Possibilities to Use Germinated Lupine Flour as an Ingredient in Breadmaking to Improve the Final Product Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dough Rheological Properties
2.2.1. Dough Rheological Properties during Mixing and Extension
2.2.2. Dough Rheological Properties during Fermentation and Falling Number Values
2.2.3. Dough Fundamental Rheological Properties
2.3. Dough Microstructure
2.4. Breadmaking
2.5. Bread Quality Evaluation
2.5.1. Bread Physical Characteristics
2.5.2. Bread Color Parameters
2.5.3. Texture Profile Analysis
2.5.4. Crumb Structure
2.5.5. Sensory Analysis
2.5.6. Statistical Analysis
3. Results
3.1. Flour Characteristics
3.2. Dough Rheological Properties
3.2.1. Dough Rheological Properties during Mixing and Extension
3.2.2. Dough Rheological Properties during Fermentation and Falling Number Values
3.2.3. Dough Fundamental Rheological Properties
3.3. Dough Microstructure
3.4. Bread Quality Evaluation
3.4.1. Bread Physical Characteristics
3.4.2. Color Parameters of Breads Samples
3.4.3. Texture Profile Analysis of Breads Samples
3.4.4. Crumb Structure of Breads Samples
3.4.5. Sensory Analysis of Breads Samples
4. Discussion
4.1. Dough Rheological Properties
4.1.1. Dough Rheological Properties during Mixing and Extension
4.1.2. Dough Rheological Properties during Fermentation and Falling Number Values
4.1.3. Dough Fundamental Rheological Properties
4.2. Dough Microstructure
4.3. Bread Quality Evaluation
4.3.1. Bread Physical Characteristics
4.3.2. Color Analysis of Breads Samples
4.3.3. Texture Profile Analysis of Breads Samples
4.3.4. Crumb Structure of Breads Samples
4.3.5. Sensory Analysis of the Bread Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cappelli, A.; Lupori, L.; Cini, E. Baking technology: A systematic review of machines and plants and their effect on final products, including improvement strategies. Trends Food Sci. Technol. 2021, 115, 275–284. [Google Scholar] [CrossRef]
- Venturi, M.; Cappelli, A.; Pini, N.; Galli, V.; Lupori, L.; Granchi, L.; Cini, E. Effects of kneading machine type and total element revolutions on dough rheology and bread characteristics: A focus on straight dough and indirect (biga) methods. LWT–Food Sci. Technol. 2022, 153, 112500. [Google Scholar] [CrossRef]
- De Angelis, M.; Minervini, F.; Siragusa, S.; Rizzello, C.G.; Gobbetti, M. Whole meal wheat flours drive the microbiome and functional features of wheat sourdoughs. Int. J. Food Microbiol. 2019, 302, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.; Aldughpassi, A.D.H.; Sidhu, J.S.; Al-Foudari, M.Y.; Al-Othman, A.R.A. Effect of psyllium husk addition on the instrumental texture and consumer acceptability of high-fiber wheat pan bread and buns. Ann. Agric. Sci. 2021, 66, 75–80. [Google Scholar] [CrossRef]
- Karimi, A.; Gavlighi, H.A.; Sarteshnizi, R.A.; Udenigwe, C.C. Effect of maize germ protein hydrolysate addition on digestion, invitro antioxidant activity and quality characteristics of bread. J. Cereal Sci. 2021, 97, 103148. [Google Scholar] [CrossRef]
- Dube, N.M.; Xu, F.; Zhao, R. The efficacy of sorghum flour addition on dough rheological properties and bread quality: A short review. Oil Gas Sci. Technol. 2020, 4, 164–171. [Google Scholar] [CrossRef]
- Islam, S.; Ma, W. Lupine. In Encyclopedia of Food and Health; Academic Press: Oxford, UK, 2016; pp. 579–585. [Google Scholar]
- Knecht, K.; Sanchez, P.; Kinder, D.H. Lupine Seeds (Lupinus spp.): History of Use, Useas an Antihyperglycemic Medicinal, and Use as a Food Plant. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2020; pp. 393–402. [Google Scholar]
- Laaksonen, O.; Kahala, M.; Marsol-Vall, A.; Blasco, L.; Järvenpää, E.; Rosenvald, S.; Virtanen, M.; Tarvainen, M.; Yang, B. Impact of lactic acid fermentation on sensory and chemical quality of dairy analogues prepared from lupine (Lupinus angustifolius L.) seeds. Food Chem. 2021, 346, 128852. [Google Scholar] [CrossRef] [PubMed]
- Kinder, D.H.; Knecht, K. Lupine (Lupinus caudatus L.; Lupinus albus L.) Seeds: History of Use, Use as an Antihyperglycemic Medicinal, and Use as a Food. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2011; pp. 711–716. [Google Scholar]
- Wandersleben, T.; Morales, E.; Burgos-Díaz, C.; Barahona, T.; Labra, E.; Rubilar, M.; Salvo-Garrido, H. Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT-Food Sci. Technol. 2018, 91, 48–54. [Google Scholar] [CrossRef]
- Wassenberg, J.; Hofer, M. Lupine-induced anaphylaxis in a child without known food allergy. Ann. Allergy Asthma Immunol. 2007, 98, 589–590. [Google Scholar] [CrossRef]
- Volek, Z.; Uhlírová, L.; Zita, L. Narrow-leaved lupine seeds as a dietary protein source for fattening rabbits: A comparison with white lupine seeds. Animal 2020, 14, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Costa, J.; Gondar, C.; Oliveira, M.B.P.P.; Mafra, I. Effect of food matrix and thermal processing on the performance of a normalised quantitative real-time PCR approach for lupine (Lupinus albus) detection as a potential allergenic food. Food Chem. 2018, 262, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Koeberl, M.; Sharp, M.F.; Tian, R.; Buddhadasa, S.; Clarke, D.; Roberts, J. Lupine allergen detecting capability and cross-reactivity of related legumes by ELISA. Food Chem. 2018, 256, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, D.S.; Linnemann, A.R.; van Boekel, T.A.J.S. Towards sustainable production of protein-rich foods: Appraisal of eight crops for Western Europe. PARTII: Analysis of the technological aspects of the production chain. Crit. Rev. Food Sci. Nutr. 2003, 43, 481–506. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zhang, H.; Xie, Y.; Yang, M.; Tang, J.; Wang, P.; Yang, R.; Zhenxin, G. Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. LWT-Food Sci. Technol. 2020, 118, 108709. [Google Scholar] [CrossRef]
- De Cortes Sánchez, M.; Altares, P.; Pedrosa, M.; Burbano, C.; Cuadrado, C.; Goyoaga, C.; Muzquiz, M.; Jiménez-Martínez, C.; Dávila-Ortiz, G. Alkaloid variation during germination in different lupin species. Food Chem. 2005, 90, 347–355. [Google Scholar] [CrossRef]
- Aguiar, J.P.L.; da Silva, E.P.; da Silva, A.P.G.; Sganzerla, W.G.; Xiao, J.; Souza, F.D.C.D.A. Influence of freeze-drying treatment on the chemical composition of peppers (Capsicum L.) from the Brazilian Amazonia region. Biocatal. Agric. Biotechnol. 2021, 38, 102220. [Google Scholar] [CrossRef]
- Atudorei, D.; Ungureanu-Iuga, M.; Codină, G.G.; Mironeasa, S. Germinated Chickpea and Lupin as Promising Ingredients for Breadmaking—Rheological Features. Agronomy 2021, 11, 2588. [Google Scholar] [CrossRef]
- Atudorei, D.; Atudorei, O.; Codină, G.G. Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour. Foods 2021, 10, 1542. [Google Scholar] [CrossRef]
- Codină, G.G.; Dabija, A.; Oroian, M. Prediction of Pasting Properties of Dough from Mixolab Measurements Using Artificial Neuronal Networks. Foods 2019, 8, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbaș, M.; Certel, M.; Uslu, M.K. Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem. 2005, 89, 341–345. [Google Scholar] [CrossRef]
- Masure, H.G.; Fierens, E.; Delcour, J.A. Current and forward looking experimental approaches in gluten-free bread making research. J. Cereal Sci. 2016, 67, 92–111. [Google Scholar] [CrossRef]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; McCarthy, S.; Gallagher, E. Dough properties and baking characteristics of whitebread, as affected by addition of raw, germinated and toasted pea flour. Innov. Food Sci. Emerg. Technol. 2019, 56, 102189. [Google Scholar] [CrossRef]
- Baranzelli, J.; Kringel, D.H.; Colussi, R.; Paiva, F.F.; Aranha, B.C.; de Miranda, M.Z.; da Rosa Zavareze, E.; Dias, A.R.G. Changes in enzymatic activity, technological quality and gamma-amino butyricacid (GABA) content of wheat flour as affected by germination. LWT-Food Sci. Technol. 2018, 90, 483–490. [Google Scholar] [CrossRef]
- Sharma, B.; Gujral, H.S. Modifying the dough mixing behavior, protein & starch digestibility and antinutritional profile of minor millets by sprouting. Int. J. Biol. Macromol. 2020, 153, 961–970. [Google Scholar]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Nyembwe, P.M.; de Kock, H.L.; Taylor, J.R.N. Potential of defatted marama flour-cassava starch composites to produce functional gluten-free bread-type dough. LWT-Food Sci. Technol. 2018, 92, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Fendri, L.B.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkaf, L.; Chaabouni, S.E.; Ghribi-Aydi, D. Wheat bread enrichment bypea and broad bean pods fibers: Effect on dough rheology and breadquality. LWT-Food Sci. Technol. 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Mohammed, I.; Ahmed, A.R.; Senge, B. Dough rheology and bread quality of wheat–chickpea flour blends. Ind. Crop. Prod. 2012, 36, 196–202. [Google Scholar] [CrossRef]
- Cappelli, A.; Cini, E.; Guerrini, L.; Masella, P.; Angeloni, G.; Parenti, A. Predictive models of the rheological properties and optimal water content in doughs: An application to ancient grain flours with different degrees of refining. J. Cereal Sci. 2018, 83, 229–235. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the rheological properties and bread characteristics obtained by innovative proteinsources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT-Food Sci. Technol. 2020, 118, 108867. [Google Scholar] [CrossRef]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT-Food Sci. Technol. 2017, 78, 361–366. [Google Scholar] [CrossRef]
- Sulieman, A.M.E.; Sinada, E.A.; Ali, A.O. Quality Characteristics of Wheat Bread Supplemented with Chickpea (Cicer arietinum) Flour. Int. J. Food Sci. Nutr. 2013, 3, 85–90. [Google Scholar]
- Schmiele, M.; Felisberto, M.H.F.; Clerici, M.T.P.S.; Chang, Y.K. Mixolab™ for rheological evaluation of wheat flour partially replaced by soy protein hydrolysate and fructooligosaccharides for bread production. LWT-Food Sci. Technol. 2017, 76, 259–269. [Google Scholar] [CrossRef]
- Suárez-Estrella, D.; Cardone, G.; Buratti, S.; Pagani, M.A.; Marti, A. Sprouting as a pre-processing for producing quinoa- enriched bread. J. Cereal Sci. 2020, 96, 103111. [Google Scholar] [CrossRef]
- Ji, T.; Penning, B.; Baik, B.K. Pre-harvest sprouting resistance of soft winter wheat varieties and associated grain characteristics. J. Cereal Sci. 2018, 83, 110–115. [Google Scholar] [CrossRef]
- Codină, G.G.; Mironeasa, S.; Voica, D.V.; Mironeasa, C. Multivariate analysis of wheat flour dough sugars, gas production, and dough development at different fermentation times. Czech J. Food Sci. 2013, 31, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.; O’Flaherty, J.; Brunton, N.; Arendt, E.; Gallagher, E. The utilization of barley middlings to add value and health benefits to white breads. J. Food Eng. 2011, 105, 493–502. [Google Scholar] [CrossRef]
- Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C. Hydration and rheological properties of amaranth-wheat flour dough: Influence of germination of amaranth seeds. Food Hydrocoll. 2019, 97, 105242. [Google Scholar] [CrossRef]
- Kotsiou, K.; Sacharidis, D.D.; Matsakidou, A.; Biliaderis, C.G.; Lazaridou, A. Physicochemical and functional aspects of composite wheat-roasted chickpea flours in relation to dough rheology, bread quality and staling phenomen. Food Hydrocoll. 2022, 124, 107322. [Google Scholar] [CrossRef]
- Banu, I.; Patraşcu, L.; Vasilean, I.; Horincar, G.; Aprodu, I. Impact of Germination and Fermentation on Rheological and Thermo-Mechanical Properties of Wheat and Triticale Flours. Appl. Sci. 2020, 10, 7635. [Google Scholar] [CrossRef]
- Guardado-Félix, D.; Lazo-Vélez, M.A.; Pérez-Carrillo, E.; Panata-Saquicili, D.E.; Serna-Saldívar, S.O. Effect of partial replacement of wheat flour with sprouted hickpea flours with or without selenium on physicochemical, sensory, antioxidant and protein quality of yeast-leavened bread. LWT-Food Sci. Technol. 2020, 129, 109517. [Google Scholar] [CrossRef]
- Villariano, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. The effects of Australian sweet lupin (ASL) variety on physical properties of flours and breads. LWT-Food Sci. Technol. 2015, 60, 435–443. [Google Scholar] [CrossRef]
- Shin, D.J.; Kim, W.; Kim, Y. Physicochemical and sensory properties of soy bread made with germinated, steamed, and roasted soy flour. Food Chem. 2013, 141, 517–523. [Google Scholar] [CrossRef]
- Turnbull, C.M.; Baxter, A.L.; Johnson, S.K. Water-binding capacity and viscosity of Australian sweet lupin kernel fibre under in vitro conditions simulating the human upper gastrointestinal tract. Int. J. Food Sci. Nutr. 2005, 56, 87–94. [Google Scholar] [CrossRef]
- Klupsaite, D.; Juodeikiene, G.; Zadeike, D.; Bartkiene, E.; Maknickiene, Z.; Liutkute, G. The influence of lactic acid fermentation on functional properties of narrow-leaved lupine protein as functional additive for higher value wheat bread. LWT-Food Sci. Technol. 2017, 75, 180–186. [Google Scholar] [CrossRef]
- Halima, N.B.; Borchani, M.; Fendri, I.; Khemakhem, B.; Gosset, D.; Baril, P.; Pichon, C.; Ayadi, M.A.; Abdelkafi, S. Optimised amylases extraction from oat seeds and its impact on bread properties. Int. J. Biol. Macromol. 2015, 72, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Z.; Qiao, Y.; Zhang, Y.; Zheng, W.; Zhao, Y.; Huang, Y.; Cui, Z. Improvement of the quality and shelf life of wheat bread by a malto hexaose producing α-amylase. J. Cereal Sci. 2019, 87, 165–171. [Google Scholar] [CrossRef]
- Codină, G.G.; Mironeasa, S.; Mironeasa, C. Variability and relationship among Mixolab and Falling Number evaluation based on influence of fungal α-amylase addition. J. Sci. Food Agric. 2012, 92, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
- Benayad, A.; Taghouti, M.; Benali, A.; Aboussaleh, Y.; Benbrahim, N. Nutritional and technological assessment of durum wheat-faba bean enriched flours, and sensory quality of developed composite bread. Saudi J. Biol. Sci. 2021, 28, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Mancebo, C.M.; Rodriguez, P.; Gómez, M. Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT-Food Sci. Technol. 2016, 67, 127–132. [Google Scholar] [CrossRef]
- Perri, G.; Coda, R.; Rizzello, C.G.; Celano, G.; Ampollini, M.; Gobbetti, M.; DeAngelis, M.; Calasso, M. Sourdough fermentation of whole and sprouted lentilflours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem. 2021, 355, 129638. [Google Scholar] [CrossRef]
- Monnet, A.F.; Laleg, K.; Michon, C.; Micard, V. Legume enriched cereal products: A generic approach derived from material science to predict their structuring by the process and their final properties. Trends Food Sci. Technol. 2019, 86, 131–143. [Google Scholar] [CrossRef]
- Boukid, F.; Vittadini, E.; Lusuardi, F.; Ganino, T.; Carini, E.; Morreale, F.; Pellegrini, N. Does cell wall integrity in legumes flours modulate physiochemical quality and in vitro starch hydrolysis of gluten-free bread? J. Funct. Foods. 2019, 59, 110–118. [Google Scholar] [CrossRef]
- Ibidapo, O.P.; Henshaw, F.O.; Shittu, T.A.; Afolabi, W.A. Quality evaluation of functional bread developed from wheat, malted millet (Pennisetum Glaucum) and ‘Okara’ flour blends. Sci. Afr. 2020, 10, e00622. [Google Scholar] [CrossRef]
- Yaver, E.; Bilgiçl, N. Ultrasound-treated lupin (Lupinus albus L.) flour: Protein- and fiber-rich ingredient to improve physical and textural quality of bread with a reduced glycemic index. LWT-Food Sci. Technol. 2021, 148, 111767. [Google Scholar] [CrossRef]
- Filipčev, B.; Pojić, M.; Šimurina, O.; Mišan, A.; Mandić, A. Psyllium as an improver in gluten-free breads: Effect on volume, crumb texture, moisture binding and staling kinetics. LWT-Food Sci. Technol. 2021, 151, 112156. [Google Scholar] [CrossRef]
- Motahar, S.F.S.; Ariaeenejad, S.; Salami, M.; Emam-Djomeh, Z.; Mamaghani, A.S.A. Improving the quality of gluten-free bread by a novel acidic thermostable α-amylase from metagenomics data. Food Chem. 2021, 352, 129307. [Google Scholar] [CrossRef] [PubMed]
- Peñaranda, J.D.; Bueno, M.; Álvares, F.; Pérez, P.D.; Perezábad, L. Sprouted grains in product development. Case studies of sprouted wheat for baking flours and fermented beverages. Int. J. Gastron. Food Sci. 2021, 25, 100375. [Google Scholar] [CrossRef]
- Suárez-Estrella, D.; Borgonovo, G.; Buratti, S.; Ferranti, P.; Accardo, F.; Pagani, M.A.; Marti, A. Sprouting of quinoa (Chenopodium quinoa Willd.): Effect on saponin content and relation to the taste and astringency assessed by electronic tongue. LWT-Food Sci. Technol. 2021, 144, 111234. [Google Scholar] [CrossRef]
Dough Samples | WA (%) | Tol (s) | D250 (mb) | D450 (mb) |
---|---|---|---|---|
Control | 54.3 ± 0.10e | 214 ± 1.00e | 394 ± 3.00e | 943 ± 1.00e |
GLF_5 | 53.7 ± 0.16d | 181 ± 1.63d | 339 ± 3.27d | 878 ± 1.63d |
GLF_10 | 53.2 ± 0.00c | 167 ± 0.62c | 185 ± 2.05c | 762 ± 3.68c |
GLF_15 | 52.6 ± 0.08b | 149 ± 2.45b | 174 ± 1.63b | 624 ± 3.27b |
GLF_20 | 52.1 ± 0.08a | 126 ± 2.45a | 163 ± 2.45a | 569 ± 1.63a |
Dough Samples | P (mm) | L (mm) | G (mm) | W (10−4 J) | P/L |
---|---|---|---|---|---|
Control | 104 ± 2.51a | 72 ± 1.15d | 19.4 ± 0.28d | 301 ± 5.13d | 1.43 ± 0.05a |
GLF_5 | 113 ± 0.47b | 46 ± 0.82c | 15.0 ± 0.12c | 204 ± 2.45c | 2.45 ± 0.05b |
GLF_10 | 122 ± 0.63c | 40 ± 2.05b | 14.0 ± 0.37b | 198 ± 2.45c | 3.02 ± 0.11c |
GLF_15 | 127 ± 0.82d | 33 ± 1.63a | 12.7 ± 0.33a | 174 ± 2.45b | 3.85 ± 0.17d |
GLF_20 | 133 ± 0.82e | 29 ± 0.82a | 11.9 ± 0.16a | 164 ± 1.63a | 4.59 ± 0.10e |
Dough Samples | H’m (mm) | VT (mL) | VR (mL) | CR (%) | FN (s) |
---|---|---|---|---|---|
Control | 65.9 ± 0.30b | 1532 ± 2.51b | 1228 ± 2.51d | 80.1 ± 0.50b | 350 ± 3.29e |
GLF_5 | 74.6 ± 0.08e | 1651 ± 2.45e | 1239 ± 1.63e | 75.0 ± 0.21a | 320 ± 1.63d |
GLF_10 | 70.5 ± 0.08d | 1621 ± 3.27d | 1214 ± 1.63c | 74.9 ± 0.08a | 302 ± 1.63c |
GLF_15 | 68.1 ± 0.08c | 1550 ± 1.63c | 1179 ± 2.45b | 76.0 ± 0.12a | 277 ± 1.63b |
GLF_20 | 64.3 ± 0.16a | 1425 ± 2.45a | 1147 ± 2.45a | 80.5 ± 0.05b | 247 ± 2.45a |
Bread Samples | Specific Volume (cm3/100 g) | Porosity (%) | Elasticity (%) |
---|---|---|---|
Control | 331.5 ± 0.74b | 67.4 ± 0.86b | 91.3 ± 0.57b |
GLF_5 | 345.4 ± 1.18c | 70.8 ± 0.67c | 92.2 ± 0.17bc |
GLF_10 | 355.6 ± 0.98d | 72.6 ± 0.48cd | 92.4 ± 0.88c |
GLF_15 | 362.8 ± 0.73e | 74.2 ± 0.32d | 94.9 ± 0.19d |
GLF_20 | 318.3 ± 0.85a | 63.8 ± 0.63a | 87.0 ± 0.72a |
Bread Samples | Crust Color | Crumb Color | ||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
Control | 76.25 ± 0.94e | 3.44 ± 0.27a | 3.14 ± 0.43a | 66.37 ± 0.88e | −4.62 ± 0.32a | 1.69 ± 0.22a |
GLF_5 | 74.22 ± 0.24d | 5.89 ± 0.16b | 4.41 ± 0.24b | 63.13 ± 0.61d | −3.63 ± 0.44b | 2.31 ± 0.20a |
GLF_10 | 65.89 ± 0.76c | 8.72 ± 0.25c | 5.63 ± 0.25c | 60.42 ± 0.41c | −2.67 ± 0.04c | 3.58 ± 0.33b |
GLF_15 | 61.25 ± 0.55b | 10.08 ± 0.12d | 6.78 ± 0.29d | 58.58 ± 0.35b | −1.43 ± 0.04d | 4.61 ± 0.26c |
GLF_20 | 57.42 ± 0.55a | 10.95 ± 0.15e | 8.84 ± 0.20e | 56.28 ± 016a | −0.86 ± 0.02e | 5.52 ± 0.37c |
Bread Samples | Firmness (N) | Gumminess (N) | Cohesiveness (Adimensional) | Resilience (Adimensional) |
---|---|---|---|---|
Control | 9.01 ± 3.06a | 7.23 ± 1.73bc | 0.82 ± 0.03c | 1.72 ± 0.04e |
GLF_5 | 13.19 ± 0.02b | 7.62 ± 0.04c | 0.85 ± 0.03c | 1.78 ± 0.01d |
GLF_10 | 14.77 ± 0.04b | 5.41 ± 0.04ab | 0.76 ± 0.01a | 1.63 ± 0.01c |
GLF_15 | 16.36 ± 0.06bc | 4.06 ± 0.04a | 0.63 ± 0.02b | 1.32 ± 0.01b |
GLF_20 | 19.33 ± 0.05c | 6.16 ± 0.03bc | 0.52 ± 0.01a | 1.06 ± 0.04a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atudorei, D.; Ropciuc, S.; Codină, G.G. Possibilities to Use Germinated Lupine Flour as an Ingredient in Breadmaking to Improve the Final Product Quality. Agronomy 2022, 12, 667. https://doi.org/10.3390/agronomy12030667
Atudorei D, Ropciuc S, Codină GG. Possibilities to Use Germinated Lupine Flour as an Ingredient in Breadmaking to Improve the Final Product Quality. Agronomy. 2022; 12(3):667. https://doi.org/10.3390/agronomy12030667
Chicago/Turabian StyleAtudorei, Denisa, Sorina Ropciuc, and Georgiana Gabriela Codină. 2022. "Possibilities to Use Germinated Lupine Flour as an Ingredient in Breadmaking to Improve the Final Product Quality" Agronomy 12, no. 3: 667. https://doi.org/10.3390/agronomy12030667
APA StyleAtudorei, D., Ropciuc, S., & Codină, G. G. (2022). Possibilities to Use Germinated Lupine Flour as an Ingredient in Breadmaking to Improve the Final Product Quality. Agronomy, 12(3), 667. https://doi.org/10.3390/agronomy12030667