The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabotyagov, V.D.; Paliy, A.E.; Kurdyukova, O.N. Essential Oils of Aromatic Plants: Monograph; IT “ARIAL”: Simferopol, Russia, 2017; pp. 29–30. [Google Scholar]
- Voytkevich, S.A. Essential Oils for Perfumery and Aromatherapy; Food Industry: Moscow, Russia, 1999; 284p. [Google Scholar]
- Kovatcheva, N.; Zheljazkov, V.D.; Astatkie, T. Productivity, Oil Content, Composition and Bioactivity of Oil–Bearing Rose Accessions. HortScience 2011, 46, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, B.; Jaimand, K. Chemical Variation in the Essential Oil of Iranian Rosa damascena Landraces under Semi—Arid and Cool Conditions. Int. J. Hortic. Sci. Technol. 2018, 5, 81–92. [Google Scholar]
- Tambe, E.; Gotmare, S.R. Study of Variation and Identification of Chemical Composition in Rosa Species Oil Collected from Different Countries. IOSR-JAC 2016, 9, 11–18. [Google Scholar]
- Pashtetsky, V.S.; Nevkrytaya, N.V. Use of essential oils in medicine, aromatherapy, veterinary and crop production (review). Taurida Her. Agrar. Sci. 2018, 1, 18–40. [Google Scholar]
- Kumari, S.; Choudhury, A.G. Medicinal Uses of Rose. Vigyan Varta 2021, 2, 49–51. [Google Scholar]
- Sahakyan, N.Z.; Petrosyan, M.T.; Trchounian, A.H. Some peculiarities of essential oil of Damask rose growing in high altitude Armenian landscapes. Chem. Biol. 2020, 54, 68–74. [Google Scholar] [CrossRef]
- The State Register of Selection Achievements Authorized for Use (National List). In Plant Varieties (Official Publication); FGBNU “Rosinformagrotekh”: Moscow, Russia, 2021; Volume 1, 719p, Available online: https://gossortrf.ru/ (accessed on 22 April 2021).
- Karpacheva, A.N. Biochemical Methods of Essential-Oil Plants and Essential Oils Analysis; URIEOC: Simferopol, Russia, 1972; 107p. [Google Scholar]
- Pashtetskiy, V.S.; Timasheva, L.A.; Pekhova, O.A.; Danilova, I.L.; Serebryakova, O.A. Essential Oils and Their Quality; IT “ARIAL”: Simferopol, Russia, 2021; pp. 9–14. [Google Scholar]
- GOST 34213–2017 Floral and Herbal Essential-Oil-Bearing Plant Raw Material. Sampling Techniques and Water, Foreign Matter and Essential Oil Content Determination Methods. Available online: https://docs.cntd.ru/document/1200157884 (accessed on 21 December 2021).
- Leontyev, V.N.; Shutova, A.G.; Kovalenko, N.A.; Supichenko, G.N.; Spiridovich, E.V. Essential oils identification by gas chromatography. Publ. Belarus State Univ. 2006, 1, 261–267. [Google Scholar]
- Zenkevich, I.G.; Pimenov, A.I.; Pozharitskaya, O.N.; Shikov, A.N.; Makarov, V.G. Chromatographic profiles comparison as a method for identifying medicinal plant raw material components in complex preparations. Plant Resour. 2003, 39, 143–152. [Google Scholar]
- Dospekhov, B.A. Plot Trials Procedure (Including the Basics of the Research Findings Statistical Processing); Book Upon Request: Moscow, Russia, 2012; 352p. [Google Scholar]
- Nazarenko, L.G.; Korshunov, V.A.; Kochetkov, E.S. Essential-Oil Rose Growing and Breeding; Tavriya: Simferopol, Ukraine, 2006; 216p. [Google Scholar]
- GOST ISO 9842-2017 Essential Oil of Rose (Rosa x Damascene Miller). Specifications. Available online: https://docs.cntd.ru/document/1200147041 (accessed on 16 June 2021).
- Saeed, R.; Gul, S.; Khan, M.A.; Kamboh, M.A.; Khan, M.I.; Sherazi, S.T.H. GC-MS Evaluation of Essential Oil Constituents from Rosa Damascena Wild Rose: Effect of Season and Climatic Conditions. Pak. J. Anal. Environ. Chem. 2017, 18, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Nevkrytaya, N.V.; Pashtetskiy, V.S.; Novikov, I.A.; Korotkikh, I.N.; Tkhaganov, R.R. Variability of component composition of Melissa officinalis L. essential oil depending on the climatic conditions of the region of cultivation. Chem. Plant Raw Mater. 2020, 1, 257–263. [Google Scholar] [CrossRef]
- Toluei, Z.; Hosseini Tafreshi, S.A.; Arefi Torkabadi, M. Comparative Chemical Composition Analysis of Essential Oils in Different Populations of Damask Rose from Iran. J. Agric. Sci. Tech. 2019, 21, 423–437. [Google Scholar]
- Moein, M.; Ghasemi, Y.; Karami, F.; Tavallali, H. Composition of the essential oil of Rosa damascenea Mill. from South of Iran. Iran. J. Pharm. Sci. 2010, 6, 59–62. [Google Scholar]
- Atanasova, T.; Kakalova, M.; Stefanof, L.; Petkova, M.; Stoyanova, A.; Damyanova, S.; Desyk, M. Chemical composition of essential oil from Rosa Damascena mill., growing in new region of Bulgaria. Ukr. Food J. 2016, 5, 492–498. [Google Scholar] [CrossRef]
- Aydinli, M.; Tutaş, M. Production of rose absolute from rose concrete. Flavour Fragr. J. 2003, 18, 26–31. [Google Scholar] [CrossRef]
- Aycı, F.; Aydınlı, M.; Bozdemir, Ö.A.; Tutaş, M. Gas chromatographic investigation of rose concrete, absolute and solid residue. Flavour Fragr. J. 2005, 20, 481–486. [Google Scholar] [CrossRef]
Indicator Value | Year | Mass Fraction of Essential Oil, % | Major Components Content, % | ||
---|---|---|---|---|---|
Citronellol | Nerol | Geraniol | |||
Mean value in the collection | 2017 | 0.024 ± 0.002 | – | – | – |
2018 | 0.025 ± 0.002 | 8.31 ± 0.88 | 7.74 ± 0.70 | 32.54 ± 1.73 | |
2019 | 0.022 ± 0.001 | 8.90 ± 0.90 | 10.37 ± 0.84 | 37.82 ± 2.04 | |
2020 | 0.019 ± 0.001 | 11.11 ± 1.18 | 10.13 ± 0.95 | 33.02 ± 2.04 | |
0.023 ± 0.001 | 9.69 ± 0.67 | 9.41 ± 0.49 | 34.60 ± 1.15 | ||
Indicator range | 2017 | 0.005–0.053 | – | – | – |
2018 | 0.005–0.057 | 1.9–17.8 | 2.0–17.2 | 13.2–44.4 | |
2019 | 0.008–0.048 | 3.4–17.5 | 1.8–17.2 | 12.7–51.3 | |
2020 | 0.009–0.037 | 3.8–25.5 | 1.6–20.5 | 7.5–47.2 | |
0.007–0.049 | 3.80–20.27 | 3.86–18.28 | 15.78–4.55 | ||
Coefficient of variation (Cv), % | 2017 | 37.5 | – | – | – |
2018 | 37.5 | 52.3 | 46.7 | 26.0 | |
2019 | 36.4 | 49.2 | 39,5 | 26.4 | |
2020 | 47.4 | 51.9 | 46.0 | 30.3 | |
36.6 | 45.9 | 34.5 | 22.1 |
Component | Bulgaria | Turkey | Morocco | Turkey (“Rural” Type) | ||||
---|---|---|---|---|---|---|---|---|
Minimum, % | Maximum, % | Minimum, % | Maximum, % | Minimum, % | Maximum, % | Minimum, % | Maximum, % | |
Ethanol | – | 2.0 | – | 7 | – | 3 | – | 2.0 |
Citronellol | 20.0 | 34.0 | 34.0 | 49.0 | 30.0 | 47.0 | 26 | 40.0 |
Nerol | 5.0 | 12.0 | 3.0 | 11.0 | 3.0 | 11.0 | 6.0 | 12.0 |
Geraniol | 15.0 | 22.0 | 8.0 | 20.0 | 6.0 | 23.0 | 12.0 | 29.0 |
Β-phenyleta-nol | – | 3.5 | – | 3.0 | – | 3.0 | – | 3.0 |
Heptadecane (paraffin C17) | 1.0 | 2.5 | 0.8 | 3.0 | 0.6 | 4.0 | 0.7 | 3.0 |
Nonadecane (paraffin C19) | 8.0 | 15.0 | 6.0 | 13.0 | 7.0 | 16.0 | 6.0 | 8.5 |
Heneicosane (paraffin C21) | 3.0 | 5.5 | 2.0 | 4.0 | 2.0 | 5.5 | 1.5 | 4.0 |
Specimen | Year | Mass Fraction of Essential Oil, % | Major Components Content, % | |||
---|---|---|---|---|---|---|
Citronellol | Nerol | Geraniol | Stearoptenes | |||
Bulgarian selection varieties | ||||||
R–17 Kazanlak | 2018 | 0.027 ± 0.001 | 12.9 ± 0.3 | 5.9 ± 0.2 | 24.8 ± 1.1 | 28.0 ± 0.7 |
2019 | 0.025 ± 0.002 | 13.3 ± 0.2 | 9.0 ± 0.1 | 31.2 ± 0.6 | 22.1 ± 2.4 | |
2020 | 0.012 ± 0.001 | 13.7 ± 0.5 | 7.3 ± 0.4 | 28.1 ± 0.3 | 17.8 ± 1.3 | |
± | 0.021 ± 0.005 | 13.3 ± 0.2 | 7.4 ± 0.9 | 28.0 ± 1.8 | 22.6 ± 3.0 | |
R–18 Iskra | 2018 | 0.024 ± 0.001 | 12.5 ± 0.6 | 6.7 ± 0.2 | 24.2 ± 1.0 | 27.3 ± 1.5 |
2019 | 0.028 ± 0.001 | 14.0 ± 1.1 | 9.7 ± 0.0 | 35.2 ± 1.9 | 15.9 ± 0.3 | |
2020 | 0.019 ± 0.002 | 16.1 ± 0.4 | 8.6 ± 0.2 | 31.3 ± 1.2 | 20.9 ± 0.9 | |
± | 0.024 ± 0.002 | 14.2 ± 1.04 | 8.3 ± 0.9 | 30.2 ± 3.2 | 21.4 ± 3.9 | |
R–32 Vesna | 2018 | 0.024 ± 0.001 | 6.0 ± 0.2 | 9.8 ± 0.1 | 38.7 ± 0.7 | 21.5 ± 3.8 |
2019 | 0.025 ± 0.002 | 6.2 ± 0.5 | 12.8 ± 0.3 | 41.7 ± 1.3 | 17.6 ± 2.4 | |
2020 | 0.021 ± 0.001 | 5.8 ± 0.3 | 11.2 ± 0.4 | 39.0 ± 1.8 | 18.4 ± 1.2 | |
± | 0.023 ± 0.002 | 6.0 ± 0.2 | 11.3 ± 1.0 | 39.9 ± 0.9 | 19.1 ± 1.2 | |
R–4 Svezhen | 2018 | 0.029 ± 0.002 | 17.8 ± 0.6 | 7.7 ± 0.4 | 29.3 ± 1.2 | 16.0 ± 3.1 |
2019 | 0.025 ± 0.001 | 12.7 ± 1.3 | 9.3 ± 0.7 | 32.9 ± 3.8 | 21.5 ± 6.4 | |
2020 | 0.025 ± 0.002 | 24.8 ± 0.9 | 9.8 ± 0.3 | 30.0 ± 2.7 | 14.2 ± 2.4 | |
± | 0.026 ± 0.001 | 18.4 ± 3.5 | 8.9 ± 0.6 | 30.7 ± 1.1 | 17.2 ± 1.9 | |
R–33 Kazanlak White | 2018 | 0.021 ± 0.001 | 7.0 ± 0.7 | 7.1 ± 0.6 | 38.5 ± 1.9 | 16.6 ± 2.7 |
2019 | 0.020 ± 0.002 | 6.8 ± 1.1 | 10.4 ± 1.8 | 42.2 ± 3.1 | 17.8 ± 4.9 | |
2020 | 0.015 ± 0.001 | 8.6 ± 0.3 | 8.1 ± 0.1 | 40.6 ± 4.0 | 21.5 ± 3.1 | |
± | 0.019 ± 0.002 | 7.5 ± 0.5 | 8.5 ± 1.0 | 40.4 ± 1.1 | 18.6 ± 1.4 | |
RIAC-owned varieties | ||||||
R–7 Raduga | 2018 | 0.023 ± 0.001 | 4.9 ± 0.7 | 2.0 ± 0.2 | 17.3 ± 0.7 | 36.0 ± 4.3 |
2019 | 0.019 ± 0.002 | 3.1 ± 0.1 | 7.7 ± 0.2 | 45.4 ± 0.1 | 18.9 ± 2.3 | |
2020 | 0.033 ± 0.001 | 7.2 ± 0.1 | 6.7 ± 0.4 | 40.7 ± 1.2 | 15.8 ± 5.2 | |
± | 0.025 ± 0.003 | 5.0 ± 1.2 | 5.5 ± 1.8 | 34.4 ± 8.7 | 23.5 ± 6.3 | |
R–13 Lan | 2018 | 0.024 ± 0.001 | 8.9 ± 0.3 | 8.9 ± 0.7 | 37.2 ± 2.1 | 6.1 ± 1.1 |
2019 | 0.025 ± 0.001 | 12.3 ± 0.2 | 17.2 ± 0.6 | 48.1 ± 0.6 | 13.3 ± 2.2 | |
2020 | 0.025 ± 0.001 | 10.3 ± 0.5 | 11.8 ± 1.1 | 42.9 ± 1.8 | 11.7 ± 5.3 | |
± | 0.025 ± 0.000 | 10.5 ± 1.0 | 12.6 ± 2.4 | 42.7 ± 3.1 | 10.3 ± 2.2 | |
R–14 Lada | 2018 | 0.028 ± 0.001 | 8.4 ± 0.2 | 9.6 ± 0.4 | 43.3 ± 1.3 | 15.3 ± 3.2 |
2019 | 0.025 ± 0.002 | 5.4 ± 0.1 | 13.2 ± 0.2 | 41.8 ± 2.3 | 11.2 ± 2.3 | |
2020 | 0.025 ± 0.001 | 5.9 ± 0.4 | 12.4 ± 0.7 | 43.4 ± 0.6 | 13.8 ± 8.1 | |
± | 0.026 ± 0.001 | 6.6 ± 0.9 | 11.7 ± 1.1 | 42.8 ± 0.5 | 13.4 ± 1.2 | |
R-12 Legrina | 2018 | 0.027 ± 0.002 | 10.7 ± 0.7 | 11.2 ± 0.9 | 33.5 ± 0.9 | 7.6 ± 3.1 |
2019 | 0.025 ± 0.002 | 12.2 ± 0.9 | 12.5 ± 0.3 | 36.5 ± 1.1 | 16.4 ± 2.5 | |
2020 | 0.024 ± 0.001 | 10.5 ± 0.2 | 13.3 ± 1.6 | 33.8 ± 1.7 | 18.5 ± 4.3 | |
± | 0.026 ± 0.001 | 11.2 ± 0.5 | 12.3 ± 0.6 | 34.6 ± 1.0 | 14.0 ± 3.2 | |
R-20 Zolushka | 2018 | 0.005 ± 0.001 | 7.8 ± 0.9 | 1.8 ± 0.3 | 12.7 ± 2.1 | 29.5 ± 3.7 |
2019 | 0.009 ± 0.001 | 3.4 ± 0.2 | 5.1 ± 0.5 | 28.1 ± 3.2 | 39.5 ± 4.1 | |
2020 | 0.011 ± 0.001 | 10.3 ± 0.7 | 4.8 ± 0.1 | 23.0 ± 0.8 | 29.8 ± 5.6 | |
± | 0.008 ± 0.002 | 7.2 ± 2.0 | 3.9 ± 1.0 | 21.2 ± 4.5 | 32.9 ± 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolotilov, V.; Nevkrytaya, N.; Zolotilova, O.; Seitadzhieva, S.; Myagkikh, E.; Pashtetskiy, V.; Karpukhin, M. The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters. Agronomy 2022, 12, 529. https://doi.org/10.3390/agronomy12020529
Zolotilov V, Nevkrytaya N, Zolotilova O, Seitadzhieva S, Myagkikh E, Pashtetskiy V, Karpukhin M. The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters. Agronomy. 2022; 12(2):529. https://doi.org/10.3390/agronomy12020529
Chicago/Turabian StyleZolotilov, Viktor, Natalya Nevkrytaya, Olga Zolotilova, Sevilia Seitadzhieva, Elena Myagkikh, Vladimir Pashtetskiy, and Mikhail Karpukhin. 2022. "The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters" Agronomy 12, no. 2: 529. https://doi.org/10.3390/agronomy12020529
APA StyleZolotilov, V., Nevkrytaya, N., Zolotilova, O., Seitadzhieva, S., Myagkikh, E., Pashtetskiy, V., & Karpukhin, M. (2022). The Essential-Oil-Bearing Rose Collection Variability Study in Terms of Biochemical Parameters. Agronomy, 12(2), 529. https://doi.org/10.3390/agronomy12020529