** | ||||
14 | *** | *** | ** | ||||
21 | *** | *** | |||||
28 | ** | ** | |||||
35 | *** | *** | |||||
42 | ** | ns | |||||
49 | ** | ns | |||||
56 | *** | ns | |||||
63 | *** | * | |||||
70 | *** | ns | ** | *** | *** | ||
Two-way interactions | 7 | ns | ns | ||||
14 | ns | ns | ns | ||||
21 | F × L ** | ns | |||||
28 | ns | F × L ** | |||||
35 | L × Y * | ns | |||||
42 | ns | ns | |||||
49 | ns | ns | |||||
56 | F × Y * | ns | |||||
63 | ns | F × L ** | |||||
70 | ns | ns | ns | ns | F × Y * |
Sampling Day (DAE) | 2019 | 2020 | 2021 | L1 | L2 | DAP | SBE |
---|---|---|---|---|---|---|---|
7 | 2.17 ns | 1.92 ns | 2.33 ns | 1.94 ns | 2.33 ns | 1.67 b | 2.61 a |
14 | 14.92 ns | 14.67 ns | 14.42 ns | 14.28 b | 15.06 a | 14.28 b | 15.06 a |
21 | 40.92 b | 41.75 a | 41.17 ab | 41.00 b | 41.56 a | 40.39 b | 42.17 a |
28 | 92.33 ns | 92.08 ns | 92.75 ns | 92.00 ns | 92.78 ns | 91.78 b | 93.00 a |
35 | 155.5 b | 156.3 ab | 157.5 a | 156.1 ns | 156.8 ns | 154.8 b | 158.0 a |
42 | 239.6 c | 252.5 a | 245.1 b | 243.2 b | 248.2 a | 242.4 b | 249.1 a |
49 | 321.8 c | 336.0 b | 348.1 a | 332.4 b | 338.2 a | 332.2 b | 338.4 a |
56 | 512.60 c | 537.9 b | 555.9 a | 531.1 b | 539.8 a | 529.2 b | 541.7 a |
63 | 708.2 c | 730.6 b | 746.0 a | 722.3 b | 734.2 a | 720.1 b | 736.4 a |
70 | 844.3 c | 853.3 b | 861.4 a | 851.0 b | 855.1 a | 849.1 b | 856.9 a |
Sampling Day (DAE) | 2019 | 2020 | 2021 | L1 | L2 | DAP | SBE |
---|---|---|---|---|---|---|---|
7 | 1.75 b | 1.92 ab | 2.33 a | 1.78 b | 2.22 a | 1.61 b | 2.39 a |
14 | 9.75 b | 11.17 a | 11.75 a | 10.44 b | 11.33 a | 10.33 b | 11.44 a |
21 | 23.08 ns | 22.75 ns | 22.58 ns | 22.00 b | 23.61 a | 21.94 b | 23.67 a |
28 | 46.17 b | 46.75 b | 52.33 a | 47.78 b | 49.06 a | 47.83 b | 49.00 a |
35 | 74.33 c | 77.17 b | 81.67 a | 76.56 b | 78.89 a | 76.28 b | 79.17 a |
42 | 119.9 c | 121.8 b | 125.1 a | 121.8 ns | 122.7 ns | 121.7 ns | 122.8 ns |
49 | 149.4 c | 159.5 b | 165.9 a | 158.6 ns | 157.9 ns | 158.4 ns | 158.1 ns |
56 | 165.1 b | 168.3 b | 176.6 a | 170.2 ns | 169.8 ns | 170.4 ns | 169.6 ns |
63 | 190.2 b | 194.0 a | 194.8 a | 193.6 ns | 192.4 ns | 194.0 a | 192.0 b |
70 | 217.0 c | 226.5 b | 230.8 a | 225.1 ns | 224.5 ns | 225.1 ns | 224.4 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathlouthi, F.; Ruggeri, R.; Rossini, F. Alternative Solution to Synthetic Fertilizers for the Starter Fertilization of Bread Wheat under Mediterranean Climatic Conditions. Agronomy 2022, 12, 511. https://doi.org/10.3390/agronomy12020511
Mathlouthi F, Ruggeri R, Rossini F. Alternative Solution to Synthetic Fertilizers for the Starter Fertilization of Bread Wheat under Mediterranean Climatic Conditions. Agronomy. 2022; 12(2):511. https://doi.org/10.3390/agronomy12020511
Chicago/Turabian StyleMathlouthi, Fakir, Roberto Ruggeri, and Francesco Rossini. 2022. "Alternative Solution to Synthetic Fertilizers for the Starter Fertilization of Bread Wheat under Mediterranean Climatic Conditions" Agronomy 12, no. 2: 511. https://doi.org/10.3390/agronomy12020511
APA StyleMathlouthi, F., Ruggeri, R., & Rossini, F. (2022). Alternative Solution to Synthetic Fertilizers for the Starter Fertilization of Bread Wheat under Mediterranean Climatic Conditions. Agronomy, 12(2), 511. https://doi.org/10.3390/agronomy12020511