Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau
Abstract
:1. Introduction
- (a)
- Labile P, which is considered to supply the short-term P demand of plants, including Resin-P, NaHCO3-Pi and Po;
- (b)
- Moderately labile P, which can be transformed into labile P forms, including NaOH-Pi and Po;
- (c)
- Stable P, including HCl-P and residual-P, which hardly contributes to bioavailable P.
2. Materials and Methods
2.1. Soil Samples
2.2. Hedley Fractionation
2.3. Near-Infrared Spectroscopy
3. Results
3.1. Hedley P Fractions
3.2. NIRS Models
4. Discussion
4.1. Influence of Nutrient Amendments on Soil P Pools
4.2. NIRS Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correll, D.L. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Renneson, M.; Barbieux, S.; Colinet, G. Indicators of phosphorus status in soils: Significance and relevance for crop soils in southern Belgium. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 257–272. [Google Scholar]
- Hou, E.; Wen, D.; Jiang, L.; Luo, X.; Kuang, Y.; Lu, X.; Chen, C.; Allen, K.T.; He, X.; Huang, X.; et al. Latitudinal patterns of terrestrial phosphorus limitation over the blobe. Ecol. Lett. 2021, 24, 1420–1431. [Google Scholar] [CrossRef]
- Augusto, L.; Achat, D.L.; Jonard, M.; Vidal, D.; Ringeval, B. Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Chang. Biol. 2017, 23, 3808–3824. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; Van Der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-Induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.P.; Law, R.M.; Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 2010, 7, 2261–2282. [Google Scholar] [CrossRef] [Green Version]
- Niederberger, J.; Todt, B.; Boča, A.; Nitschke, R.; Kohler, M.; Kühn, P.; Bauhus, J. Use of near-infrared spectroscopy to assess phosphorus fractions of different plant availability in forest soils. Biogeosciences 2015, 12, 3415–3428. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Oelmann, Y.; Schickhoff, U.; Böhner, J.; Scholten, T. Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma 2017, 291, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; An, N.; Zong, N.; He, Y.; Shi, P.; Zhang, J.; He, N. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biol. Biochem. 2018, 116, 224–236. [Google Scholar] [CrossRef]
- He, D.; Xiang, X.; He, J.-S.; Wang, C.; Cao, G.; Adams, J.; Chu, H. Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biol. Fertil. Soils 2016, 52, 1059–1072. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, P.; Zong, N.; Fu, G.; Shen, Z.; Zhang, X.; Song, M. Climatic patterns modulate ecosystem and soil respiration responses to fertilization in an alpine meadow on the Tibetan Plateau, China. Ecol. Res. 2014, 30, 3–13. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Li, W.; Wu, J.; Chen, Y.; Liu, W. Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow rivers, Tibetan Plateau of China. J. Arid Land 2016, 8, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, L.; Liu, J.; Zhu, H.; Zhong, Z. Grassland ecology in China: Perspectives and challenges. Front. Agric. Sci. Eng. 2018, 5, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Baumann, F.; He, J.S.; Schmidt, K.; Kühn, P.; Scholten, T. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Glob. Chang. Biol. 2019, 15, 3001–3017. [Google Scholar] [CrossRef]
- Baumann, F.; Schmidt, K.; Dörfer, C.; He, J.S.; Scholten, T.; Kühn, P. Pedogenesis, permafrost, substrate and topography: Plot and landscape scale interrelations of weathering processes on the central-eastern Tibetan Plateau. Geoderma 2014, 226–227, 300–316. [Google Scholar] [CrossRef]
- Yang, X.; Post, W.M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 2011, 8, 2907–2916. [Google Scholar] [CrossRef] [Green Version]
- Du, E.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Hou, E.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Yang, X.; Ren, F.; Zhou, H.; Zhu, B.; He, J.S. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. Appl. Soil Ecol. 2016, 107, 205–213. [Google Scholar] [CrossRef]
- Luo, R.; Fan, J.; Wang, W.; Luo, J.; Kuzyakov, Y.; He, J.S.; Chu, H.; Ding, W. Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau. Sci. Total Environ. 2019, 650, 303–312. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Richards, K. Impact of Meadow Degradation on Soil Water Status and Pasture Management-A Case Study in Tibet. Land Degrad. Dev. 2015, 26, 468–479. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Jassens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Chang. Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodivers. Conserv. 2016, 25, 2401–2420. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Smith, P.; Tang, Y.; Chen, A.; Ji, C.; Hu, H.; Rao, S.; Tan, K.; He, J.S. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob. Chang. Biol. 2009, 15, 2723–2729. [Google Scholar] [CrossRef]
- Geng, Y.; Baumann, F.; Song, C.; Zhang, M.; Shi, Y.; Kühn, P.; Scholten, T.; He, J.-S. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands. Sci. Rep. 2017, 7, srep43524. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; He, J.S.; Chen, L.; Wang, L. No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Sci. Total Environ. 2018, 625, 1361–1368. [Google Scholar] [CrossRef]
- Kruse, J.; Abraham, M.; Amelung, W.; Baum, C.; Bol, R.; Kühn, O.; Lewandowski, H.; Niederberger, J.; Oelmann, Y.; Rüger, C.; et al. Innovative methods in soil phosphorus research: A review. J. Plant. Nutr. Soil Sci. 2015, 178, 43–88. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; (No. 939); US Department of Agriculture: Washington, DC, USA, 1954.
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J. Characterization of Available P by Sequential Extraction. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; Chapter 25; pp. 293–306. [Google Scholar] [CrossRef]
- Johnson, A.H.; Frizano, J.; Vann, D.R. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 2013, 135, 487–499. [Google Scholar] [CrossRef]
- Lajtha, K.; Driscoll, C.T.; Jarrell, W.M.; Elliott, E.T. Soil phosphorus: Characterization and total element analysis. Stand. Soil Methods Long Term Ecol. Res. 1999, 7, 115–143. [Google Scholar]
- Bogrekci, I.; Lee, W.S. Improving phosphorus sensing by eliminating soil particle size effect in spectral measurement. Am. Soc. Agric. Eng. 2005, 48, 1971–1978. [Google Scholar]
- Gruselle, M.C.; Bauhus, J. Assessment of the species composition of forest floor horizons in mixed spruce-beech stands by Near Infrared Reflectance Spectroscopy (NIRS). Soil Biol. Biochem. 2010, 42, 1347–1354. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef]
- Galasso, H.L.; Callier, M.D.; Bastianelli, D.; Blancheton, J.P.; Aliaume, C. The potential of near infrared spectroscopy (NIRS) to measure the chemical composition of aquaculture solid waste. Aquaculture 2017, 476, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, R. Effect of soil moisture and particle size on soil total phosphorus estimation by near-infrared spectroscopy. Pol. J. Environ. Stud. 2017, 26, 395–401. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Suonan, J.; Classen, A.T.; Zhang, Z.; He, J.S. Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Funct. Ecol. 2017, 31, 2147–2156. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.; Song, W.; Chen, L.; Mi, Z.; Zhang, Z.; Zhu, W.; Zhou, H.; Cao, G.; He, J.-S. Phosphorus does not alleviate the negative effect of nitrogen enrichment on legume performance in an alpine grassland. J. Plant Ecol. 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alt, F.; Oelmann, Y.; Herold, N.; Schrumpf, M.; Wilcke, W. Phosphorus partitioning in grassland and forest soils of Germany as related to land-use type, management intensity, and land use-related pH. J. Plant. Nutr. Soil Sci. 2011, 174, 195–209. [Google Scholar] [CrossRef]
- Pätzold, S.; Hejcman, M.; Barej, J.; Schellberg, J. Soil phosphorus fractions after seven decades of fertilizer application in the Rengen Grassland Experiment. J. Plant. Nutr. Soil Sci. 2013, 176, 910–920. [Google Scholar] [CrossRef]
- Stolter, C.; Julkunen-tiitto, R.; Ganzhorn, U. Application of near infrared reflectance spectroscopy (NIRS) to assess some properties of a sub-arctic ecosystem. Basic Appl. Ecol. 2006, 7, 167–187. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trend. Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Jabadi, S.H.; Mouazen, A.M. Data Fusion of XRF and Vis-NIR using Outer Product Analysis, Granger-Ramanathan, and Least Squares for Prediction of Key Soil Attributes. Remote Sens. 2021, 13, 2023. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Hu, W.; Qu, M.; Li, W.; Zhang, C.; Kang, J.; Hong, Y.; Chen, Y.; Huang, B. Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy. Geoderma 2020, 363, 114163. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques. Catena 2017, 151, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Mao, Q.; Zheng, M.; Mo, J. Responses of Foliar Nutrient Status and Stoichiometry to Nitrogen Addition in Different Ecosystems: A Meta-analysis. J. Geophys. Res. Biogeosci. 2020, 125, 1–16. [Google Scholar] [CrossRef]
- Midolo, G.; Alkemade, R.; Schipper, A.M.; Benítez-López, A.; Perring, M.P.; De Vries, W. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Glob. Ecol. Biogeogr. 2019, 28, 398–413. [Google Scholar] [CrossRef] [Green Version]
- Sardans, J.; Grau, O.; Chen, H.Y.H.; Janssens, I.A.; Ciais, P.; Piao, S.; Peñuelas, J. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Chang. Biol. Bioenergy 2017, 23, 3849–3856. [Google Scholar] [CrossRef]
- Dietrich, K.; Spohn, M.; Villamagua, M.; Oelmann, Y. Nutrient addition affects net and gross mineralization of phosphorus in the organic layer of a tropical montane forest. Biogeochemistry 2017, 136, 223–236. [Google Scholar] [CrossRef]
- Fan, Y.; Zhong, X.; Lin, F.; Liu, C.; Yang, L.; Wang, M.; Chen, G.; Chen, Y.; Yang, Y. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma 2019, 337, 246–255. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, X.; Su, F.; Li, Z.; Wang, Y.; Wei, Y.; Ji, Y.; Yang, Y.; Zhou, X.; Guo, H.; et al. Long-Term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Sci. Total Environ. 2018, 625, 440–448. [Google Scholar] [CrossRef]
- Liu, H.; Wang, R.; Wang, H.; Cao, Y.; Dijkstra, F.A.; Shi, Z.; Cai, J.; Wang, Z.; Zou, H.; Jiang, Y. Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe. Biogeosciences 2019, 16, 4293–4306. [Google Scholar] [CrossRef] [Green Version]
- Schleuss, P.M.; Widdig, M.; Heintz-Buschart, A.; Kirkman, K.; Spohn, M. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses. Ecology 2020, 101, 1–14. [Google Scholar] [CrossRef]
- Lambers, H.; Shane, M.W.; Cramer, M.D.; Pearse, S.J.; Veneklaas, E.J. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann. Bot. 2006, 98, 693–713. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.M.; Johnson, A.H.; Frizano, J.; Vann, D.R.; Zarin, D.J.; Joshi, A. Phosphorus fractions in montane forest soils of the Cordillera de Piuchue, Chile: Biogeochemical implications. Plant Soil. 1999, 211, 139–148. [Google Scholar] [CrossRef]
- Wu, Y.H.; Prietzel, J.; Zhou, J.; Bing, H.J.; Luo, J.; Yu, D.; Sun, S.Q.; Liang, J.H.; Sun, H.Y. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fractionation technique in a glacier foreland chronosequence in Gongga Mountain, Southwestern China. Sci. China Earth Sci. 2014, 57, 1860–1868. [Google Scholar] [CrossRef]
- Hou, E.; Tan, X.; Heenan, M.; Wen, D. A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Sci. Data 2018, 5, 180166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negassa, W.; Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant. Nutr. Soil Sci. 2009, 172, 305–325. [Google Scholar] [CrossRef]
- Klotzbücher, A.; Kaiser, K.; Klotzbücher, T.; Wolff, M.; Mikutta, R. Testing mechanisms underlying the Hedley sequential phosphorus extraction of soils. J. Plant. Nutr. Soil Sci. 2019, 182, 570–577. [Google Scholar] [CrossRef]
- Chodak, M. Application of near infrared spectroscopy for analysis of Soils, litter and Plant materials. Pol. J. Environ. Stud. 2008, 17, 631–642. [Google Scholar]
- Cécillon, L.; Barthès, B.G.; Gomez, C.; Ertlen, D.; Genot, V.; Hedde, M.; Stevens, A.; Brun, J.J. Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur. J. Soil Sci. 2009, 60, 770–784. [Google Scholar] [CrossRef] [Green Version]
- Richter, D.D.; Allen, H.L.; Li, J.; Markewitz, D.; Raikes, J. Bioavailability of slowly cycling soil phosphorus: Major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 2006, 150, 259–271. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations. Eur. J. Soil Sci. 2015, 66, 555–565. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; Van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. Particle size effects on soil reflectance explained by an analytical radiative transfer model. Remote Sens. Environ. 2018, 210, 375–386. [Google Scholar] [CrossRef]
- Chang, C.; Laird, D.; Mausbach, M.J. Near-Infrared Reflectance Spectroscopy—Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta Bioenerget. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, B.; Viscarra-Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectorscopy in Soil Science. In Advances in Agronomy; Sparks, D.L., Ed.; Academica Press: Burlington, MA, USA, 2010; Volume 107, Chapter 5; pp. 163–215. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.F.; Schlesinger, W.H. A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 1995, 64, 197–214. [Google Scholar] [CrossRef]
- Cross, A.F.; Schlesinger, W.H. Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 2001, 52, 155–172. [Google Scholar] [CrossRef]
- Reijneveld, J.A.; van Oostrum, M.J.; Brolsma, K.M.; Fletcher, D.; Oenema, O. Empower Innovations in Routine Soil Testing. Agronomy 2022, 12, 191. [Google Scholar] [CrossRef]
- Dieter, D.; Elsenbeer, H.; Turner, B.L. Phosphorus fractionation in lowland tropical rainforest soils in central Panama. Catena 2010, 82, 118–125. [Google Scholar] [CrossRef]
- Lilienfein, J.; Wilcke, W.; Ayarza, M.A.; Vilela, L.; Do Carmo Lima, S.; Zech, W. Chemical fractionation of phosphorus, sulphur, and molybdenum in Brazilian savannah Oxisols under different land use. Geoderma 2000, 96, 31–46. [Google Scholar] [CrossRef]
- McDowell, R.W.; Stewart, I. The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: Sequential extraction and 31P NMR. Geoderma 2006, 130, 176–189. [Google Scholar] [CrossRef]
- Schmitt, D.E.; Comin, J.J.; Gatiboni, L.C.; Tiecher, T.; Lorensini, F.; de Melo, G.W.B.; Girotto, E.; Guardini, R.; Heinzen, J.; Brunetto, G. Phosphorus fractions in sandy soils of vineyards in southern Brazil. Rev. Bras. Cienc. Solo 2013, 37, 472–481. [Google Scholar] [CrossRef]
Treatments | Fertilizer | Amount (ha−1 year−1) |
---|---|---|
Control | No | 0 |
P | Triple Superphosphate (TSP) | 50 kg |
NP | Carbamide CO(NH2)2 + TSP | 50 kg P + 100 kg N |
N25 | Carbamide CO(NH2)2 | 25 kg |
N50 | Carbamide CO(NH2)2 | 50 kg |
N100 | Carbamide CO(NH2)2 | 100 kg |
P Pools and Fractions | Extraction Procedure [9,43] | Properties and Bonding Forms of Pi and Po in the Fractions [45] | |
---|---|---|---|
Labile P | Resin-P | Anion-exchange resin in resin bag, 0.5 M HCl | Mainly Pi, marginal Po; biologically most available P form; adsorbed on the surface of crystalline compounds. |
NaHCO3-P | 0.5 M NaHCO3, pH 8.5 | Highly labile P; Pi likely to be plant-available, associated with Fe and Al oxides; Po easily mineralized. | |
Moderate P | NaOH-P | 0.1 M NaOH | Moderately labile P; Pi associated with Fe and Al oxides; Po involved in slow transformation processes. |
Stable P | HClconc.-P | HClconc. 85 °C | Very stable Pi; covers P in primary minerals; Po in very stable pools, eventually also derived from particulate organic matter. |
Residual-P | 0.5 M H2SO4 | Highly resistant and occluded P forms. |
Fractions | Labile P (µg g−1) | Moderate P (µg g−1) | Stable P (µg g−1) | ||||
---|---|---|---|---|---|---|---|
Treatments | Resin-P | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | HClconc.-P | Residual-P |
0–10 cm | |||||||
Control | 20.9 (1.1) | 19.0 (1.9) | 21.4 (2.1) | 28.1 (2.4) | 177.5 (2.5) | 219.0 (6.8) | 86.8 (3.6) |
P | 183.8 (22.3) *** | 112.4 (8.5) *** | 68.5 (6.7) *** | 82.1 (7.5) *** | 181.2 (4.4) | 332.3 (14.7) *** | 80.5 (1.9) * |
NP | 139.5 (12.7) *** | 96.4 (5.4) *** | 49.4 (7.7) ** | 84.0 (3.6) *** | 196.2 (5.0) ** | 326.1 (19.3) *** | 83.5 (3.8) |
N25 | 19.1 (1.7) | 23.4 (2.4) | 24.0 (3.4) | 28.1 (2.0) | 178.6 (3.7) | 252.9 (18.9) | 85.0 (2.9) |
N50 | 14.8 (3.0) | 23.2 (1.8) | 25.5 (3.0) | 27.1 (2.3) | 172.8 (4.5) | 230.2 (7.4) | 79.3 (3.3) |
N100 | 13.6 (1.9) ** | 20.5 (2.3) | 21.4 (2.6) | 27.6 (2.3) | 179.4 (8.4) | 230.8 (8.0) | 83.6 (3.0) |
10–20 cm | |||||||
Control | 11.1 (1.1) | 6.6 (0.7) | 14.4 (1.2) | 11.5 (0.5) | 142.8 (4.1) | 203.2 (5.7) | 81.0 (3.9) |
P | 31.2 (5.7) ** | 24.0 (5.3) * | 24.2 (4.3) | 20.9 (3.2) * | 150.0 (7.7) | 257.3 (16.2) * | 75.8 (2.5) |
NP | 29.3 (2.6) *** | 21.4 (2.1) *** | 20.0 (2.3) * | 24.8 (1.9) *** | 166.3 (5.8) ** | 222.8 (7.1) * | 72.8 (6.8) |
N25 | 12.0 (1.4) | 9.0 (1.0) | 16.5 (1.5) | 12.4 (1.6) | 158.7 (5.7) * | 232.7 (14.9) | 74.7 (1.7) * |
N50 | 10.8 (1.2) | 9.3 (0.7) ** | 15.0 (1.4) | 12.1 (0.8) | 143.2 (4.8) | 227.5 (8.3) * | 75.5 (1.8) * |
N100 | 10.5 (0.8) | 8.3 (0.8) | 14.0 (0.9) | 12.7 (1.1) | 153.4 (6.0) | 215.6 (7.8) | 74.7 (2.1) |
20–40 cm | |||||||
Control | 8.6 (1.1) | 2.7 (0.4) | 8.8 (0.9) | 4.6 (0.3) | 96.2 (4.2) | 273.8 (10.2) | 67.1 (2.3) |
P | 15.5 (2.3) * | 10.0 (2.0) ** | 14.1 (1.6) * | 7.2 (1.2) | 102.2 (8.1) | 298.5 (23.1) | 68.6 (3.5) |
NP | 13.7 (0.9) *** | 8.4 (0.7) *** | 12.9 (1.4) * | 7.0 (0.6) ** | 106.3 (7.4) | 269.4 (12.6) | 68.0 (1.8) |
N25 | 7.6 (1.0) | 4.2 (0.5) * | 10.0 (1.4) | 4.7 (0.7) | 92.7 (9.4) | 288.6 (20.4) | 68.3 (2.4) |
N50 | 9.0 (1.1) | 4.7 (0.9) | 10.9 (1.4) | 5.1 (0.5) | 93.9 (7.4) | 274.9 (16.4) | 69.9 (3.4) |
N100 | 8.2 (1.4) | 3.7 (0.3) * | 9.2 (0.9) | 5.5 (0.9) | 93.3 (7.2) | 283.5 (12.0) | 65.3 (2.6) |
40–70 cm | |||||||
Control | 7.9 (0.9) | 1.4 (0.3) | 3.0 (1.1) | 3.1 (0.3) | 28.9 (8.1) | 408.8 (20.3) | 43.7 (3.5) |
P | 9.7 (0.8) | 5.3 (0.7) *** | 4.8 (0.8) | 3.9 (0.4) | 34.4 (5.2) | 403.8 (11.0) | 48.2 (2.7) |
NP | 9.4 (0.6) | 3.7 (0.7) * | 4.7 (1.3) | 3.5 (0.6) | 57.0 (20.6) | 395.4 (15.1) | 51.4 (1.9) ** |
N25 | 6.0 (0.9) | 2.6 (0.5) | 3.7 (0.7) | 2.7 (0.3) | 36.8 (14.0) | 398.3 (19.6) | 48.4 (3.0) |
N50 | 6.4 (1.0) | 1.6 (0.4) | 2.0 (0.8) | 2.9 (0.3) | 19.6 (3.7) | 437.7 (6.6) ** | 39.5 (1.7) * |
N100 | 6.5 (1.1) | 1.6 (0.3) | 3.4 (0.8) | 3.0 (0.3) | 28.6 (3.7) | 420.0 (11.6) | 45.3 (2.6) |
P Pools | Labile P | Moderate P | Stable P | |||||
---|---|---|---|---|---|---|---|---|
P Fractions and Treatments | Resin-P | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | HClconc.-P | Residual-P | |
Control | R2 | 0.52 | 0.82 | 0.67 | 0.86 | 0.95 | 0.79 | 0.67 |
RPD | 1.44 | 2.33 | 1.73 | 1.99 | 4.43 | 2.24 | 1.74 | |
Bias | 0.137 | 0.023 | 0.344 | 0.605 | 0.517 | 8.15 | −0.417 | |
RMSECV | 4.09 | 3.21 | 4.47 | 3.97 | 12.9 | 39.7 | 10.9 | |
RPIQ | 1.5 | 3.1 | 2.1 | 3.4 | 5.9 | 2.7 | 1.9 | |
P | R2 | 0.08 | 0.42 | 0.43 | 0.53 | 0.86 | 0.06 | 0.66 |
RPD | 1.04 | 1.32 | 1.33 | 1.46 | 2.74 | 0.99 | 1.71 | |
Bias | −2.3 | −0.164 | 0.096 | 0.0252 | −3.94 | 8.15 | −0.268 | |
RMSECV | 74.9 | 34.6 | 20.2 | 23 | 21.5 | 70.5 | 8.36 | |
RPIQ | 0.9 | 1.3 | 1.1 | 1.5 | 3.5 | 0.7 | 2.0 | |
NP | R2 | 0.59 | 0.62 | 0.37 | 0.74 | 0.75 | 0.40 | 0.26 |
RPD | 1.57 | 1.63 | 1.26 | 1.97 | 2.04 | 1.29 | 1.17 | |
Bias | 0.33 | 0.397 | 0.528 | 0.414 | 0.865 | −0.989 | −0.668 | |
RMSECV | 35.7 | 23.5 | 16 | 16.6 | 30.4 | 57.8 | 13.7 | |
RPIQ | 2.1 | 2.5 | 1.6 | 2.9 | 3.0 | 1.0 | 1.4 | |
N25 | R2 | 0.48 | 0.81 | 0.54 | 0.87 | 0.91 | 0.70 | 0.80 |
RPD | 1.39 | 2.28 | 1.48 | 2.75 | 3.35 | 1.83 | 2.22 | |
Bias | −0.045 | −0.15 | 0.3 | −0.347 | −4.45 | 1.49 | −0.179 | |
RMSECV | 4.43 | 4 | 6.3 | 3.9 | 18.8 | 43.9 | 6.83 | |
RPIQ | 1.2 | 2.1 | 1.9 | 3.3 | 3.8 | 1.5 | 2.4 | |
N50 | R2 | 0.02 | 0.65 | 0.57 | 0.77 | 0.91 | 0.82 | 0.69 |
RPD | 0.92 | 1.69 | 1.53 | 2.1 | 3.35 | 2.36 | 1.8 | |
Bias | 0.422 | 0.209 | 0.294 | 0.893 | 2.02 | 5.24 | 0.241 | |
RMSECV | 6.1 | 5.2 | 6.35 | 4.87 | 17.9 | 38.7 | 9.58 | |
RPIQ | 0.6 | 1.7 | 1.4 | 2.1 | 3.7 | 2.6 | 2.2 | |
N100 | R2 | 0.10 | 0.76 | 0.70 | 0.80 | 0.90 | 0.71 | 0.72 |
RPD | 1.06 | 2.03 | 1.82 | 2.26 | 3.25 | 1.85 | 1.88 | |
Bias | 0.424 | 0.0426 | 0.15 | 0.203 | −1.23 | −0.862 | 0.723 | |
RMSECV | 4.21 | 3.93 | 4.26 | 4.54 | 18.7 | 45.9 | 8.44 | |
RPIQ | 1.3 | 2.8 | 2.3 | 3.0 | 4.0 | 2.1 | 2.3 |
P Pools | Labile P | Moderate P | Stable P | |||||
---|---|---|---|---|---|---|---|---|
P Fractions | Resin-P | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | HClconc.-P | Residual-P | |
Cross-validation | R2 | 0.12 | 0.31 | 0.44 | 0.48 | 0.90 | 0.79 | 0.78 |
RPD | 1.07 | 1.2 | 1.34 | 1.39 | 3.21 | 2.19 | 2.16 | |
Bias | 0.0314 | −0.00023 | 0.0233 | 0.0975 | 0.0348 | −0.611 | 0.0418 | |
RMSECV | 42.1 | 22.1 | 11.3 | 15.2 | 18.8 | 38 | 7.51 | |
RPIQ | 0.3 | 0.8 | 1.2 | 2.3 | 4.3 | 2.4 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Kühn, P.; He, J.-S.; Bauhus, J.; Guan, Z.-H.; Scholten, T. Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau. Agronomy 2022, 12, 783. https://doi.org/10.3390/agronomy12040783
Cao Z, Kühn P, He J-S, Bauhus J, Guan Z-H, Scholten T. Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau. Agronomy. 2022; 12(4):783. https://doi.org/10.3390/agronomy12040783
Chicago/Turabian StyleCao, Zuonan, Peter Kühn, Jin-Sheng He, Jürgen Bauhus, Zhen-Huan Guan, and Thomas Scholten. 2022. "Calibration of Near-Infrared Spectra for Phosphorus Fractions in Grassland Soils on the Tibetan Plateau" Agronomy 12, no. 4: 783. https://doi.org/10.3390/agronomy12040783