Exogenous Application of Zinc Sulphate at Heading Stage of Wheat Improves the Yield and Grain Zinc Biofortification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plot
2.2. Experimental Design and Treatments
2.3. Collection of Materials
2.4. Crop Husbandry
2.5. Data Recording
2.6. Statistical Analysis
3. Results
3.1. Morphological Traits
3.2. Yield Related Traits
3.3. Antioxidants Traits
3.4. Quality Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bharti, K.; Pandey, N.; Shankhdhar, D.; Srivastava, P.C.; Shankhdhar, S.C. Improving nutritional quality of wheat through soil and foliar zinc application. Plant Soil Environ. 2013, 59, 348–352. [Google Scholar] [CrossRef]
- Hafeez, B.M.K.Y.; Khanif, Y.M.; Saleem, M. Role of zinc in plant nutrition. Am. J. Exp. Agric. 2013, 3, 374–391. [Google Scholar]
- Maqsood, M.A.; Hussain, S.; Aziz, T.; Ahmad, M.; Naeem, M.A.; Ahmad, H.R.; Kanwal, S.; Hussain, M. Zinc indexing in wheat grains and associated soils of Southern Punjab. Pak. J. Agric Sci. 2015, 52, 431–438. [Google Scholar]
- Wessels, I.; Rink, L. Micronutrients in autoimmune diseases: Possible therapeutic benefits of zinc and vitamin D. J. Nutr. Biochem. 2019, 77, 108240. [Google Scholar] [CrossRef]
- Kumssa, D.; Joy, E.; Ander, E.L.; Watts, M.; Young, S.D.; Walker, S.; Broadley, M.R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015, 5, 10974. [Google Scholar] [CrossRef] [Green Version]
- Ministry of National Health Services Nutrition Wing. National Nutritional Survey 2018, Key Finding Report. Available online: https://www.unicef.org/Pakistan/national-nutrition-survey-2018 (accessed on 12 July 2020).
- Farooq, M.; Ullah, A.; Rehman, A.; Nawaz, A.; Nadeem, A.; Wakeel, A.; Nadeem, F.; Siddique, K. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crop. Res. 2018, 216, 53–62. [Google Scholar] [CrossRef]
- Ullah, A.; Farooq, M.; Rehman, A.; Hussain, M.; Siddique, K.H.M. Zinc nutrition in chickpea (Cicer arietinum): A review. Crop Pasture Sci. 2020, 71, 199. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Farooq, M.; Nawaz, A.; Al-Sadi, A.; Al-Hashmi, K.S.; Nadeem, F.; Ullah, A. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential. J. Sci. Food Agric. 2018, 98, 4824–4836. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Naveed, M.; Nawaz, A.; Shahzad, B. Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur. J. Agron. 2018, 94, 98–107. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Naveed, M.; Ozturk, L.; Nawaz, A. Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop Pasture Sci. 2018, 69, 659. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- van der Bom, F.; Magid, J.; Jensen, L.S. Long-term fertilisation strategies and form affect nutrient budgets and soil test values, soil carbon retention and crop yield resilience. Plant Soil 2018, 434, 47–64. [Google Scholar] [CrossRef]
- Zain, M.; Khan, I.; Qadri, R.W.K.; Ashraf, U.; Hussain, S.; Minhas, S.; Siddiquei, A.; Jahangir, M.M.; Bashir, M. Foliar Ap-plication of Micronutrients Enhances Wheat Growth, Yield and Related Attributes. Am. J. Plant Sci. 2015, 6, 864–869. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Jahiruddin, M.; Islam, M.R.; Al Mahmud, A.; Hossain, A.; Laing, A.M. Zinc Biofortification in the Grains of Two Wheat (Triticum aestivum L.) Varieties Through Fertilization. Acta Agrobot. 2020, 73, 7312. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Chaki, A.K.; Hossain, A. Breeding and agronomic approaches for the biofortification of zinc in wheat (Triticum aestivum L.) to combat zinc deficiency in millions of a population: A Bangladesh perspective. Acta Agrobot. 2019, 72, 1770. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.X.; Zhang, W.; Wang, Q.; Liu, Y.M.; Liu, D.Y.; Zou, C.Q. Zinc nutrition of wheat in response to application of phos-phorus to a calcareous soil and an acid soil. Plant Soil 2019, 434, 139–150. [Google Scholar] [CrossRef]
- Alina, T.; Lazureanu, A. The influence of dose fertilizer on the qualitative corn hybrid Pr35P12. J. Hortic. Biotechnol. 2011, 15, 215–217. [Google Scholar]
- Methods Technical Leadership Committee. Approved Methods of the American Association of Cereal Chemists, Method 38-12A, 11th ed.; American Association for Clinical Chemistry: St. Paul, MN, USA, 2010. [Google Scholar]
- Rashid, A. Mapping Zinc Fertility of Soils Using Indicator Plants and Soil Analyses. Ph.D. Thesis, University of Hawaii, Manoa, HI, USA, 1986. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics, A Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Esfandiari, E.; Abdoli, M.; Mousavi, S.-B.; Sadeghzadeh, B. Impact of foliar zinc application on agronomic traits and grain quality parameters of wheat grown in zinc deficient soil. Indian J. Plant Physiol. 2016, 21, 263–270. [Google Scholar] [CrossRef]
- Ghasal, P.C.; Shivay, Y.S.; Pooniya, V.; Choudhary, M.; Verma, R.K. Response of wheat genotypes to zinc fertilization for improving productivity and quality. Arch. Agron. Soil Sci. 2017, 63, 1597–1612. [Google Scholar] [CrossRef]
- Li, M.; Wang, S.; Tian, X.; Li, S.; Chen, Y.; Jia, Z.; Liu, K.; Zhao, A. Zinc and iron concentrations in grain milling fractions through combined foliar applications of Zn and macronutrients. Field Crop. Res. 2016, 187, 135–141. [Google Scholar] [CrossRef]
- Chattha, M.U.; Hassan, M.U.; Khan, I.; Chattha, M.B.; Mahmood, A.; Chattha, M.U.; Nawaz, M.; Subhani, M.N.; Kharal, M.; Khan, S. Biofortification of Wheat Cultivars to Combat Zinc Deficiency. Front. Plant Sci. 2017, 8, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiztugay, E.; Ozfidan-Konakci, C.; Elbasan, F.; Yildiztugay, A.; Kucukoduk, M. Humic acid protects against oxidative damage induced by cadmium toxicity in wheat (Triticum aestivum) roots through water management and the antioxidant defence system. Bot. Serbica 2019, 43, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Ali, S.; Ali, B.; Adrees, M.; Arshad, M.; Hussain, A.; Zia ur Rehman, M.; Waris, A.A. Zinc and iron oxide nanoparti-cles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 2019, 214, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Ali, S.; Rizwan, M.; Zia ur Rehman, M.; Javed, M.R.; Imran, M.; Chatha, S.A.S.; Nazir, R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut. 2018, 242, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krantev, A.; Yordanova, R.; Janda, T.; Szalai, G.; Popova, L. Treatment with salicylic acid decreases the effect of cadmium on pho-tosynthesis in maize plants. J. Plant Physiol. 2008, 165, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Noman, A.; Aqeel, M. miRNA-based heavy metal homeostasis and plant growth Environ. Sci. Pollut. Res. 2017, 24, 10068–10082. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Jayaraj, M.; Manikandan, R.; Geetha, N.; Rene, E.R.; Sharma, N.C.; Sahi, S.V. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol. Biochem. 2017, 110, 59–69. [Google Scholar] [CrossRef]
- Noman, A.; Ali, Q.; Naseem, J.; Javed, M.T.; Kanwal, H.; Islam, W.; Aqeel, M.; Khalid, N.; Zafar, S.; Tayyeb, M.; et al. Sugar beet extract acts as a natural bio-stimulant for physio-biochemical attributes in water stressed wheat (Triticum aestivum L.). Acta Physiol. Plant. 2018, 40, 110. [Google Scholar] [CrossRef]
- El-Habbasha, E.S.; Badr, E.A.; Latef, E.A. Effect of zinc foliar application on growth characteristics and Grain Yield of some wheat varieties under Zn deficient sandy soil condition. Int. J. Chem. Res. 2015, 8, 452–458. [Google Scholar]
- Liu, D.Y.; Zhang, W.; Pang, L.L.; Zhang, Y.Q.; Wang, X.Z.; Liu, Y.M.; Chen, X.P.; Zhang, F.S.; Zou, C.Q. Effects of zinc application rate and zinc distri-bution relative to root distribution on grain yield and grain Zn concentration in wheat. Plant Soil 2017, 411, 167–178. [Google Scholar] [CrossRef]
- Ram, H.; Rashid, A.; Zhang, W.; Duarte, A.Á.; Phattarakul, N.; Simunji, S.; Kalayci, M.; Freitas, R.; Rerkasem, B.; Bal, R.S.; et al. Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil 2016, 403, 389–401. [Google Scholar] [CrossRef]
- Nikolic, M.; Nikolic, N.; Kostic, L.; Pavlovic, J.; Bosnic, P.; Stevic, N.; Savić, J.; Hristov, N. The assessment of soil availability and wheat grain status of zinc and iron in Serbia: Implications for human nutrition. Sci. Total Environ. 2016, 553, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Velu, G.; Ortiz-Monasterio, I.; Cakmak, I.; Hao, Y.; Singh, R. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014, 59, 365–372. [Google Scholar] [CrossRef]
Sources | Plant Height (cm) | Number of Productive Tillers | Spikelets Spike−1 | Spike Length (cm) | ||||
---|---|---|---|---|---|---|---|---|
Pots | Field | Pots | Field | Pots | Field | Pots | Field | |
Wheat varieties (Var) | ||||||||
Zincol | 88.1A | 78.7 | 13 | 10 | 44B | 17 | 9.8B | 9.9 |
Fakher-e-Bhakkar | 91.5A | 81.2 | 11 | 10 | 53A | 18 | 12A | 10.7 |
Faisalabad 2008 | 72.0B | 79.7 | 12 | 9 | 33C | 18 | 9.5B | 10.8 |
LSD (p ≤ 0.05) | 3.86 | ns | ns | ns | 1.53 | ns | 1.26 | ns |
Zinc levels (Zn) | ||||||||
Control | 84.2 | 81.4A | 12 | 9B | 43AB | 18AB | 10.7 | 10.8A |
4% | 83.5 | 76.9B | 12 | 10B | 42B | 19A | 9.7 | 10.7AB |
6% | 83.8 | 81.2A | 12 | 11A | 44A | 17A | 10.8 | 9.9B |
LSD (p ≤ 0.05) | ns | 2.08 | ns | 0.71 | 1.53 | 1.05 | ns | 0.81 |
Significance | ||||||||
Zinc levels | ns | * | ns | * | * | * | ns | * |
Varieties | * | ns | ns | ns | * | ns | * | ns |
Var × Zn | ns | ns | ns | * | ns | * | ns | * |
Sources | Grains Spike−1 | Root Length (cm) |
---|---|---|
Zincol | 39B | 13.7B |
Fakher-e-Bhakkar | 55A | 15.9A |
Faisalabad 2008 | 31B | 12.8B |
LSD (p ≤ 0.05) | 7.67 | 1.27 |
Control | 45 | 14.5A |
4% | 40 | 13.1B |
6% | 40 | 14.7A |
LSD (p ≤ 0.05) | ns | 1.27 |
Significance | ||
Zinc levels (Zn) | ns | * |
Varieties | * | * |
Var × Zn | ns | ns |
Sources | 1000-Seed Weight (g) | Biological Yield | Grain Yield | Straw Yield | ||||
---|---|---|---|---|---|---|---|---|
Pots | Field | Pots (g plant−1) | Field (Kg ha−1) | Pots (g plant−1) | Field (Kg ha−1) | Pots (g plant−1) | Field (Kg ha−1) | |
Wheat Varieties (var) | ||||||||
Zincol | 50.9 | 74.1 | 58.7B | 5307.5AB | 26.7B | 1695.2A | 32.9AB | 3612.3B |
Fakher-e-Bhakkar | 70.2 | 79.2 | 78.4A | 4987.1B | 43.5A | 1101.4C | 39.4A | 3885.7AB |
Faisalabad 2008 | 70.1 | 77.2 | 47.1C | 5551.0A | 27.8B | 1492.0B | 26.7B | 4058.0A |
LSD (p ≤ 0.05) | ns | ns | 2.60 | 356.3 | 1.98 | 93.3 | 7.40 | 294.87 |
Zinc levels (Zn) | ||||||||
Control | 70.0 | 77.9 | 57.7C | 4615.3B | 31.9B | 1416.1 | 33.4 | 3199.2B |
4% | 60.7 | 77.3 | 60.6B | 5561.2A | 31.4B | 1368.0 | 32.6 | 4193.2A |
6% | 60.6 | 75.3 | 66.0A | 5669.1A | 34.7A | 1505.6 | 33 | 4163.5A |
LSD (p ≤ 0.05) | ns | ns | 2.60 | 232.8 | 1.98 | ns | ns | 220.36 |
Significance | ||||||||
Zinc levels (Zn) | ns | ns | ** | * | ** | ns | ns | * |
Varieties | ns | ns | ** | * | ** | * | * | * |
Var × Zn | ns | ns | ** | * | ** | ns | ns | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sher, A.; Sarwar, B.; Sattar, A.; Ijaz, M.; Ul-Allah, S.; Hayat, M.T.; Manaf, A.; Qayyum, A.; Zaheer, A.; Iqbal, J.; et al. Exogenous Application of Zinc Sulphate at Heading Stage of Wheat Improves the Yield and Grain Zinc Biofortification. Agronomy 2022, 12, 734. https://doi.org/10.3390/agronomy12030734
Sher A, Sarwar B, Sattar A, Ijaz M, Ul-Allah S, Hayat MT, Manaf A, Qayyum A, Zaheer A, Iqbal J, et al. Exogenous Application of Zinc Sulphate at Heading Stage of Wheat Improves the Yield and Grain Zinc Biofortification. Agronomy. 2022; 12(3):734. https://doi.org/10.3390/agronomy12030734
Chicago/Turabian StyleSher, Ahmad, Bushra Sarwar, Abdul Sattar, Muhammad Ijaz, Sami Ul-Allah, Malik Tahir Hayat, Abdul Manaf, Abdul Qayyum, Ahmad Zaheer, Javed Iqbal, and et al. 2022. "Exogenous Application of Zinc Sulphate at Heading Stage of Wheat Improves the Yield and Grain Zinc Biofortification" Agronomy 12, no. 3: 734. https://doi.org/10.3390/agronomy12030734
APA StyleSher, A., Sarwar, B., Sattar, A., Ijaz, M., Ul-Allah, S., Hayat, M. T., Manaf, A., Qayyum, A., Zaheer, A., Iqbal, J., Askary, A. E., Gharib, A. F., Ismail, K. A., & Elesawy, B. H. (2022). Exogenous Application of Zinc Sulphate at Heading Stage of Wheat Improves the Yield and Grain Zinc Biofortification. Agronomy, 12(3), 734. https://doi.org/10.3390/agronomy12030734