The Influence of Different Cooling Systems on the Microclimate, Photosynthetic Activity and Yield of a Tomato Crops (Lycopersicum esculentum Mill.) in Mediterranean Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Experimental Greenhouses
2.2. Crop System
2.3. Photosynthetic Activity and Production Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different Climate Control Systems on the Indoor Temperature of Greenhouses
3.2. Effect of Different Climate Control Systems on the Indoor Relative Humidity of Greenhouses
3.3. Effect of Different Climate Control Systems on Photosynthesis Activity
3.4. Effect of Different Climate Control Systems on Production
3.5. Effect of Different Climate Control Systems on Energy and Water Consumption
4. Conclusions
- -
- Pads and fans systems decrease the maximum daily temperatures below 32 °C and decrease the number of hours that the crop is exposed to high temperatures (37 °C), without an excessive increase in relative humidity (maximum relative humidity 71%) on the tomato crop.
- -
- The increase in the width of the greenhouse with exclusive natural ventilation (from 8 to 9 m), which improves the interception capacity of PAR radiation (12% compared to the other two greenhouses) and the increase of ventilation surface that produces an increase in the concentration of CO2 in the interior of greenhouses (1% compared to the other two greenhouses) are an ideal combination to increase photosynthetic activity (1.4% compared to greenhouse 2 (FS + NV) and 9.5% compared to greenhouse 3 (PS + NV), with statistically significant differences with the greenhouse with pads and fans combined with natural ventilation.
- -
- For the climatic conditions of our research (spring-summer cycle), the combination of natural ventilation with pads and fan system slightly increases tomato production, with production 6% higher than that observed in the greenhouse with exclusive natural ventilation and 9.8% higher than the greenhouse with fog system combined with natural ventilation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yin, X.; Harbinson, J.; Struik, P.C. Mathematical Review of Literature to Assess Alternative Electron Transports and Interphotosystem Excitation Partitioning F Steady-State C3 Photosynthesis under Limiting Light. Plant Cell Environ. 2009, 29, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Du, Q.; Li, J. Interactive Effects of Nitrate-Ammonium Ratios and Temperatures on Growth, Photosynthesis, and Nitrogen Metabolism of Tomato Seedlings. Sci. Hortic. 2017, 214, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Camejo, D.; Rodríguez, P.; Morales, M.A.; Del’Amico, J.M.; Torrecillas, A.; Alarcón, J.J. High Tempetature Effects on Photosynthetic Activity of Two Tomato Cultivars with Different Heat Susceptibility. J. Plant Physiol. 2005, 162, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Mendoza, M.; Borrego, F. Evaluación del Tomate (Lycopersicon Esculentum, Mill) en Invernadero: Criterios Fenológicos y Fisiológicos. Agron Mesoam. 1998, 9, 59–65. [Google Scholar] [CrossRef]
- Sato, S.; Peet, M.M.; Thomas, J.F. Determining Critical Pre-and Post-Anthesis Periods and Physiological Processes in Lycopersicon Esculentum Mill. Exposed to Moderately Elevated Temperatures. J. Exp. Bot. 2002, 53, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon Esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [CrossRef]
- Peet, M.; Sato, S.; Clément, C.; Pressman, E. Heat Stress Increases Sensitivity of Pollen, Fruit and Seed Production in Tomatoes (Lycopersicon Esculentum Mill.) to Non-Optimal Vapor Pressure Deficits. Acta Hortic. 2002, 618, 209–215. [Google Scholar] [CrossRef]
- Kittas, C.; Draoui, B.; Boulard, T. Quantification of the Ventilation Rate of a Greenhouse with a Continuous Roof Opening. Agric. For. Meteorol. 1995, 77, 95–111. [Google Scholar] [CrossRef]
- Bakker, S.; Adams, S.; Boulard, T.; Montero, J.I. Innovative Technologies for an Efficient Use of Energy. Acta Hort. 2008, 15, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Valera, D.L.; Belmonte, L.J.; Molina, F.D.; López, A. Greenhouse Agriculture in Almería. A Comprehensive Techno-Economic Analysis; Cajamar Caja Rural: Almería, Spain, 2016; p. 504. Available online: http://www.publicacionescajamar.es/series-tematicas/economia/greenhouse-agriculture-in-almeria-a-comprehensive-techno-economic-analysis// (accessed on 15 October 2021).
- Arbel, A.; Yekutieli, O.; Barak, M. Performance of a Fog System for Cooling Greenhouses. J. Agric. Eng. 1999, 72, 129–136. [Google Scholar] [CrossRef]
- González-Real, M.M.; Baille, A.; Gutiérrez Colomer, R.P. Leaf Photosynthetic Properties and Radiation Profiles in a Rose Canopy (Rosa hybrida L.) with Bent Shoots. Sci. Hortic. 2007, 114, 177–187. [Google Scholar] [CrossRef]
- Luchow, K.; Von Zabeltitz, C. Investigation of a Spray Cooling System in a Plastic-Film Greenhouse. J. Agric. Eng. Res. 1992, 52, 1–10. [Google Scholar] [CrossRef]
- Katsoulas, N.; Savvas, D.; Tsirogiannis, I.; Merkouris, O.; Kittas, C. Response of an Eggplant Crop Grown under Mediterranean Summer Conditions to Greenhouse Fog Cooling. Sci. Hortic. 2009, 123, 90–98. [Google Scholar] [CrossRef]
- Arbel, A.; Barak, M.; Shklyar, A. Combination of Forced Ventilation and Fogging Systems for Cooling Greenhouses. Biosyst. Eng. 2003, 84, 45–55. [Google Scholar] [CrossRef]
- Valera, D.L.; Molina-Aiz, F.D.; Peña, A. Climatización de Invernaderos; Servicio de Publicaciones de la Universidad de Almería: Almería, Spain, 2002; p. 233. [Google Scholar]
- Allen, L.H., Jr.; Amthor, J.S. Plant Physiological Responses to Elevated CO2, Temperature, Air Pollution, and UV-B Radiation. In Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? Woodwell, G.M., Mackenzie, F.T., Eds.; Oxford University Press: Oxford, UK, 1995; pp. 51–84. [Google Scholar]
- Hand, D.W.; Wilson, J.W.; Acock, B. Effects of Light and CO2 on Net Photosynthetic Rates of Stands of Aubergine and Amaranthus. Ann. Bot. 1993, 71, 209–216. [Google Scholar] [CrossRef]
- Ceulemans, R.; Taylor, G.; Bosac, C.; Wilkins, D.; Besford, R.T. Photosynthetic Acclimation to Elevated CO2 in Poplar Grown in Glasshouse Cabinets or in Open Top Chambers Depends on duration of Exposure. J. Exp. Bot. 1997, 48, 1681–1689. [Google Scholar] [CrossRef]
- Shibuya, T.; Kozai, T. Effects of Air Velocity on Net Photosynthetic and Evapotranspiration Rates of a Tomato Plug Sheet under Artificial Light. Environ. Control Biol. 1998, 36, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of Air Current on Gas Exchange in Plant Leaves and Plant Canopies. Ann. Bot. 2003, 23, 195–199. [Google Scholar] [CrossRef]
- Wadsworth, F. Tropical Silviculture. For. Sci. 1959, 5, 137. [Google Scholar] [CrossRef]
- Sase, S. Air Movement and Climate Uniformity in Ventilated Greenhouses. Acta Hortic. 2006, 719, 313–323. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kozai, T.; Kubota, C.; Kitaya, Y. Effects of Air Current Speeds on the Microclimate of Plug Stand under Artificial Lighting. Acta Hortic. 1996, 440, 354–359. [Google Scholar] [CrossRef]
- Kitaya, Y.; Shibuya, T.; Kozai, T.; Kubota, C. Effects of Light Intensity and Air Velocity on Air Temperature, Water Vapour Pressure and CO2 Concentration Inside a Plant Canopy under an Artificial Lighting Condition. Life Support Biosph. Sci. 1998, 5, 199–203. [Google Scholar] [PubMed]
- Franco, A.; Valera, D.L.; Peña, A.; Pérez, A.M. Aerodynamic Analysis and CFD Simulation of Several Cellulose Evaporative Cooling Pads Used in Mediterranean Greenhouses. Comput. Electron. Agr. 2011, 76, 218–230. [Google Scholar] [CrossRef]
- Montero, J.I.; Muñoz, P.; Antón, A.; Iglesias, N. Computational Fluid Dynamic Modelling of Night-Time Energy Fluxes in Unheated Greenhouses. Acta Hortic. 2005, 691, 403–409. [Google Scholar] [CrossRef]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Ebihara, M.; Nakaminami, A.; Maruo, T. Photosynthesis, Plant Growth, and Fruit Production of Single-Truss Tomato Improves with Supplemental Lighting Provided from Underneath or Within the Inner canopy. Sci. Hortic. 2017, 222, 221–229. [Google Scholar] [CrossRef]
- Statgraphics Statgraphics®Centurion 18. User Manual. Statgraphics Technologies. Available online: https://www.statgraphics.net/wp-983content/uploads/2015/03/Centurion-XVI-Manual-Principal.pdf (accessed on 19 October 2021).
- Van Ploeg, D.; Heuvelink, E. Influence of Sub-Optimal Temperature on Tomato Growth and Yield: A Review. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar] [CrossRef]
- Adams, S.R.; Cockshull, K.E.; Cave, C.R.J. Effect of Temperature on the Growth and Development of Tomato Fruits. Ann. Bot. 2018, 8, 869–877. [Google Scholar] [CrossRef]
- Domínguez, E.; Cuartero, J.; Fernandez-Muñoz, R. Breeding Tomato for Pollen Tolerance to Low Temperatures by Gametophytic Selection. Euphytica 2005, 142, 253–263. [Google Scholar] [CrossRef]
- Shamshiri, R.; Jones, J.; Thorp, K.; Ahmad, D.; Man, H.; Taheri, S. Reviwe of Optimum Temperature, Humidity, and Vapour Pressure Deficit for Microclimate Evaluation and Control in Greenhouse Cultivation of Tomato: A Review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Harel, D.; Fadida, H.; Slepoy, A.; Gantz, S.; Shilo, K. The Effect of Mean Daily Temperature and Relative Humidity on Pollen, Fruit Set and Yield of Tomato Grown in Comercial Protected Cultivation. Agronomy 2014, 4, 167–177. [Google Scholar] [CrossRef]
- Bar-Tsur, A.; Rudich, J.; Bravdo, B. Photosynthesis, Transpiration and Stomatal Resistance to Gasexchange in Tomato Plants under High Temperatures. Hortscience 1995, 60, 405–410. [Google Scholar]
- Demmig-Adams, B.; Adams, W.W. Photosynthesis and Partitioning. In Photoinhibition; Thomas, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 707–714. [Google Scholar]
- Adir, N.; Zer, H.; Shochat, S.; Ohad, I. Photoinhibition—A Historical Perspective. Photosynth. Res. 2003, 76, 343–369. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Takahashi, S.; Nishiyama, Y.; Allakhverdiev, S.I. Photoinhibition of Photosystem II under Environmental Stress. Biochim. Biophys. 2007, 1767, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wu, N.; Zhang, L.; Ahammed, G.J.; Chen, X.; Xiang, X.; Zhou, J.; Xia, X.; Shi, K.; Yu, J.; et al. Light Signaling-Dependent Regulation of Photoinhibition and Photoprotection in Tomato. Plant Physiol. 2018, 176, 1311–1326. [Google Scholar] [CrossRef]
- Sage, R.F.; Sharkey, T.D. The Effect of Temperature on the Occurrence of O2 and CO2 Insensitive Photosynthesis in Field Grown Plants. Plant Physiol. 1987, 84, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Gent, M.P.N.; Seginer, I. A Carbohydrate Supply and Demand Model of Vegetative Growth: Response to Temperature and Light. Plant Cell Environ. 2012, 35, 1274–1286. [Google Scholar] [CrossRef]
- Masabni, J.; Sun, Y.; Niu, G.; Del Valle, P. Shade Effect on Growth and Productivity of Tomato and Chili Pepper. HortTechnology 2016, 26, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; García, M.L.; Sánchez-Guerrero, M.C.; Medrano, E.; Caparros, I.; Giménez, M. Influence of Mobile Shading on Yield, Crop Transpiration and Water Use Efficiency. In Proceedings of the International Symposium on Greenhouse Cooling, Almería, Spain, 24–27 April 2006; Volume 719, pp. 471–478. [Google Scholar] [CrossRef]
- Kittas, C.; Karamanis, M.; Katsoulas, N. Air Temperatura Regime in a Forced Ventilated Greenhouse with Rose Crop. Energy Build. 2005, 37, 807–812. Available online: http://www.sciencedirect.com/science/article/pii/S0378778804003433 (accessed on 22 October 2021). [CrossRef]
- Max, J.; Horst, W.; Mutwiwa, U.; Tantau, H.J. Effects of Greenhouse Cooling Method on Growth, Fruit Yield and Quality of Tomato (Solanum Lycopersicum L.) in a Tropical Climate. Sci. Hortic. 2009, 22, 179–186. [Google Scholar] [CrossRef]
- De Zwart, H.F. Analyzing Energy-Saving Options in Greenhouse Cultivation Using a Simulation Model. Master’s Thesis, Wageningen University, Waningen, The Netherlands, 1996. [Google Scholar]
- Vanthoor, B.H.E.; Stanghellini, C.; Van Henten, E.J.; Visser, P. Optimal Greenhouse Design Should Take into Account Optimal Climate Management. In Proceedings of the International Symposium on Applications of Modelling as an Innovative Technology in the Agri-Food-Chain: Model-IT, Madrid, Spain, 9–11 June 2008; p. 802. [Google Scholar] [CrossRef] [Green Version]
- Molina-Aiz, F.; Valera, D.; López, A.; Moreno, M.; Marín, P.; García-Valverde, M. Effects of the Increase of Ventilation Surface Area on the Microclimate and Yield of a Tomato Crop in Mediterranean Greenhouses. Acta Hortic. 2020, 1296, 177–184. [Google Scholar] [CrossRef]
- Hendricks, P. Life Cycle Assessment of Greenhouse Tomato (Solanum Lycopersicum L.) Production in Southwestern Ontario. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2012. [Google Scholar]
- Heuts, R.F.; Van Loon, J.; Schrevens, E. Life Cycle Assessment of Different Heating Systems for Glasshouses Tomato Production in Flanders, Belgium. Acta Hortic. 2012, 957, 107–114. [Google Scholar] [CrossRef]
- Torrellas, M.; Antón, A.; Ruijs, M.; García Victoria, N.; Stanghellini, C.; Montero, J.I. Environmental and Economic Assessment of Protected Crops in Four European Scenarios. J. Clean. Prod. 2012, 28, 45–55. [Google Scholar] [CrossRef]
- Sabeh, N.C.; Giacomelli, G.A.; Kubota, C. Water Use by Greenhouse Evaporative Cooling Systems in a Semi-Arid Climate. In Proceedings of the 2007 ASAE Annual Meeting, Chicago, IL, USA, 9–12 August 2007; p. 074013. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Al-Musalami, I. Influence of Shading on the Performance of a Greenhouse Evaporative Cooling System. J. Arab Gulf Sci. Res. 2003, 21, 71–78. [Google Scholar]
- Sabeh, N.C.; Giacomelli, G.A.; Kubota, C. Water Use in a Greenhouse in a Semiarid Climate. Trans. ASAE 2011, 54, 1069–1077. [Google Scholar] [CrossRef]
Greenhouse | Cooling Systems | LG × WG | wS | hmax | hgut | SC | SVS | SVR | SV/SC |
---|---|---|---|---|---|---|---|---|---|
1 | Natural ventilation (NV) | 18 × 25 | 9 | 6.6 | 4.6 | 450 | 40.5 | 45.0 | 19.0 |
2 | Fog system (FS + NV) | 24 × 25 | 8 | 6.2 | 4.6 | 600 | 34.5 | 67.5 | 17.0 |
3 | Pad-fan system (PS + NV) | 24 × 25 | 8 | 6.2 | 4.6 | 600 | - | 67.5 | 11.3 |
Parameters | Sensor | Manufacturer | Range | Accuracy |
---|---|---|---|---|
Outdoor climatic parameters measured at the weather station located at 9 m height | ||||
Solar radiation | Kipp Solari | HortiMax B.V. (Maasdiijk, Netherlands) | ±2000 W m−2 | ±5% |
Wind speed | Anemómetro—MII | 0–40 m s−1 | ±5% | |
Wind direction | Veleta Meteostation II | 0–360° | ±5° | |
Air temperature | Pt1000 IEC 751 1/3B | Vaisala Oyj (Helsinki, Finland) | −25–75 °C | ±0.2 °C |
Air humidity | HUMICAP HMT100 | 0–100% | ±2.5% | |
Indoor climatic parameters measured at 2 m height | ||||
Air temperature | Pt1000 Clase A—Ektron III | Elektronik Ges. M.b.H. (Engerwitzdorf, Austria) | −10–60 °C | ±0.6 °C |
Air humidity | EE07-04 PFT6—Ektron III | 0–100% | ±2% |
Greenhouse | Cooling Systems | TM (°C) | TMAX (°C) | TMIN (°C) | NH37 (h) |
---|---|---|---|---|---|
1 | Natural ventilation (NV) | 23.0 b ± 3.9 | 32.0 b ± 4.9 | 16.3 a ± 3.3 | 44.7 |
2 | Fog system (FS + NV) | 23.8 b ± 3.7 | 34.0 c ± 5.3 | 16.6 a ± 3.3 | 63.7 |
3 | Pad-fan system (PS + NV) | 22.7 b ± 5.9 | 31.8 b ± 5.1 | 16.7 a ± 2.9 | 8.9 |
Outside | 20.2 a ± 4.0 | 30.5 a ± 4.7 | 16.1 a ± 3.6 | 0 |
Greenhouse | Cooling Systems | HM (%) | HMAX (%) | HMIN (%) |
---|---|---|---|---|
1 | Natural ventilation (NV) | 51.4 a ± 8.8 | 69.0 a ± 8.6 | 29.9 a ± 8.3 |
2 | Fog system (FS + NV) | 52.2 ab ± 8.2 | 69.7 a ± 8.2 | 29.5 a ± 7.9 |
3 | Pad-fan system (PS + NV) | 54.2 b ± 7.8 | 71.0 a ± 7.5 | 32.3 b ± 9.8 |
Greenhouse | Cooling Systems | A | RPAR | C | TL | EL | CE |
---|---|---|---|---|---|---|---|
1 | Natural ventilation (NV) | 14.8 b ± 4.1 | 654.2 b ±189.3 | 365.3 a ±9.7 | 33.8 a ± 2.4 | 4.2 a± 0.8 | 0.3 a± 0.13 |
2 | Fog system (FS + NV) | 14.6 b ± 2.8 | 586.0 a ± 136.9 | 364.8 a ± 8.3 | 33.5 a ± 2.6 | 4.8 b± 0.9 | 0.3 a± 0.08 |
3 | Pad-fan system (PS + NV) | 13.4 a ± 2.7 | 570.6 a ± 143.9 | 361.4 a ± 9.6 | 34.5 a ± 2.3 | 4.6 b± 0.7 | 0.2 a± 0.05 |
Greenhouse | Cooling Systems | EC | WC |
---|---|---|---|
1 | Natural ventilation (NV) ( | 0.06 | - |
2 | Fog system (FS + NV) | 1.38 | 0.02 |
3 | Pad-fan systems (PS + NV) | 4.66 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Teruel, M.Á.; Molina-Aiz, F.D.; López-Martínez, A.; Marín-Membrive, P.; Peña-Fernández, A.; Valera-Martínez, D.L. The Influence of Different Cooling Systems on the Microclimate, Photosynthetic Activity and Yield of a Tomato Crops (Lycopersicum esculentum Mill.) in Mediterranean Greenhouses. Agronomy 2022, 12, 524. https://doi.org/10.3390/agronomy12020524
Moreno-Teruel MÁ, Molina-Aiz FD, López-Martínez A, Marín-Membrive P, Peña-Fernández A, Valera-Martínez DL. The Influence of Different Cooling Systems on the Microclimate, Photosynthetic Activity and Yield of a Tomato Crops (Lycopersicum esculentum Mill.) in Mediterranean Greenhouses. Agronomy. 2022; 12(2):524. https://doi.org/10.3390/agronomy12020524
Chicago/Turabian StyleMoreno-Teruel, María Ángeles, Francisco Domingo Molina-Aiz, Alejandro López-Martínez, Patricia Marín-Membrive, Araceli Peña-Fernández, and Diego Luis Valera-Martínez. 2022. "The Influence of Different Cooling Systems on the Microclimate, Photosynthetic Activity and Yield of a Tomato Crops (Lycopersicum esculentum Mill.) in Mediterranean Greenhouses" Agronomy 12, no. 2: 524. https://doi.org/10.3390/agronomy12020524
APA StyleMoreno-Teruel, M. Á., Molina-Aiz, F. D., López-Martínez, A., Marín-Membrive, P., Peña-Fernández, A., & Valera-Martínez, D. L. (2022). The Influence of Different Cooling Systems on the Microclimate, Photosynthetic Activity and Yield of a Tomato Crops (Lycopersicum esculentum Mill.) in Mediterranean Greenhouses. Agronomy, 12(2), 524. https://doi.org/10.3390/agronomy12020524