Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Image Processing
2.3. Plum Stone Cultivar Discrimination Using Machine Learning Algorithms
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manco, R.; Basile, B.; Capuozzo, C.; Scognamiglio, P.; Forlani, M.; Rao, R.; Corrado, G. Molecular and Phenotypic Diversity of Traditional European Plum (Prunus domestica L.) Germplasm of Southern Italy. Sustainability 2019, 11, 4112. [Google Scholar] [CrossRef] [Green Version]
- Lammerich, S.; Kunz, A.; Damerow, L.; Blanke, M. Mechanical Crop Load Management (CLM) Improves Fruit Quality and Reduces Fruit Drop and Alternate Bearing in European Plum (Prunus domestica L.). Horticulturae 2020, 6, 52. [Google Scholar] [CrossRef]
- Navarro-Hoyos, M.; Arnáez-Serrano, E.; Quesada-Mora, S.; Azofeifa-Cordero, G.; Wilhelm-Romero, K.; Quirós-Fallas, M.I.; Alvarado-Corella, D.; Vargas-Huertas, F.; Sánchez-Kopper, A. Polyphenolic QTOF-ESI MS Characterization and the Antioxidant and Cytotoxic Activities of Prunus domestica Commercial Cultivars from Costa Rica. Molecules 2021, 26, 6493. [Google Scholar] [CrossRef]
- Panahirad, S.; Naghshiband-Hassani, R.; Bergin, S.; Katam, R.; Mahna, N. Improvement of Postharvest Quality of Plum (Prunus domestica L.) Using Polysaccharide-Based Edible Coatings. Plants 2020, 9, 1148. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Leme, B.d.O.; Santos, G.R.S.d.; Silva, J.V.d.; Nascimento, P.B.; Soares, C.T.; Fakhouri, F.M.; de Oliveira, R.A. Edible Films and Coatings Formulated with Arrowroot Starch as a Non-Conventional Starch Source for Plums Packaging. Polysaccharides 2021, 2, 373–386. [Google Scholar] [CrossRef]
- Silvan, J.M.; Michalska-Ciechanowska, A.; Martinez-Rodriguez, A.J. Modulation of Antibacterial, Antioxidant, and Anti-Inflammatory Properties by Drying of Prunus domestica L. Plum Juice Extracts. Microorganisms 2020, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Vitalis, F.; Tjandra Nugraha, D.; Aouadi, B.; Aguinaga Bósquez, J.P.; Bodor, Z.; Zaukuu, J.-L.Z.; Kocsis, T.; Zsom-Muha, V.; Gillay, Z.; Kovacs, Z. Detection of Monilia Contamination in Plum and Plum Juice with NIR Spectroscopy and Electronic Tongue. Chemosensors 2021, 9, 355. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants 2021, 10, 234. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M.; Soliven, A. Industrial by-products of plum Prunus domestica L. and Prunus cerasifera Ehrh. as potential biodiesel feedstock: Impact of variety. Ind. Crops Prod. 2017, 100, 77–84. [Google Scholar] [CrossRef]
- González-García, E.; Marina, M.L.; García, M.C. Plum (Prunus Domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. J. Funct. Foods 2014, 11, 428–437. [Google Scholar] [CrossRef]
- Plainfossé, H.; Burger, P.; Verger-Dubois, G.; Azoulay, S.; Fernandez, X. Design Methodology for the Development of a New Cosmetic Active Based on Prunus domestica L. Leaves Extract. Cosmetics 2019, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Pei, J.; Xiong, X.; Xue, F. Encapsulation of Grapefruit Essential Oil in Emulsion-Based Edible Film Prepared by Plum (Pruni Domesticae Semen) Seed Protein Isolate and Gum Acacia Conjugates. Coatings 2020, 10, 784. [Google Scholar] [CrossRef]
- Savic, I.; Savic Gajic, I.; Gajic, D. Physico-Chemical Properties and Oxidative Stability of Fixed Oil from Plum Seeds (Prunus domestica Linn.). Biomolecules 2020, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koklu, M.; Cinar, I.; Taspinar, Y.S. Classification of rice varieties with deep learning methods. Comput. Electron. Agric. 2021, 187, 106285. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Ropelewska, E. The use of seed texture features for discriminating different cultivars of stored apples. J. Stored Prod. Res. 2020, 88, 101668. [Google Scholar] [CrossRef]
- Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2021, e13955. [Google Scholar] [CrossRef]
- Sabanci, K.; Akkaya, M. Classification of Different Wheat Varieties by Using Data Mining Algorithms. IJISAE 2016, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Aslan, M.F.; Sabanci, K.; Durdu, A. Different wheat species classifier application of ANN and ELM. J. Multidiscip. Eng. Sci. Technol. 2017, 4, 8194–8198. [Google Scholar]
- Sabanci, K. Detection of sunn pest-damaged wheat grains using artificial bee colony optimization-based artificial intelligence techniques. J. Sci. Food Agric. 2020, 100, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.; Magalhães, S.A.; Pinho, T.; dos Santos, F.N.; Cunha, M. Benchmark of Deep Learning and a Proposed HSV Colour Space Models for the Detection and Classification of Greenhouse Tomato. Agronomy 2022, 12, 356. [Google Scholar] [CrossRef]
- Sadrnia, H.; Rajabipour, A.; Jafary, A.; Javadi, A.; Mostofi, Y. Classification and analysis of fruit shapes in long type watermelon using image processing. Int. J. Agric. Biol. 2007, 9, 68–70. [Google Scholar]
- Koklu, M.; Unlersen, M.F.; Ozkan, I.A.; Aslan, M.F.; Sabanci, K. A CNN-SVM study based on selected deep features for grapevine leaves classification. Measurement 2022, 188, 110425. [Google Scholar] [CrossRef]
- Szczypinski, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Meth. Prog. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; The University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 4th Ed. 2016. Available online: https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf (accessed on 14 February 2022).
- Witten, I.H.; Frank, E. Data mining. In Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning. Agriculture 2021, 11, 1212. [Google Scholar] [CrossRef]
- Ropelewska, E.; Rutkowski, K.P. Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures. Eur. Food Res. Technol. 2021, 247, 2371–2377. [Google Scholar] [CrossRef]
- Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Ropelewska, E. Classification of the pits of different sour cherry cultivars based on the surface textural features. J. Saudi Soc. Agric. Sci. 2021, 20, 52–57. [Google Scholar] [CrossRef]
- Ropelewska, E.; Cai, X.; Zhang, Z.; Sabanci, K.; Aslan, M.F. Benchmarking Machine Learning Approaches to Evaluate the Cultivar Differentiation of Plum (Prunus domestica L.) Kernels. Agriculture 2022, 12, 285. [Google Scholar] [CrossRef]
- Harman, R. Multivariate Statistical Analysis, Selected Lecture Notes. Available online: http://www.iam.fmph.uniba.sk/ospm/Harman/VSAp.pdf (accessed on 9 January 2022).
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics Series; Jordan, M., Kleinberg, J., Schölkopf, B., Eds.; Springer Science and Business Media, LLC: New York, NY, USA, 2006. [Google Scholar]
Classifier | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | MCC | F-Measure | Kappa Statistic | Mean Absolute Error | Root Mean Squared Error | ||
---|---|---|---|---|---|---|---|---|---|---|---|
‘Emper’ | ‘Kalipso’ | ‘Polinka’ | |||||||||
Lazy. IBk | 97 | 3 | 0 | ‘Emper’ | 96.67 | 0.933 | 0.926 | 0.951 | 0.95 | 0.0247 | 0.1369 |
3 | 97 | 0 | ‘Kalipso’ | 0.970 | 0.955 | 0.970 | |||||
4 | 0 | 96 | ‘Polinka’ | 1.000 | 0.970 | 0.980 | |||||
Functions. QDA | 96 | 1 | 3 | ‘Emper’ | 95.33 | 0.906 | 0.897 | 0.932 | 0.93 | 0.031 | 0.1756 |
3 | 97 | 0 | ‘Kalipso’ | 0.990 | 0.970 | 0.980 | |||||
7 | 0 | 93 | ‘Polinka’ | 0.969 | 0.925 | 0.949 | |||||
Functions. LDA | 93 | 1 | 6 | ‘Emper’ | 95 | 0.930 | 0.895 | 0.930 | 0.925 | 0.0378 | 0.1692 |
2 | 98 | 0 | ‘Kalipso’ | 0.980 | 0.970 | 0.980 | |||||
5 | 1 | 94 | ‘Polinka’ | 0.940 | 0.910 | 0.940 | |||||
Trees. Random Forest | 93 | 2 | 5 | ‘Emper’ | 94.67 | 0.912 | 0.881 | 0.921 | 0.92 | 0.1136 | 0.1918 |
1 | 99 | 0 | ‘Kalipso’ | 0.980 | 0.978 | 0.985 | |||||
8 | 0 | 92 | ‘Polinka’ | 0.948 | 0.902 | 0.934 |
Classifier | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | MCC | F-Measure | Kappa Statistic | Mean Absolute Error | Root Mean Squared Error | ||
---|---|---|---|---|---|---|---|---|---|---|---|
‘Emper’ | ‘Kalipso’ | ‘Polinka’ | |||||||||
Color channel R | |||||||||||
Functions. QDA | 88 | 5 | 7 | ‘Emper’ | 90.67 | 0.863 | 0.806 | 0.871 | 0.86 | 0.0617 | 0.2302 |
4 | 94 | 2 | ‘Kalipso’ | 0.949 | 0.917 | 0.945 | |||||
10 | 0 | 90 | ‘Polinka’ | 0.909 | 0.857 | 0.905 | |||||
Functions. LDA | 86 | 11 | 3 | ‘Emper’ | 88 | 0.804 | 0.743 | 0.831 | 0.82 | 0.0921 | 0.2350 |
3 | 97 | 0 | ‘Kalipso’ | 0.890 | 0.892 | 0.928 | |||||
18 | 1 | 81 | ‘Polinka’ | 0.964 | 0.835 | 0.880 | |||||
Color channel G | |||||||||||
Functions. QDA | 96 | 1 | 3 | ‘Emper’ | 94.67 | 0.889 | 0.884 | 0.923 | 0.92 | 0.0373 | 0.1747 |
3 | 97 | 0 | ‘Kalipso’ | 0.990 | 0.970 | 0.980 | |||||
9 | 0 | 91 | ‘Polinka’ | 0.968 | 0.910 | 0.938 | |||||
Functions. LDA | 88 | 4 | 8 | ‘Emper’ | 90.67 | 0.854 | 0.799 | 0.867 | 0.86 | 0.0710 | 0.2103 |
5 | 95 | 0 | ‘Kalipso’ | 0.950 | 0.925 | 0.950 | |||||
10 | 1 | 89 | ‘Polinka’ | 0.918 | 0.857 | 0.904 | |||||
Color channel B | |||||||||||
Functions. QDA | 96 | 1 | 3 | ‘Emper’ | 93.33 | 0.857 | 0.858 | 0.906 | 0.90 | 0.0489 | 0.2012 |
4 | 96 | 0 | ‘Kalipso’ | 0.990 | 0.962 | 0.975 | |||||
12 | 0 | 88 | ‘Polinka’ | 0.967 | 0.887 | 0.921 | |||||
Functions. LDA | 83 | 7 | 10 | ‘Emper’ | 90.67 | 0.883 | 0.788 | 0.856 | 0.86 | 0.0700 | 0.2126 |
3 | 97 | 0 | ‘Kalipso’ | 0.933 | 0.926 | 0.951 | |||||
8 | 0 | 92 | ‘Polinka’ | 0.902 | 0.866 | 0.911 |
Classifier | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | MCC | F-Measure | Kappa Statistic | Mean Absolute Error | Root Mean Squared Error | ||
---|---|---|---|---|---|---|---|---|---|---|---|
‘Emper’ | ‘Kalipso’ | ‘Polinka’ | |||||||||
Color channel L | |||||||||||
functions. QDA | 94 | 2 | 4 | ‘Emper’ | 93.67 | 0.879 | 0.861 | 0.908 | 0.905 | 0.0423 | 0.1933 |
7 | 93 | 0 | ‘Kalipso’ | 0.979 | 0.932 | 0.954 | |||||
6 | 0 | 94 | ‘Polinka’ | 0.959 | 0.925 | 0.949 | |||||
functions. LDA | 89 | 5 | 6 | ‘Emper’ | 93.33 | 0.918 | 0.857 | 0.904 | 0.90 | 0.0587 | 0.1884 |
2 | 98 | 0 | ‘Kalipso’ | 0.942 | 0.941 | 0.961 | |||||
6 | 1 | 93 | ‘Polinka’ | 0.939 | 0.902 | 0.935 | |||||
Color channel a | |||||||||||
functions. QDA | 87 | 4 | 9 | ‘Emper’ | 88.67 | 0.813 | 0.758 | 0.841 | 0.83 | 0.0797 | 0.2432 |
10 | 89 | 1 | ‘Kalipso’ | 0.957 | 0.887 | 0.922 | |||||
10 | 0 | 90 | ‘Polinka’ | 0.900 | 0.850 | 0.900 | |||||
functions. LDA | 88 | 9 | 3 | ‘Emper’ | 88.67 | 0.830 | 0.779 | 0.854 | 0.83 | 0.1034 | 0.2376 |
5 | 95 | 0 | ‘Kalipso’ | 0.880 | 0.869 | 0.913 | |||||
13 | 4 | 83 | ‘Polinka’ | 0.965 | 0.850 | 0.892 | |||||
Color channel b | |||||||||||
functions. QDA | 89 | 7 | 4 | ‘Emper’ | 81 | 0.712 | 0.679 | 0.791 | 0.715 | 0.1251 | 0.3142 |
13 | 85 | 2 | ‘Kalipso’ | 0.850 | 0.775 | 0.850 | |||||
23 | 8 | 69 | ‘Polinka’ | 0.920 | 0.719 | 0.789 | |||||
functions. LDA | 75 | 12 | 13 | ‘Emper’ | 79.67 | 0.815 | 0.680 | 0.781 | 0.695 | 0.1575 | 0.2967 |
8 | 85 | 7 | ‘Kalipso’ | 0.780 | 0.715 | 0.813 | |||||
9 | 12 | 79 | ‘Polinka’ | 0.798 | 0.692 | 0.794 |
Classifier | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | MCC | F-Measure | Kappa Statistic | Mean Absolute Error | Root Mean Squared Error | ||
---|---|---|---|---|---|---|---|---|---|---|---|
‘Emper’ | ‘Kalipso’ | ‘Polinka’ | |||||||||
Color channel X | |||||||||||
Functions. QDA | 95 | 1 | 4 | ‘Emper’ | 92 | 0.833 | 0.830 | 0.888 | 0.88 | 0.0561 | 0.2063 |
5 | 95 | 0 | ‘Kalipso’ | 0.990 | 0.955 | 0.969 | |||||
14 | 0 | 86 | ‘Polinka’ | 0.956 | 0.864 | 0.905 | |||||
Functions. LDA | 85 | 8 | 7 | ‘Emper’ | 88.67 | 0.825 | 0.755 | 0.837 | 0.83 | 0.0924 | 0.2335 |
7 | 93 | 0 | ‘Kalipso’ | 0.912 | 0.881 | 0.921 | |||||
11 | 1 | 88 | ‘Polinka’ | 0.926 | 0.856 | 0.903 | |||||
Color channel Y | |||||||||||
Functions. QDA | 90 | 2 | 8 | ‘Emper’ | 90 | 0.818 | 0.783 | 0.857 | 0.85 | 0.0683 | 0.2267 |
7 | 93 | 0 | ‘Kalipso’ | 0.979 | 0.932 | 0.954 | |||||
13 | 0 | 87 | ‘Polinka’ | 0.916 | 0.841 | 0.892 | |||||
Functions. LDA | 83 | 8 | 9 | ‘Emper’ | 89.67 | 0.856 | 0.766 | 0.843 | 0.845 | 0.0856 | 0.2340 |
5 | 95 | 0 | ‘Kalipso’ | 0.922 | 0.903 | 0.936 | |||||
9 | 0 | 91 | ‘Polinka’ | 0.910 | 0.865 | 0.910 | |||||
Color channel Z | |||||||||||
Functions. QDA | 84 | 6 | 10 | ‘Emper’ | 89 | 0.832 | 0.753 | 0.836 | 0.835 | 0.0770 | 0.2198 |
7 | 93 | 0 | ‘Kalipso’ | 0.939 | 0.902 | 0.935 | |||||
10 | 0 | 90 | ‘Polinka’ | 0.900 | 0.850 | 0.900 | |||||
Functions. LDA | 91 | 3 | 6 | ‘Emper’ | 87.67 | 0.765 | 0.742 | 0.831 | 0.815 | 0.0784 | 0.2650 |
8 | 92 | 0 | ‘Kalipso’ | 0.968 | 0.917 | 0.944 | |||||
20 | 0 | 80 | ‘Polinka’ | 0.930 | 0.803 | 0.860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E. Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms. Agronomy 2022, 12, 762. https://doi.org/10.3390/agronomy12040762
Ropelewska E. Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms. Agronomy. 2022; 12(4):762. https://doi.org/10.3390/agronomy12040762
Chicago/Turabian StyleRopelewska, Ewa. 2022. "Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms" Agronomy 12, no. 4: 762. https://doi.org/10.3390/agronomy12040762
APA StyleRopelewska, E. (2022). Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms. Agronomy, 12(4), 762. https://doi.org/10.3390/agronomy12040762