The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabotyagov, V.D.; Paliy, A.E.; Kurdyukova, O.N. Essential Oils of Aromatic Plants: Monograph; IT “ARIAL”: Simferopol, Russia, 2017; pp. 29–30. [Google Scholar]
- Voytkevich, S.A. Essential Oils for Perfumery and Aromatherapy; Food Industry: Moscow, Russia, 1999; 284p. [Google Scholar]
- Kovatcheva, N.; Zheljazkov, V.D.; Astatkie, T. Productivity, Oil Content, Composition and Bioactivity of Oil–Bearing Rose Accessions. HortScience 2011, 46, 710–714. [Google Scholar] [CrossRef]
- Yousefi, B.; Jaimand, K. Chemical Variation in the Essential Oil of Iranian Rosa damascena Landraces under Semi—Arid and Cool Conditions. Int. J. Hortic. Sci. Technol. 2018, 5, 81–92. [Google Scholar]
- Tambe, E.; Gotmare, S.R. Study of Variation and Identification of Chemical Composition in Rosa Species Oil Collected from Different Countries. IOSR-JAC 2016, 9, 11–18. [Google Scholar]
- Pashtetsky, V.S.; Nevkrytaya, N.V. Use of essential oils in medicine, aromatherapy, veterinary and crop production (review). Taurida Her. Agrar. Sci. 2018, 1, 18–40. [Google Scholar]
- Kumari, S.; Choudhury, A.G. Medicinal Uses of Rose. Vigyan Varta 2021, 2, 49–51. [Google Scholar]
- Sahakyan, N.Z.; Petrosyan, M.T.; Trchounian, A.H. Some peculiarities of essential oil of Damask rose growing in high altitude Armenian landscapes. Chem. Biol. 2020, 54, 68–74. [Google Scholar] [CrossRef]
- The State Register of Selection Achievements Authorized for Use (National List). In Plant Varieties (Official Publication); FGBNU “Rosinformagrotekh”: Moscow, Russia, 2021; Volume 1, 719p, Available online: https://gossortrf.ru/ (accessed on 22 April 2021).
- Karpacheva, A.N. Biochemical Methods of Essential-Oil Plants and Essential Oils Analysis; URIEOC: Simferopol, Russia, 1972; 107p. [Google Scholar]
- Pashtetskiy, V.S.; Timasheva, L.A.; Pekhova, O.A.; Danilova, I.L.; Serebryakova, O.A. Essential Oils and Their Quality; IT “ARIAL”: Simferopol, Russia, 2021; pp. 9–14. [Google Scholar]
- GOST 34213–2017 Floral and Herbal Essential-Oil-Bearing Plant Raw Material. Sampling Techniques and Water, Foreign Matter and Essential Oil Content Determination Methods. Available online: https://docs.cntd.ru/document/1200157884 (accessed on 21 December 2021).
- Leontyev, V.N.; Shutova, A.G.; Kovalenko, N.A.; Supichenko, G.N.; Spiridovich, E.V. Essential oils identification by gas chromatography. Publ. Belarus State Univ. 2006, 1, 261–267. [Google Scholar]
- Zenkevich, I.G.; Pimenov, A.I.; Pozharitskaya, O.N.; Shikov, A.N.; Makarov, V.G. Chromatographic profiles comparison as a method for identifying medicinal plant raw material components in complex preparations. Plant Resour. 2003, 39, 143–152. [Google Scholar]
- Dospekhov, B.A. Plot Trials Procedure (Including the Basics of the Research Findings Statistical Processing); Book Upon Request: Moscow, Russia, 2012; 352p. [Google Scholar]
- Nazarenko, L.G.; Korshunov, V.A.; Kochetkov, E.S. Essential-Oil Rose Growing and Breeding; Tavriya: Simferopol, Ukraine, 2006; 216p. [Google Scholar]
- GOST ISO 9842-2017 Essential Oil of Rose (Rosa x Damascene Miller). Specifications. Available online: https://docs.cntd.ru/document/1200147041 (accessed on 16 June 2021).
- Saeed, R.; Gul, S.; Khan, M.A.; Kamboh, M.A.; Khan, M.I.; Sherazi, S.T.H. GC-MS Evaluation of Essential Oil Constituents from Rosa Damascena Wild Rose: Effect of Season and Climatic Conditions. Pak. J. Anal. Environ. Chem. 2017, 18, 155–162. [Google Scholar] [CrossRef][Green Version]
- Nevkrytaya, N.V.; Pashtetskiy, V.S.; Novikov, I.A.; Korotkikh, I.N.; Tkhaganov, R.R. Variability of component composition of Melissa officinalis L. essential oil depending on the climatic conditions of the region of cultivation. Chem. Plant Raw Mater. 2020, 1, 257–263. [Google Scholar] [CrossRef]
- Toluei, Z.; Hosseini Tafreshi, S.A.; Arefi Torkabadi, M. Comparative Chemical Composition Analysis of Essential Oils in Different Populations of Damask Rose from Iran. J. Agric. Sci. Tech. 2019, 21, 423–437. [Google Scholar]
- Moein, M.; Ghasemi, Y.; Karami, F.; Tavallali, H. Composition of the essential oil of Rosa damascenea Mill. from South of Iran. Iran. J. Pharm. Sci. 2010, 6, 59–62. [Google Scholar]
- Atanasova, T.; Kakalova, M.; Stefanof, L.; Petkova, M.; Stoyanova, A.; Damyanova, S.; Desyk, M. Chemical composition of essential oil from Rosa Damascena mill., growing in new region of Bulgaria. Ukr. Food J. 2016, 5, 492–498. [Google Scholar] [CrossRef]
- Aydinli, M.; Tutaş, M. Production of rose absolute from rose concrete. Flavour Fragr. J. 2003, 18, 26–31. [Google Scholar] [CrossRef]
- Aycı, F.; Aydınlı, M.; Bozdemir, Ö.A.; Tutaş, M. Gas chromatographic investigation of rose concrete, absolute and solid residue. Flavour Fragr. J. 2005, 20, 481–486. [Google Scholar] [CrossRef]
Indicator Value | Year | Mass Fraction of Essential Oil, % | Major Components Content, % | ||
---|---|---|---|---|---|
Citronellol | Nerol | Geraniol | |||
Mean value in the collection | 2017 | 0.024 ± 0.002 | – | – | – |
2018 | 0.025 ± 0.002 | 8.31 ± 0.88 | 7.74 ± 0.70 | 32.54 ± 1.73 | |
2019 | 0.022 ± 0.001 | 8.90 ± 0.90 | 10.37 ± 0.84 | 37.82 ± 2.04 | |
2020 | 0.019 ± 0.001 | 11.11 ± 1.18 | 10.13 ± 0.95 | 33.02 ± 2.04 | |
0.023 ± 0.001 | 9.69 ± 0.67 | 9.41 ± 0.49 | 34.60 ± 1.15 | ||
Indicator range | 2017 | 0.005–0.053 | – | – | – |
2018 | 0.005–0.057 | 1.9–17.8 | 2.0–17.2 | 13.2–44.4 | |
2019 | 0.008–0.048 | 3.4–17.5 | 1.8–17.2 | 12.7–51.3 | |
2020 | 0.009–0.037 | 3.8–25.5 | 1.6–20.5 | 7.5–47.2 | |
0.007–0.049 | 3.80–20.27 | 3.86–18.28 | 15.78–4.55 | ||
Coefficient of variation (Cv), % | 2017 | 37.5 | – | – | – |
2018 | 37.5 | 52.3 | 46.7 | 26.0 | |
2019 | 36.4 | 49.2 | 39,5 | 26.4 | |
2020 | 47.4 | 51.9 | 46.0 | 30.3 | |
36.6 | 45.9 | 34.5 | 22.1 |
Component | Bulgaria | Turkey | Morocco | Turkey (“Rural” Type) | ||||
---|---|---|---|---|---|---|---|---|
Minimum, % | Maximum, % | Minimum, % | Maximum, % | Minimum, % | Maximum, % | Minimum, % | Maximum, % | |
Ethanol | – | 2.0 | – | 7 | – | 3 | – | 2.0 |
Citronellol | 20.0 | 34.0 | 34.0 | 49.0 | 30.0 | 47.0 | 26 | 40.0 |
Nerol | 5.0 | 12.0 | 3.0 | 11.0 | 3.0 | 11.0 | 6.0 | 12.0 |
Geraniol | 15.0 | 22.0 | 8.0 | 20.0 | 6.0 | 23.0 | 12.0 | 29.0 |
Β-phenyleta-nol | – | 3.5 | – | 3.0 | – | 3.0 | – | 3.0 |
Heptadecane (paraffin C17) | 1.0 | 2.5 | 0.8 | 3.0 | 0.6 | 4.0 | 0.7 | 3.0 |
Nonadecane (paraffin C19) | 8.0 | 15.0 | 6.0 | 13.0 | 7.0 | 16.0 | 6.0 | 8.5 |
Heneicosane (paraffin C21) | 3.0 | 5.5 | 2.0 | 4.0 | 2.0 | 5.5 | 1.5 | 4.0 |
Specimen | Year | Mass Fraction of Essential Oil, % | Major Components Content, % | |||
---|---|---|---|---|---|---|
Citronellol | Nerol | Geraniol | Stearoptenes | |||
Bulgarian selection varieties | ||||||
R–17 Kazanlak | 2018 | 0.027 ± 0.001 | 12.9 ± 0.3 | 5.9 ± 0.2 | 24.8 ± 1.1 | 28.0 ± 0.7 |
2019 | 0.025 ± 0.002 | 13.3 ± 0.2 | 9.0 ± 0.1 | 31.2 ± 0.6 | 22.1 ± 2.4 | |
2020 | 0.012 ± 0.001 | 13.7 ± 0.5 | 7.3 ± 0.4 | 28.1 ± 0.3 | 17.8 ± 1.3 | |
± | 0.021 ± 0.005 | 13.3 ± 0.2 | 7.4 ± 0.9 | 28.0 ± 1.8 | 22.6 ± 3.0 | |
R–18 Iskra | 2018 | 0.024 ± 0.001 | 12.5 ± 0.6 | 6.7 ± 0.2 | 24.2 ± 1.0 | 27.3 ± 1.5 |
2019 | 0.028 ± 0.001 | 14.0 ± 1.1 | 9.7 ± 0.0 | 35.2 ± 1.9 | 15.9 ± 0.3 | |
2020 | 0.019 ± 0.002 | 16.1 ± 0.4 | 8.6 ± 0.2 | 31.3 ± 1.2 | 20.9 ± 0.9 | |
± | 0.024 ± 0.002 | 14.2 ± 1.04 | 8.3 ± 0.9 | 30.2 ± 3.2 | 21.4 ± 3.9 | |
R–32 Vesna | 2018 | 0.024 ± 0.001 | 6.0 ± 0.2 | 9.8 ± 0.1 | 38.7 ± 0.7 | 21.5 ± 3.8 |
2019 | 0.025 ± 0.002 | 6.2 ± 0.5 | 12.8 ± 0.3 | 41.7 ± 1.3 | 17.6 ± 2.4 | |
2020 | 0.021 ± 0.001 | 5.8 ± 0.3 | 11.2 ± 0.4 | 39.0 ± 1.8 | 18.4 ± 1.2 | |
± | 0.023 ± 0.002 | 6.0 ± 0.2 | 11.3 ± 1.0 | 39.9 ± 0.9 | 19.1 ± 1.2 | |
R–4 Svezhen | 2018 | 0.029 ± 0.002 | 17.8 ± 0.6 | 7.7 ± 0.4 | 29.3 ± 1.2 | 16.0 ± 3.1 |
2019 | 0.025 ± 0.001 | 12.7 ± 1.3 | 9.3 ± 0.7 | 32.9 ± 3.8 | 21.5 ± 6.4 | |
2020 | 0.025 ± 0.002 | 24.8 ± 0.9 | 9.8 ± 0.3 | 30.0 ± 2.7 | 14.2 ± 2.4 | |
± | 0.026 ± 0.001 | 18.4 ± 3.5 | 8.9 ± 0.6 | 30.7 ± 1.1 | 17.2 ± 1.9 | |
R–33 Kazanlak White | 2018 | 0.021 ± 0.001 | 7.0 ± 0.7 | 7.1 ± 0.6 | 38.5 ± 1.9 | 16.6 ± 2.7 |
2019 | 0.020 ± 0.002 | 6.8 ± 1.1 | 10.4 ± 1.8 | 42.2 ± 3.1 | 17.8 ± 4.9 | |
2020 | 0.015 ± 0.001 | 8.6 ± 0.3 | 8.1 ± 0.1 | 40.6 ± 4.0 | 21.5 ± 3.1 | |
± | 0.019 ± 0.002 | 7.5 ± 0.5 | 8.5 ± 1.0 | 40.4 ± 1.1 | 18.6 ± 1.4 | |
RIAC-owned varieties | ||||||
R–7 Raduga | 2018 | 0.023 ± 0.001 | 4.9 ± 0.7 | 2.0 ± 0.2 | 17.3 ± 0.7 | 36.0 ± 4.3 |
2019 | 0.019 ± 0.002 | 3.1 ± 0.1 | 7.7 ± 0.2 | 45.4 ± 0.1 | 18.9 ± 2.3 | |
2020 | 0.033 ± 0.001 | 7.2 ± 0.1 | 6.7 ± 0.4 | 40.7 ± 1.2 | 15.8 ± 5.2 | |
± | 0.025 ± 0.003 | 5.0 ± 1.2 | 5.5 ± 1.8 | 34.4 ± 8.7 | 23.5 ± 6.3 | |
R–13 Lan | 2018 | 0.024 ± 0.001 | 8.9 ± 0.3 | 8.9 ± 0.7 | 37.2 ± 2.1 | 6.1 ± 1.1 |
2019 | 0.025 ± 0.001 | 12.3 ± 0.2 | 17.2 ± 0.6 | 48.1 ± 0.6 | 13.3 ± 2.2 | |
2020 | 0.025 ± 0.001 | 10.3 ± 0.5 | 11.8 ± 1.1 | 42.9 ± 1.8 | 11.7 ± 5.3 | |
± | 0.025 ± 0.000 | 10.5 ± 1.0 | 12.6 ± 2.4 | 42.7 ± 3.1 | 10.3 ± 2.2 | |
R–14 Lada | 2018 | 0.028 ± 0.001 | 8.4 ± 0.2 | 9.6 ± 0.4 | 43.3 ± 1.3 | 15.3 ± 3.2 |
2019 | 0.025 ± 0.002 | 5.4 ± 0.1 | 13.2 ± 0.2 | 41.8 ± 2.3 | 11.2 ± 2.3 | |
2020 | 0.025 ± 0.001 | 5.9 ± 0.4 | 12.4 ± 0.7 | 43.4 ± 0.6 | 13.8 ± 8.1 | |
± | 0.026 ± 0.001 | 6.6 ± 0.9 | 11.7 ± 1.1 | 42.8 ± 0.5 | 13.4 ± 1.2 | |
R-12 Legrina | 2018 | 0.027 ± 0.002 | 10.7 ± 0.7 | 11.2 ± 0.9 | 33.5 ± 0.9 | 7.6 ± 3.1 |
2019 | 0.025 ± 0.002 | 12.2 ± 0.9 | 12.5 ± 0.3 | 36.5 ± 1.1 | 16.4 ± 2.5 | |
2020 | 0.024 ± 0.001 | 10.5 ± 0.2 | 13.3 ± 1.6 | 33.8 ± 1.7 | 18.5 ± 4.3 | |
± | 0.026 ± 0.001 | 11.2 ± 0.5 | 12.3 ± 0.6 | 34.6 ± 1.0 | 14.0 ± 3.2 | |
R-20 Zolushka | 2018 | 0.005 ± 0.001 | 7.8 ± 0.9 | 1.8 ± 0.3 | 12.7 ± 2.1 | 29.5 ± 3.7 |
2019 | 0.009 ± 0.001 | 3.4 ± 0.2 | 5.1 ± 0.5 | 28.1 ± 3.2 | 39.5 ± 4.1 | |
2020 | 0.011 ± 0.001 | 10.3 ± 0.7 | 4.8 ± 0.1 | 23.0 ± 0.8 | 29.8 ± 5.6 | |
± | 0.008 ± 0.002 | 7.2 ± 2.0 | 3.9 ± 1.0 | 21.2 ± 4.5 | 32.9 ± 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolotilov, V.; Nevkrytaya, N.; Zolotilova, O.; Seitadzhieva, S.; Myagkikh, E.; Pashtetskiy, V.; Karpukhin, M. The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters. Agronomy 2022, 12, 529. https://doi.org/10.3390/agronomy12020529
Zolotilov V, Nevkrytaya N, Zolotilova O, Seitadzhieva S, Myagkikh E, Pashtetskiy V, Karpukhin M. The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters. Agronomy. 2022; 12(2):529. https://doi.org/10.3390/agronomy12020529
Chicago/Turabian StyleZolotilov, Viktor, Natalya Nevkrytaya, Olga Zolotilova, Sevilia Seitadzhieva, Elena Myagkikh, Vladimir Pashtetskiy, and Mikhail Karpukhin. 2022. "The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters" Agronomy 12, no. 2: 529. https://doi.org/10.3390/agronomy12020529
APA StyleZolotilov, V., Nevkrytaya, N., Zolotilova, O., Seitadzhieva, S., Myagkikh, E., Pashtetskiy, V., & Karpukhin, M. (2022). The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters. Agronomy, 12(2), 529. https://doi.org/10.3390/agronomy12020529