Going Conservative or Conventional? Investigating Farm Management Strategies in between Economic and Environmental Sustainability in Southern Italy
Abstract
:1. Introduction
2. Study Area
- A DV area in the Lavello countryside, where the Anco-Marzio durum wheat variety was cultivated by implementing deep tillage and conservative no-tillage agricultural techniques;
- A CA area in the Venosa countryside, where the Saragolla Lucana durum wheat variety was cultivated by managing the soil with conventional deep tillage and conservative ripping practices.
2.1. Soils
2.2. Climate
3. Materials and Methods
3.1. Sampling
3.2. Grain Size Analysis
3.3. Mineralogical and Physical-Chemical Analysis
3.4. Satellite Data Analysis
4. Results
4.1. Compositional Features of Soils
4.1.1. Grain Size Distribution
4.1.2. Mineralogy
4.1.3. Geochemistry
4.1.4. Remote Sensing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A. Regional disparities in economic resilience in the European Union across the urban–rural divide. Reg. Stud. 2020, 54, 1200–1213. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal; Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of the Regions; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Latocha, A.; Szymanowski, M.; Jeziorska, J.; Stec, M.; Roszczewska, M. Effects of land abandonment and climate change on soil erosion—An example from depopulated agricultural lands in the Sudetes Mts., SW Poland. CATENA 2016, 145, 128–141. [Google Scholar] [CrossRef]
- Quaranta, G.; Salvia, R.; Salvati, L.; Paola, V.D.; Coluzzi, R.; Imbrenda, V.; Simoniello, T. Long-term impacts of grazing management on land degradation in a rural community of Southern Italy: Depopulation matters. Land Degrad. Dev. 2020, 31, 2379–2394. [Google Scholar] [CrossRef]
- Salvia, R.; Quaranta, G. Place-based rural development and resilience: A lesson from a small community. Sustainability 2017, 9, 889. [Google Scholar] [CrossRef] [Green Version]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Database—Eurostat. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 28 April 2021).
- Lucatelli, S. La strategia nazionale, il riconoscimento delle aree interne. Territorio 2015, 74, 80–86. [Google Scholar] [CrossRef]
- Basile, G.; Cavallo, A. Rural identity, authenticity, and sustainability in Italian inner areas. Sustainability 2020, 12, 1272. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, F.; Cirà, A.; Forte, E.; Siviero, L. Infrastructure and logistics divide: Regional comparisons between North Eastern & Southern Italy. Technol. Econ. Dev. Econ. 2017, 23, 243–269. [Google Scholar] [CrossRef] [Green Version]
- ISTAT—Italian National Institute of Statistics. 2020. Available online: https://www.istat.it/en/ (accessed on 7 February 2022).
- Statistiche Istat. Available online: http://dati-censimentoagricoltura.istat.it/Index.aspx (accessed on 28 April 2021).
- Istat.it—9° Censimento Industria e Servizi 2011. Available online: https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/industria-e-servizi/imprese-2011 (accessed on 28 April 2021).
- Salvati, L.; Serra, P. Estimating rapidity of change in complex urban systems: A multidimensional, local-scale approach. Geogr. Anal. 2016, 48, 132–156. [Google Scholar] [CrossRef]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought analysis in Europe and in the Mediterranean basin using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef] [Green Version]
- Coluzzi, R.; Fascetti, S.; Imbrenda, V.; Italiano, S.S.P.; Ripullone, F.; Lanfredi, M. Exploring the use of sentinel-2 data to monitor heterogeneous effects of contextual drought and heatwaves on Mediterranean forests. Land 2020, 9, 325. [Google Scholar] [CrossRef]
- Lanfredi, M.; Coluzzi, R.; Imbrenda, V.; Macchiato, M.; Simoniello, T. Analyzing space–time coherence in precipitation seasonality across different European climates. Remote Sens. 2020, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 2018, 57, 25–35. [Google Scholar] [CrossRef]
- Carone, M.T.; Simoniello, T.; Manfreda, S.; Caricato, G. Watershed influence on fluvial ecosystems: An integrated methodology for river water quality management. Environ. Monit. Assess 2008, 152, 327. [Google Scholar] [CrossRef]
- De Santis, F.; Giannossi, M.L.; Medici, L.; Summa, V.; Tateo, F. Impact of physico-chemical soil properties on erosion features in the Aliano Area (Southern Italy). Catena 2010, 81, 172–181. [Google Scholar] [CrossRef]
- Imbrenda, V.; D’Emilio, M.; Lanfredi, M.; Macchiato, M.; Ragosta, M.; Simoniello, T. Indicators for the estimation of vulnerability to land degradation derived from soil compaction and vegetation cover. Eur. J. Soil Sci. 2014, 65, 907–923. [Google Scholar] [CrossRef] [Green Version]
- Carone, M.T.; Guisan, A.; Cianfrani, C.; Simoniello, T.; Loy, A.; Carranza, M.L. A multi-temporal approach to model endangered species distribution in europe. The case of the Eurasian otter in Italy. Ecol. Model. 2014, 274, 21–28. [Google Scholar] [CrossRef]
- Imbrenda, V.; D’Emilio, M.; Lanfredi, M.; Ragosta, M.; Simoniello, T. Indicators of Land Degradation Vulnerability Due to Anthropic Factors: Tools for An Efficient Planning. Available online: www.igi-global.com/chapter/indicators-of-land-degradation-vulnerability-due-to-anthropic-factors/95002 (accessed on 27 April 2021).
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Salvati, L.; Gemmiti, R.; Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning? Area 2012, 44, 317–325. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M. Territorial disparities, natural resource distribution, and land degradation: A case study in Southern Europe. GeoJournal 2007, 70, 185–194. [Google Scholar] [CrossRef]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Salvati, L.; Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 2016, 147, 590–600. [Google Scholar] [CrossRef]
- Nickayin, S.S.; Coluzzi, R.; Marucci, A.; Bianchini, L.; Salvati, L.; Cudlin, P.; Imbrenda, V. Desertification risk fuels spatial polarization in ‘affected’ and ‘unaffected’ landscapes in Italy. Sci. Rep. 2022, 12, 747. [Google Scholar] [CrossRef]
- Coluzzi, R.; Bianchini, L.; Egidi, G.; Cudlin, P.; Imbrenda, V.; Salvati, L.; Lanfredi, M. Density matters? Settlement expansion and land degradation in peri-urban and rural districts of Italy. Environ. Impact Assess. Rev. 2022, 92, 106703. [Google Scholar] [CrossRef]
- Lanfredi, M.; Egidi, G.; Bianchini, L.; Salvati, L. One size does not fit all: A tale of polycentric development and land degradation in Italy. Ecol. Econ. 2022, 192, 107256. [Google Scholar] [CrossRef]
- Imbrenda, V.; Quaranta, G.; Salvia, R.; Egidi, G.; Salvati, L.; Prokopovà, M.; Coluzzi, R.; Lanfredi, M. Land degradation and metropolitan expansion in a peri-urban environment. Geomat. Nat. Hazards Risk 2021, 12, 1797–1818. [Google Scholar] [CrossRef]
- Evenson, R.E.; Gollin, D. Assessing the impact of the green revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzario, S.; Logozzo, G.; David, J.L.; Zeuli, P.S.; Gioia, T. Molecular genotyping (SSR) and agronomic phenotyping for utilization of durum wheat (Triticum Durum Desf.) ex situ collection from Southern Italy: A combined approach including pedigreed varieties. Genes 2018, 9, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padalino, L.; Mastromatteo, M.; Lecce, L.; Spinelli, S.; Contò, F.; Nobile, M.A.D. Effect of durum wheat cultivars on physico-chemical and sensory properties of spaghetti. J. Sci. Food Agric. 2014, 94, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Lanfredi, M.; Coppola, R.; D’Emilio, M.; Imbrenda, V.; Macchiato, M.; Simoniello, T. A geostatistics-assisted approach to the deterministic approximation of climate data. Environ. Model. Softw. 2015, 66, 69–77. [Google Scholar] [CrossRef]
- Incerti, G.; Feoli, E.; Salvati, L.; Brunetti, A.; Giovacchini, A. Analysis of bioclimatic time series and their neural network-based classification to characterise drought risk patterns in South Italy. Int. J. Biometeorol. 2007, 51, 253–263. [Google Scholar] [CrossRef]
- Summa, V. Analisi granulometrica dei sedimenti. In Incontri Scientifici; Fiore, S., Ed.; INdAM: Rome, Italy, 2000; Volume II, pp. 19–29. [Google Scholar]
- Moore, M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1997; ISBN 978-0-19-508713-0. [Google Scholar]
- Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. GSA Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Krumm, S. WINFIT 1.2, Version of November 1996; The Erlangen Geological and Mineralogical Software Collection of “WINFIT 1.0: A Public Domain Program for Interactive Profile-Analysis under WINDOWS”. In Proceedings of the XIII Conference on clay mineralogy and petrology, Prague, Czech Republic, 29 August 1994; Volume 8, pp. 253–261. [Google Scholar]
- Laviano, R. Analisi mineralogica di argille mediante diffrattometria dei raggi, X. In Procedure Di Analisi Di Materiali Argillosi; ENEA: Rome, Italy, 1987; pp. 215–234. [Google Scholar]
- Chapman, H.D. Cation-exchange capacity. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1965; pp. 891–901. ISBN 978-0-89118-204-7. [Google Scholar]
- Summa, V.; Tateo, F.; Medici, L.; Giannossi, M.L. The role of mineralogy, geochemistry and grain size in badland development in Pisticci (Basilicata, Southern Italy). Earth Surf. Processes Landf. 2007, 32, 980–997. [Google Scholar] [CrossRef]
- Summa, V.; Margiotta, S.; Colaiacovo, R.; Giannossi, M.L. The influence of the grain-size, mineralogical and geochemical composition on the Verdesca landslide. Nat. Hazards Earth Syst. Sci. 2015, 15, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Karydas, C.; Iatrou, M.; Iatrou, G.; Mourelatos, S. Management zone delineation for site-specific fertilization in rice crop using multi-temporal RapidEye imagery. Remote Sens. 2020, 12, 2604. [Google Scholar] [CrossRef]
- Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Giorgio, G.A.; Lanfredi, M.; Macchiato, M.; Ragosta, M.; Simoniello, T.; Telesca, V. Investigating climate variability and long-term vegetation activity across heterogeneous basilicata agroecosystems. Geomat. Nat. Hazards Risk 2019, 10, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Simoniello, T.; Cuomo, V.; Lanfredi, M.; Lasaponara, R.; Macchiato, M. On the relevance of accurate correction and validation procedures in the analysis of AVHRR-NDVI time series for long-term monitoring. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, e1353691. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; NASA/GSFC, Type III; Texas A & M University, Remote Sensing Center: Greenbelt, MA, USA, 1974; p. 371. [Google Scholar]
- Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M. Land cover changes and forest landscape evolution (1985–2009) in a typical Mediterranean agroforestry system (high Agri Valley). Nat. Hazards Earth Syst. Sci. 2015, 15, 1201–1214. [Google Scholar] [CrossRef] [Green Version]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Bajocco, S.; De Angelis, A.; Salvati, L. A satellite-based green index as a proxy for vegetation cover quality in a Mediterranean region. Ecol. Indic. 2012, 23, 578–587. [Google Scholar] [CrossRef]
- D’Emilio, M.; Coluzzi, R.; Macchiato, M.; Imbrenda, V.; Ragosta, M.; Sabia, S.; Simoniello, T. Satellite data and soil magnetic susceptibility measurements for heavy metals monitoring: Findings from Agri Valley (Southern Italy). Environ. Earth Sci. 2018, 77, 63. [Google Scholar] [CrossRef]
- Imbrenda, V.; Coluzzi, R.; Lanfredi, M.; Loperte, A.; Satriani, A.; Simoniello, T. Analysis of landscape evolution in a vulnerable coastal area under natural and human pressure. Geomat. Nat. Hazards Risk 2018, 9, 1249–1279. [Google Scholar] [CrossRef] [Green Version]
- D’Emilio, M.; Macchiato, M.; Ragosta, M.; Simoniello, T. A method for the integration of satellite vegetation activities observations and magnetic susceptibility measurements for monitoring heavy metals in soil. J. Hazard. Mater. 2012, 241, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Salvati, L.; Petitta, M.; Ceccarelli, T.; Perini, L.; Battista, F.D.; Scarascia, M.E.V. Italy’s renewable water resources as estimated on the basis of the monthly water balance. Irrig. Drain. 2008, 57, 507–515. [Google Scholar] [CrossRef]
- Scarascia, M.E.V.; Battista, F.D.; Salvati, L. Water resources in Italy: Availability and agricultural uses. Irrig. Drain. 2006, 55, 115–127. [Google Scholar] [CrossRef]
- Greco, S.; Infusino, M.; De Donato, C.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.; Simoniello, T.; Scalercio, S. Late spring frost in Mediterranean beech forests: Extended crown dieback and short-term effects on moth communities. Forests 2018, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Simoniello, T.; Lanfredi, M.; Liberti, M.; Coppola, R.; Macchiato, M. Estimation of vegetation cover resilience from satellite time series. Hydrol. Earth Syst. Sci. 2008, 12, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Ónodi, G.; Kertész, M.; Kovács-Láng, E.; Ódor, P.; Botta-Dukát, Z.; Lhotsky, B.; Barabás, S.; Mojzes, A.; Kröel-Dulay, G. Estimating aboveground herbaceous plant biomass via proxies: The confounding effects of sampling year and precipitation. Ecol. Indic. 2017, 79, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Condorelli, G.E.; Maccaferri, M.; Newcomb, M.; Andrade-Sanchez, P.; White, J.W.; French, A.N.; Sciara, G.; Ward, R.; Tuberosa, R. Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front. Plant Sci. 2018, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and solutions. In Eutrophication: Causes, Consequences and Control: Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–15. ISBN 978-94-007-7814-6. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Kim, M.S.; Daughtry, C.S.T.; Chappelle, E.W.; McMurtrey, J.E.; Walthall, C.L. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A Par). In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Val D’Isere, France, 17–21 January 1994; pp. 299–306. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- AGI—Associazione Geotecnica Italiana. Raccomandazioni Sulla Programmazione Ed Esecuzione Delle Indagini Geotecniche; AGI: Roma, Italy, 1977. [Google Scholar]
- U.S. Department of Agriculture. Soil Survey Manual—Ch. 3. Examination and Description of Soil Profiles. Selected Chemical Properties. Reaction; U.S. Department of Agriculture: Washington, DC, USA, 1993.
- Summa, V.; Margiotta, S.; Medici, L.; Tateo, F. Compositional characterization of fine sediments and circulating waters of landslides in the Southern Apennines—Italy. Catena 2018, 171, 199–211. [Google Scholar] [CrossRef]
- Summa, V.; Margiotta, S.; Tateo, F. Correlation between geochemical, mineralogical and physical characters of sediments and salinization phenomena in a pilot area in the Ionian Plain (Southern Italy). Geomat. Nat. Hazards Risk 2019, 10, 1139–1154. [Google Scholar] [CrossRef] [Green Version]
- Pandino, G.; Mattiolo, E.; Lombardo, S.; Lombardo, G.M.; Mauromicale, G. Organic cropping system affects grain chemical composition, rheological and agronomic performance of durum wheat. Agriculture 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Ficco, D.B.M.; Riefolo, C.; Nicastro, G.; De Simone, V.; Di Gesù, A.M.; Beleggia, R.; Platani, C.; Cattivelli, L.; De Vita, P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Res. 2009, 111, 235–242. [Google Scholar] [CrossRef]
- Quaranta, F.; Amoriello, T.; Aureli, G.; Belocchi, A.; D’Egidio, M.G.; Fornara, M.; Melloni, S.; Desiderio, E. Grain yield, quality and deoxynivalenol (DON) contamination of durum wheat (Triticum Durum Desf.): Results of national networks in organic and conventional cropping systems. Ital. J. Agron. 2010, 5, 353–366. [Google Scholar] [CrossRef]
- Vastola, A.; Zdruli, P.; D’Amico, M.; Pappalardo, G.; Viccaro, M.; Di Napoli, F.; Cozzi, M.; Romano, S. A Comparative multidimensional evaluation of conservation agriculture systems: A case study from a Mediterranean area of Southern Italy. Land Use Policy 2017, 68, 326–333. [Google Scholar] [CrossRef]
- Figliuolo, G.; Mazzeo, M.; Greco, I. Temporal variation of diversity in Italian durum wheat germplasm. Genet. Resour. Crop Evol. 2007, 54, 615–626. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in Northern, Western and South-Western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Acar, M.; Çelik, İ.; Günal, H. Effects of long-term tillage systems on soil water content and wheat yield under Mediterranean conditions. J. New Theory 2017, 17, 98–108. [Google Scholar]
- Amato, G.; Ruisi, P.; Frenda, A.S.; Miceli, G.D.; Saia, S.; Plaia, A.; Giambalvo, D. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 2013, 105, 1317–1327. [Google Scholar] [CrossRef]
- Baiamonte, G.; Novara, A.; Gristina, L.; D’Asaro, F. Durum wheat yield uncertainty under different tillage management practices and climatic conditions. Soil Tillage Res. 2019, 194, 104346. [Google Scholar] [CrossRef]
- Adewopo, J.; Peter, H.; Mohammed, I.; Kamara, A.; Craufurd, P.; Vanlauwe, B. Can a combination of UAV-derived vegetation indices with biophysical variables improve yield variability assessment in smallholder farms? Agronomy 2020, 10, 1934. [Google Scholar] [CrossRef]
- Gano, B.; Dembele, J.S.B.; Ndour, A.; Luquet, D.; Beurier, G.; Diouf, D.; Audebert, A. Using UAV borne, multi-spectral imaging for the field phenotyping of shoot biomass, leaf area index and height of West African sorghum varieties under two contrasted water conditions. Agronomy 2021, 11, 850. [Google Scholar] [CrossRef]
- Pignatti, S.; Acito, N.; Amato, U.; Casa, R.; de Bonis, R.; Diani, M.; Laneve, G.; Matteoli, S.; Palombo, A.; Pascucci, S.; et al. Development of algorithms and products for supporting the Italian Hyperspectral PRISMA Mission: The SAP4PRISMA Project. In Proceedings of the IGARSS 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 127–130. [Google Scholar]
- Pignatti, S.; Acito, N.; Amato, U.; Casa, R.; Castaldi, F.; Coluzzi, R.; De Bonis, R.; Diani, M.; Imbrenda, V.; Laneve, G.; et al. Environmental products overview of the Italian Hyperspectral Prisma Mission: The SAP4PRISMA Project. In Proceedings of the IGARSS 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 3997–4000. [Google Scholar]
- Dinelli, G.; Marotti, I.; Silvestro, R.D.; Bosi, S.; Bregola, V.; Accorsi, M.; Loreto, A.D.; Benedettelli, S.; Ghiselli, L.; Catizone, P. Agronomic, nutritional and nutraceutical aspects of durum wheat (Triticum Durum Desf.) cultivars under low input agricultural management. Ital. J. Agron. 2013, 8, e12. [Google Scholar] [CrossRef]
- Miller, M.P.; Singer, M.J.; Nielsen, D.R. Spatial variability of wheat yield and soil properties on complex hills. Soil Sci. Soc. Am. J. 1988, 52, 1133–1141. [Google Scholar] [CrossRef]
- Altamore, L.; Ingrassia, M.; Columba, P.; Chironi, S.; Bacarella, S. Italian consumers’ preferences for pasta and consumption trends: Tradition or innovation? J. Int. Food Agribus. Mark. 2020, 32, 337–360. [Google Scholar] [CrossRef]
- Varia, F.; Macaluso, D.; Vaccaro, A.; Caruso, P.; Guccione, G.D. The adoption of landraces of durum wheat in sicilian organic cereal farming analysed using a system dynamics approach. Agronomy 2021, 11, 319. [Google Scholar] [CrossRef]
- Contò, F.; Antonazzo, A.P.; Conte, A.; Cafarelli, B. Consumers perception of traditional sustainable food: An exploratory study on pasta made from native ancient durum wheat varieties. Ital. Rev. Agric. Econ. 2016, 71, 325–337. [Google Scholar] [CrossRef]
- Vet, J.M.D.; Nigohosyan, D.; Ferrer, J.N.; Gross, A.-K.; Kuehl, S.; Flickenschild, M. Impacts of the COVID-19 Pandemic on EU Industries; European Parliament: Strasbourg, France, 2021. [Google Scholar]
- FAO Cereal Supply and Demand Brief. World Food Situation. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 28 April 2021).
- ISMEA—Istituto di Servizi per il Mercato Agricolo Alimentare. 2020. Available online: http://www.Ismeamercati.It (accessed on 28 April 2021).
Tillage Practice | Qtz | Cal | Dol | K-fld | Plg | Tot Phy | I-M | I/S | Chl | Kao |
---|---|---|---|---|---|---|---|---|---|---|
Conservative | ++ | ++ | tr | + | + | ++++ | +++ | ++++ | + | + |
Conventional | ++ | + | tr | + | + | +++++ | ++++ | +++ | + | ++ |
Tillage Practice | Before Seeding (First Sampling) | After Harvest (Second Sampling) | |||
---|---|---|---|---|---|
pH | EC µS/cm | pH | EC µS/cm | ||
Conservative (CP) | Min | 8.1 | 323 | 8.1 | 316 |
Max | 8.2 | 898 | 8.2 | 409 | |
Mean | 8.2 | 641 | 8.2 | 355 | |
SD | 0.1 | 238.8 | 0.1 | 42.1 | |
Conventional (DT) | Min | 6.8 | 195 | 6.5 | 96 |
Max | 8.3 | 471 | 8.1 | 280 | |
Mean | 7.9 | 280 | 7.3 | 189 | |
SD | 0.1 | 96.6 | 0.8 | 715 |
NDVI | NDVIre | MCARI | MTVI1 | Yield (t/ha) | |||
---|---|---|---|---|---|---|---|
DV fields Modern Variety | Conventional | Mean | 0.783 | 0.442 | 120,777.22 | 451.42 | 2.2 |
SD | 0.13 | 0.078 | 413,825.23 | 146.78 | |||
Conservative | Mean | 0.759 | 0.428 | 33,390.763 | 448.43 | 1.8 | |
SD | 0.099 | 0.056 | 24,873.96 | 112.55 | |||
CV fields Ancient Variety | Conventional | Mean | 0.588 | 0.360 | 9368.96 | 238.66 | 2.0 |
SD | 0.135 | 0.07 | 10,273.42 | 80.71 | |||
Conservative | Mean | 0.522 | 0.320 | 6363.84 | 198.06 | 1.4 | |
SD | 0.126 | 0.06 | 3794.31 | 71.83 |
Conservative vs. Conventional | |||||
---|---|---|---|---|---|
NDVI | NDVIre | MCARI | MTVI1 | ΔYield (t/ha) | |
DV Site: Modern Variety | −3.2% | −3.3% | −261.7% | −0.7% | −0.4 |
CA Site: Ancient Variety | −12.6% | −12.5% | −47.2% | −20.5% | −0.6 |
Average | −7.9% | −7.9% | −154.5% | −10.6% | −0.5 |
Modern vs. Ancient | |||||
---|---|---|---|---|---|
NDVI | NDVIre | MCARI | MTVI1 | ΔYield (t/ha) | |
Conventional | +24.9% | +18.6% | +92.2% | 47.1% | +0.2 |
Conservative | +31.2% | +25.2% | +80.9% | 55.8% | +0.4 |
Average | +28.1% | +21.9% | +86.6% | 51.5% | +0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simoniello, T.; Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Salvati, L.; Sinisi, R.; Summa, V. Going Conservative or Conventional? Investigating Farm Management Strategies in between Economic and Environmental Sustainability in Southern Italy. Agronomy 2022, 12, 597. https://doi.org/10.3390/agronomy12030597
Simoniello T, Coluzzi R, D’Emilio M, Imbrenda V, Salvati L, Sinisi R, Summa V. Going Conservative or Conventional? Investigating Farm Management Strategies in between Economic and Environmental Sustainability in Southern Italy. Agronomy. 2022; 12(3):597. https://doi.org/10.3390/agronomy12030597
Chicago/Turabian StyleSimoniello, Tiziana, Rosa Coluzzi, Mariagrazia D’Emilio, Vito Imbrenda, Luca Salvati, Rosa Sinisi, and Vito Summa. 2022. "Going Conservative or Conventional? Investigating Farm Management Strategies in between Economic and Environmental Sustainability in Southern Italy" Agronomy 12, no. 3: 597. https://doi.org/10.3390/agronomy12030597
APA StyleSimoniello, T., Coluzzi, R., D’Emilio, M., Imbrenda, V., Salvati, L., Sinisi, R., & Summa, V. (2022). Going Conservative or Conventional? Investigating Farm Management Strategies in between Economic and Environmental Sustainability in Southern Italy. Agronomy, 12(3), 597. https://doi.org/10.3390/agronomy12030597