A Two-Year Field Experiment for the Integrated Management of Bread and Durum Wheat Fungal Diseases and of Deoxynivalenol Accumulation in the Grain in Central Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trials and Experimental Design
2.2. Fungicide Application
2.3. Inoculum Production and Application
2.4. Disease Evaluation, Production Parameters and Weather Data Collection
- (a)
- incidence (%) from 0 (all plants healthy) to 100 (all plants symptomatic);
- (b)
- severity (%) from 0 (healthy leaves) to 100 (completely symptomatic leaves).
- (a)
- incidence (%), expressed as the percentage of symptomatic heads in the plot, from 0% (no symptomatic heads) to 100% (all spikes symptomatic);
- (b)
- severity (%), expressed as the average percentage of symptomatic spikelets per head.
2.5. Deoxynivalenol Quantification in Grains
2.6. Statistical Analysis
3. Results
3.1. Climatic Conditions in the Two Experimental Years
3.2. Foliar Disease Symptoms Evaluation
3.3. Fusarium Head Blight Symptoms Evaluation
3.4. Deoxynivalenol Quantification in Grains
3.5. Relationship between Deoxynivalenol Accumulation in Grain and Fusarium Head Blight Symptoms
3.6. Evaluation of Grain Yield (t/ha), Test Weight (kg/hL) and Protein Content (%)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Statistic Division. Food and Agriculture Organization of the UN. Database 2019. Available online: http://faostat.fao.org (accessed on 9 November 2021).
- Istituto Nazionale di Statistica (ISTAT). Available online: http://dati.istat.it (accessed on 10 December 2020).
- Martínez-Moreno, F.; Solís, I.; Noguero, D.; Blanco, A.; Özberk, İ.; Nsarellah, N.; Elias, E.; Mylonas, I.; Soriano, J.M. Durum wheat in the Mediterranean Rim: Historical evolution and genetic resources. Genet. Resour. Crop Evol. 2020, 67, 1415–1436. [Google Scholar] [CrossRef]
- D’Alessandro, A.; De Pergola, G. Mediterranean diet pyramid: A proposal for italian people. Nutrients 2014, 6, 4302–4316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vita, P.; Li Destri Nicosia, O.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative, traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Goswani, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.D.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evo. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases-a field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Savary, S.; Djurle, A.; Yuen, J.; Ficke, A.; Rossi, V.; Esker, P.D.; Ferandes, J.M.C.; Del Ponte, E.M.; Kumar, J.; Madden, L.V.; et al. A white paper on global wheat health based on scenario development and analysis. Phytopathology 2017, 107, 1109–1122. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Singh, P.K.; Rutkoski, J.; Hodson, D.P.; He, X.; Jørgensen, L.N.; Hovmøller, M.S.; Huerta-Espino, J. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 2016, 54, 303–322. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, L.N.; Hovmøller, M.S.; Hansen, J.G.; Lassen, P.; Clark, B.; Bayles, R.; Rodemann, B.; Flath, K.; Jahn, M.; Tomas Goral, T.; et al. IPM Strategies and Their Dilemmas Including an Introduction to www.eurowheat.org. J. Integr. Agric. 2014, 13, 265–281. [Google Scholar] [CrossRef]
- Willocquet, L.; Meza, W.R.; Dumont, B.; Klocke, B.; Feike, T.; Kersebaum, K.C.; Meriggi, P.; Rossi, P.; Ficke, A.; Djurle, A.; et al. An outlook on wheat health in Europe from a network of field experiments. Crop Prot. 2021, 139, 105335. [Google Scholar] [CrossRef]
- Hovmøller, M.S.; Walter, S.; Bayles, R.A.; Hubbard, A.; Flath, K.; Sommerfeldt, N.; Leconte, M.; Czembor, P.; Rodriguez-Algaba, J.; Thach, T.; et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016, 65, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Hovmøller, M.S.; Yahyaoui, A.H.; Milus, E.A.; Justesen, A.F. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol. Ecol. 2008, 17, 3818–3826. [Google Scholar] [CrossRef] [PubMed]
- Fones, H.; Gurr, S. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet. Biol. 2015, 79, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torriani, S.F.; Melichar, J.P.; Mills, C.; Pain, N.; Sierotzki, H.; Courbot, M. Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control. Fungal Genet. Biol. 2015, 79, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Puppala, V.; Herrman, T.J.; Bockus, W.W.; Loughin, T.M. Quality responses of twelve hard red winter wheat cultivars to foliar disease across four locations in central Kansas. Cereal Chem. 1998, 75, 94–99. [Google Scholar] [CrossRef]
- Da Rocha, M.E.B.; Freire, F.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- O’Donnell, K.; Rooney, A.P.; Proctor, R.H.; Brown, D.W.; McCormick, S.P.; Ward, T.J.; Frandsen, R.J.N.; Lysøe, E.; Rehner, S.A.; Aoki, T.; et al. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 2013, 52, 20–31. [Google Scholar] [CrossRef]
- Beccari, G.; Prodi, A.; Senatore, M.T.; Balmas, V.; Tini, F.; Onofri, A.; Pedini, L.; Sulyok, M.; Brocca, L.; Covarelli, L. Cultivation Area Affects the Presence of Fungal Communities and Secondary Metabolites in Italian Durum Wheat Grains. Toxins 2020, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Birr, T.; Hasler, M.; Verreet, J.; Klink, H. Composition and predominance of Fusarium species causing Fusarium Head Blight in winter wheat grain depending on cultivar susceptibility and meteorological factors. Microorganisms 2020, 8, 617. [Google Scholar] [CrossRef]
- Beccari, G.; Prodi, A.; Tini, F.; Bonciarelli, U.; Onofri, A.; Oueslati, S.; Limayma, M.; Covarelli, L. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy. Toxins 2017, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Czaban, J.; Wróblewska, B.; Sułek, A.; Mikos, M.; Boguszewska, E.; Podolska, G.; Nieróbca, A. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions. Food Addit. Contam. Part A 2015, 32, 874–910. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.K.; Jensen, J.D.; Nielsen, G.C.; Jensen, J.E.; Spliid, N.H.; Thomsen, I.K.; Justesen, A.F.; Collinge, D.B.; Jørgensen, L.N. Fusarium head blight of cereals in Denmark: Species complex and related mycotoxins. Phytopathology 2011, 101, 960–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.-M.; Parry, D.W.; Nicholson, P.; Thomsett, M.A.; Simpson, D.; Edwards, S.G.; Cooke, B.M.; Doohan, F.M.; Brennan, J.M.; Moretti, A.; et al. Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. Eur. J. Plant Pathol. 2005, 112, 143–154. [Google Scholar] [CrossRef]
- Kimura, M.; Tokai, T.; Takahashi-Ando, N.; Ohsato, S.; Fujimura, M. Molecular and genetics studies of Fusarium trichothecene biosynthesis: Pathways, genes, and evolution. Biosci. Biotechnol. Biochem. 2007, 71, 2105–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buerstmayr, H.; Adam, G.; Lemmens, M. Resistance to head blight caused by Fusarium spp. in wheat. In Disease Resistance in Wheat; Sharma, I., Ed.; CABI: Wallingford, UK, 2012; pp. 236–276. [Google Scholar]
- Foroud, N.A.; Eudes, F. Trichothecenes in cereal grains. Int. J. Mol. Sci. 2009, 10, 147–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EC) No. 1126/2007 of 28 September 2007 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. Eur. Union 2007, L255, 14–17. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- European Commission. Commission Recommendation of 17 august 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, L229, 7–29. [Google Scholar]
- Morton, V.; Staub, T. A short history of fungicides. In APSnet Features; American Phytopathological Society: Saint Paul, MN, USA, 2008. [Google Scholar] [CrossRef]
- Shah, L.; Ali, A.; Yahya, M.; Zhu, Y.; Wang, S.; Si, H.; Bahma, H.; Ma, C. Integrated control of Fusarium head blight and deoxynivalenol mycotoxin in wheat. Plant. Pathol. 2018, 67, 532–548. [Google Scholar] [CrossRef]
- Audenaert, K.; Landschoot, S.; Vanheule, A.; Waegeman, W.; De Baets, B.; Haesaert, G. Impact of fungicide timing on the composition of the Fusarium head blight disease complex and the presence of deoxynivalenol (DON) in Wheat. In Fungicides—Beneficial and Harmful Aspects; Thajuddin, N., Ed.; InTech: Rijeka, Croatia, 2011; pp. 79–98. [Google Scholar]
- FRAC. Fungicide Resistance Action Committee (FRAC) Code List 2021: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action (Including Coding for FRAC Groups on Product Labels). 2021. Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2021--final.pdf?sfvrsn=f7ec499a_2 (accessed on 9 November 2021).
- Poole, N.F.; Arnaudin, M.E. The role of fungicides for effective disease management in cereal crops. Can. J. Plant Pathol. 2014, 36, 1–11. [Google Scholar] [CrossRef]
- Kettlewell, P.S.; Davies, W.P.; Hocking, T.J. Disease development and senescence of the flag leaf of winter wheat in response to propiconazole. J. Agric. Sci. 1984, 99, 661–663. [Google Scholar] [CrossRef]
- Matthies, A.; Buchenauer, H. Effect of tebuconazole (Folicur) and prochloraz (Sportak) treatments on Fusarium head scab development, yield, and deoxynivalenol (DON) content in grains of wheat following artificial inoculation with Fusarium culmorum. J. Plant Dis. Prot. 2000, 107, 33–52. [Google Scholar]
- Scarpino, V.; Reyneri, A.; Sulyok, M.; Krska, R.; Blandino, M. Effect of fungicide application to control Fusarium head blight and 20 Fusarium and Alternaria mycotoxins in winter wheat (Triticum aestivum L.). World Mycotoxin J. 2015, 8, 499–510. [Google Scholar] [CrossRef]
- Lehoczki-Krsjak, K.; Szabo-Hever, A.; Toth, B.; Kotai, C.; Bartok, T.; Varga, M.; Faràdy, L.; Masterházy, A. Prevention of Fusarium mycotoxin contamination by breeding and fungicide application to wheat. Food. Addit. Contam. 2010, 27, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.A.; Lipps, P.E.; Hershman, D.E.; McMullen, M.P.; Draper, M.A.; Madden, L.V. Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: A multivariate meta-analysis. Phytopathology 2008, 98, 999–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria Menniti, A.; Pancaldi, D.; Maccaferri, M.; Casalini, L. Effect of Fungicides on Fusarium Head Blight and Deoxynivalenol Content in Durum Wheat Grain. Eur. J. Plant Pathol. 2003, 109, 109–115. [Google Scholar] [CrossRef]
- McKay, A.H.; Hagerty, G.C.; Follas, G.B.; Moore, M.S.; Christie, M.S.; Beresford, R.M. Succinate dehydrogenase inhibitor (SDHI) fungicide resistance prevention strategy. N. Z. Plant Protec. 2011, 64, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Oerke, E.C.; Beck, C.; Dehne, H.W. Physiological effects of strobilurins on wheat yield. Phytopathology 2001, 91, 67–71. [Google Scholar]
- Bartlett, D.W.; Clough, J.M.; Godfrey, C.R.A.; Godwin, J.R.; Hall, A.A.; Heaney, S.P.; Maund, S.J. Understanding the strobilurin fungicides. Pestic. Outlook 2001, 12, 143–148. [Google Scholar] [CrossRef]
- Ons, L.; Bylemans, D.; Thevissen, K.; Cammue, B.P.A. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 2020, 8, 1930. [Google Scholar] [CrossRef]
- Jalli, M.; Kaseva, J.; Andersson, B.; Ficke, A.; Jørgensen, L.N.; Ronis, A.; Kaukoranta, T.; Ørum, J.; Djurle, A. Yield increases due to fungicide control of leaf blotch diseases in wheat and barley as a basis for IPM decision-making in the Nordic-Baltic region. Eur. J. Plant. Pathol. 2020, 158, 315–333. [Google Scholar] [CrossRef]
- Newitt, J.T.; Prudence, S.M.M.; Hutchings, M.I.; Worsley, S.F. Biocontrol of cereal crop diseases using Streptomycetes. Pathogens 2019, 8, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can it be Managed? Frac Monograph, N., Ed.; Cropelife International: Brussels, Belgium, 2007; pp. 3–50. [Google Scholar]
- Covarelli, L.; Beccari, G.; Prodi, A.; Generotti, S.; Etruschi, F.; Juan, C.; Ferrer, E.; Mañes, J. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. J. Sci. Food Agric. 2015, 95, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Onofri, A.; Pannacci, E. Spreadsheet Tools for Biometry Classes in Crop Science Programmes. Commun. Biometry Crop. Sci. 2014, 9, 43–53. [Google Scholar]
- Scarpino, V.; Blandino, M. Effects of durum wheat cultivars with different degrees of FHB susceptibility grown under different meteorological conditions on the contamination of regulated, modified and emerging mycotoxins. Microorganisms 2021, 9, 408. [Google Scholar] [CrossRef] [PubMed]
- Capo, L.; Blandino, M. Minimizing yield losses and sanitary risks through an appropriate combination of fungicide seed and foliar treatments on wheat in different production situations. Agronomy 2021, 4, 725. [Google Scholar] [CrossRef]
- Blandino, M.; Pascale, M.; Haidukowski, M.; Reyneri, A. Influence of agronomic conditions on the efficacy of different fungicides applied to wheat at heading: Effect on flag leaf senescence, Fusarium head blight attack, grain yield and deoxynivalenol contamination. Ital. J. Agron. 2011, 6, e32. [Google Scholar] [CrossRef]
- Blandino, M.; Pilati, A.; Reyneri, A. Effect of foliar treatments to durum wheat on flag leaf senescence, grain yield, quality and deoxynivalenol contamination in North Italy. Field Crops Res. 2009, 2, 214–222. [Google Scholar] [CrossRef]
- Beccari, G.; Arellano, C.; Covarelli, L.; Tini, F.; Sulyok, M.; Cowger, C. Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. Int. J. Food Microbiol. 2019, 290, 214–225. [Google Scholar] [CrossRef]
- Kelly, A.C.; Clear, R.M.; O’Donnell, K.; McCormick, S.; Turkington, T.K.; Tekauz, A.; Gilbert, J.; Kistler, H.C.; Busman, M.; Ward, T.J. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet. Biol. 2015, 82, 22–31. [Google Scholar] [CrossRef]
- Oerke, E.C.; Meier, A.; Dehne, H.W.; Sulyok, M.; Krska, R.; Steiner, U. Spatial variability of Fusarium head blight pathogens and associated mycotoxins in wheat crops. Plant Pathol. 2010, 59, 671–682. [Google Scholar] [CrossRef]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The Most Important Fungal Diseases of Cereals—Problems and Possible Solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Alvisi, G.; Ponti, D.; Cristiani, C.; Pradolesi, G.; Donati, G.; Pelliconi, F.; Allegri, A.; Consolani, E.; Tarlazzi, S. Verifica dell’efficacia de Fluxapyroxad+Pyraclostrobin nel controllo del complesso della septoriosi del frumento in Emilia-Romagna. Atti Giornate Fitopatol. 2018, 2, 131–138. [Google Scholar]
- Serra, L.; Ricci, V.; Gualco, A. Benzovindiflupyr: Caratteristiche della nuova sostanza attiva e attività nel controllo delle malattie fungine di frumento e orzo. Atti Giornate Fitopatol. 2016, 2, 123–130. [Google Scholar]
- Lazzari, A.; Arangeli, G.; Boebel, A.; Gualco, A.; Lazzati, S.; Risi, C.; Cantoni, A. Bixafen: Una nuova sostanza attiva fungicida per il controllo delle malattie fogliari del frumento e orzo. Atti Giornate Fitopatol. 2012, 2, 213–218. [Google Scholar]
- Tini, F.; Beccari, G.; Onofri, A.; Ciavatta, E.; Gardiner, D.M.; Covarelli, L. Fungicides may have differential efficacies towards the main causal agents of Fusarium head blight of wheat. Pest Manag. Sci. 2020, 76, 3738–3748. [Google Scholar] [CrossRef]
- Haidukowski, M.; Visconti, A.; Perrone, G.; Vanadia, S.; Pancaldi, D.; Covarelli, L.; Balestrazzi, R.; Pascale, M. Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytopathol. Mediterr. 2012, 51, 236–246. [Google Scholar]
- Haidukowski, M.; Pascale, M.; Perrone, G.; Pancaldi, D.; Campagna, C.; Visconti, A. Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. J. Sci. Food Agric. 2005, 85, 191–198. [Google Scholar] [CrossRef]
- Edwards, S.G.; Pirgozliev, S.R.; Hare, M.C.; Jenikson, P. Quantification of trichothecene-producing Fusarium species in harvest grain by competitive PCR to determine the efficacy of fungicides against Fusarium head blight of winter wheat. Appl. Environ. Microbiol. 2001, 67, 1575–1580. [Google Scholar] [CrossRef] [Green Version]
- Pascale, M.; Visconti, A.; Chelkowski, J. Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. Eur. J. Plant. Pathol. 2002, 108, 645–651. [Google Scholar] [CrossRef]
- Bai, G.H.; Plattner, R.; Desjardins, A.; Kolb, F. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breed 2001, 120, 1–6. [Google Scholar] [CrossRef]
- Nowicki, T. Vomitoxin and Fusarium damaged kernels-is there a relationship in Canadian wheat? In Proceedings of the 2nd Canadian Workshop on Fusarium Head Blight, Ottawa, ON, Canada, 3 November 2001. [Google Scholar]
- Mesterházy, Á.; Bartók, T.; Mirocha, C.G.; Komoróczy, R. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 1999, 118, 97–110. [Google Scholar] [CrossRef]
- Ransom, J.K.; McMullen, M.V. Yield and Disease Control on Hard Winter Wheat Cultivars with Foliar Fungicides. Agron. J. 2008, 100, 1130–1137. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular aspects of mycotoxins—A serious problem for human health. Int. J. Mol. Sci. 2020, 21, 8187. [Google Scholar] [CrossRef] [PubMed]
- Siuda, R.; Grabowski, A.; Lenc, L.; Ralcewicz, M.; Spychaj-Fabisiak, E. Influence of the degree of fusariosis on technological traits of wheat grain. Int. J. Food Sci. Technol. 2010, 45, 2596–2604. [Google Scholar] [CrossRef]
- Brinkmeyer, U.; Dänicke, S.; Lehmann, M.; Valenta, H.; Lebzien, P.; Schollenberger, M.; Südekem, K.H.; Weinert, J.; Flachowsky, G. Influence of a Fusarium culmorum inoculation of wheat on the progression of mycotoxin accumulation, ingredient concentrations and ruminal in sacco dry matter degradation of wheat residues. Arch. Anim. Nutr. 2006, 60, 141–157. [Google Scholar] [CrossRef]
- Matthäus, K.; Dänicke, S.; Vahjen, W.; Simon, O.; Wang, J.; Valenta, H.; Meyer, K.; Strumpf, A.; Ziesenib, H.; Flachowsky, G. Progression of mycotoxin and nutrient concentrations in wheat after inoculation with Fusarium culmorum. Arch. Anim. Nutr. 2004, 58, 19–35. [Google Scholar] [CrossRef]
- Wang, J.; Wieser, H.; Pawelzik, E.; Weinert, J.; Keuteng, A.J.; Wolf, G.A. Impact of the fungal protease produced by Fusarium culmorum on the protein quality and breadmaking properties of winter wheat. Eur. Food Res. Technol. 2005, 220, 552–559. [Google Scholar] [CrossRef]
- Wasowicz, E. Changes of chemical grain components, especially lipids, during their deterioration by fungi. In Cereal Grains, Mycotoxins, Fungi and Quality in Drying and Storage; Chelkowski, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 259–280. [Google Scholar]
- Gärtner, B.H.; Munich, M.; Kleijer, G.; Mascher, F. Characterisation of kernel resistance against Fusarium infection in spring wheat by baking quality and mycotoxin assessments. Eur. J. Plant Pathol. 2008, 120, 61–68. [Google Scholar] [CrossRef]
- Prange, A.; Birzele, B.; Krämer, J.; Meier, A.; Modrow, H.; Köhler, P. Fusarium-inoculated wheat: Deoxynivalenol contents and baking quality in relation to infection time. Food Control. 2005, 8, 39–745. [Google Scholar] [CrossRef]
- Terzi, V.; Morcia, C.; Faccioli, P.; Faccini, N.; Rossi, V.; Cigolini, M.; Corbellini, M.; Scudellari, D.; Delogu, G. Fusarium DNA traceability along the bread production chain. Int. J. Food Sci. Technol. 2007, 42, 1390–1396. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_en (accessed on 19 January 2022).
- Carmona, M.; Sautua, F.; Pérez-Hérnandez, O.; Reis, E.M. Role of Fungic. applications on the integrated management of wheat stripe rust. Front. Plant Sci. 2020, 11, 733. [Google Scholar] [CrossRef] [PubMed]
Fungicides | Manufacturing Company | Commercial Name | Active Ingredient (Mode of Action) | Dose (L/ha) | Application Timing |
---|---|---|---|---|---|
Combination A | Bayer CropScience (Milan, Italy) | Aviator Xpro | Prothioconazole (DMI) + Bixafen (SDHI) | 1 | BBCH 39 † |
Prosaro | Prothioconazole (DMI) + Tebuconazole (DMI) | 1 | BBCH 65 § | ||
Combination B | Syngenta Italia (Milan, Italy) | Elatus Plus + Rivior | Benzovindiflupyr (SDHI) + Tetraconazole (DMI) | 0.75 + 1 | BBCH 39 |
Elatus Era | Benzovindiflupyr (SDHI) + Prothioconazole (DMI) | 1 | BBCH 65 | ||
Combination C | BASF Italia (Milan, Italy) | Priaxor | Fluxapyroxad (SDHI) + Pyraclostrobin (QoI) | 1.5 | BBCH 39 |
Caramba + Sportak | Metconazole (DMI) + Prochloraz (DMI) | 1 + 1 | BBCH 65 |
Fusarium Head Blight Index (%)—2018/2019 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Varieties | utc 1 | utc + inoc 1 | Fung. A 1 | Fung. B 1 | Fung. C 1 | |||||||||||||||
% 2 | St_er 3 | % | St_er | % | St_er | % | St_er | % | St_er | |||||||||||
Oregrain | 0.25 | ± | 0.00 | b | 3.33 | ± | 0.33 | a | 0.08 | ± | 0.08 | b | 0.17 | ± | 0.08 | b | 0.08 | ± | 0.08 | b |
Lancillotto | 0.42 | ± | 0.08 | b | 9.33 | ± | 0.67 | a | 0.33 | ± | 0.08 | b | 1.75 | ± | 0.80 | b | 0.25 | ± | 0.14 | b |
Marakas | 4.08 | ± | 3.00 | 4.83 | ± | 2.62 | 0.25 | ± | 0.00 | 0.67 | ± | 0.17 | 0.92 | ± | 0.36 | |||||
Egeo | 4.67 | ± | 1.70 | b | 29 | ± | 8.19 | a | 1.67 | ± | 0.33 | b | 2.08 | ± | 1.08 | b | 2.00 | ± | 0.58 | b |
Ramirez | 7.33 | ± | 1.80 | b | 20 | ± | 1.00 | a | 0.83 | ± | 0.17 | c | 0.83 | ± | 0.17 | c | 1.33 | ± | 0.33 | c |
Kanakis | 2.67 | ± | 0.33 | b | 20 | ± | 2.00 | a | 1.00 | ± | 0.00 | b | 1.08 | ± | 0.51 | b | 0.75 | ± | 0.25 | b |
Altavista | 1.83 | ± | 0.73 | b | 5.67 | ± | 1.20 | a | 0.33 | ± | 0.08 | b | 0.25 | ± | 0.00 | b | 0.83 | ± | 0.17 | b |
Nogal | 3.00 | ± | 0.58 | b | 9.33 | ± | 1.33 | a | 0.25 | ± | 0.00 | b | 1.00 | ± | 0.00 | b | 1.00 | ± | 0.00 | b |
Monastir | 1.67 | ± | 0.33 | b | 5.67 | ± | 0.22 | a | 0.42 | ± | 0.08 | b | 0.58 | ± | 1.20 | b | 0.58 | ± | 0.22 | b |
Farah | 1.33 | ± | 0.83 | b | 6.00 | ± | 1.15 | a | 0.08 | ± | 0.08 | b | 0.17 | ± | 0.08 | b | 0.08 | ± | 0.08 | b |
Don Matteo | 4.33 | ± | 1.86 | b | 10.67 | ± | 0.67 | a | 0.67 | ± | 0.17 | b | 1.00 | ± | 0.50 | b | 2.17 | ± | 0.83 | b |
Antalis | 4.00 | ± | 1.00 | b | 19.00 | ± | 2.65 | a | 1.42 | ± | 0.82 | b | 1.17 | ± | 0.44 | b | 1.67 | ± | 0.33 | b |
Metropolis | 2.67 | ± | 0.33 | b | 11.67 | ± | 1.67 | a | 1.08 | ± | 0.51 | b | 2.67 | ± | 0.33 | b | 1.08 | ± | 0.51 | b |
Solehio | 1.50 | ± | 0.29 | b | 17.00 | ± | 2.65 | a | 1.17 | ± | 0.44 | b | 1.42 | ± | 0.58 | b | 0.33 | ± | 0.08 | b |
Rebelde | 1.42 | ± | 0.58 | ab | 2.67 | ± | 0.88 | a | 0.08 | ± | 0.08 | b | 0.25 | ± | 0.00 | b | 0.17 | ± | 0.08 | b |
Total 4 | 2.74 | ± | 0.38 | b | 11.61 | ± | 1.26 | a | 0.64 | ± | 0.10 | b | 1.01 | ± | 0.14 | b | 0.88 | ± | 0.12 | b |
DW 4 | 3.76 | ± | 0.60 | b | 14.40 | ± | 1.99 | a | 0.79 | ± | 0.14 | b | 0.95 | ± | 0.18 | b | 1.19 | ± | 0.19 | b |
BW 4 | 1.58 | ± | 0.26 | b | 8.43 | ± | 1.14 | a | 0.48 | ± | 0.13 | b | 1.07 | ± | 0.23 | b | 0.54 | ± | 0.11 | b |
Fusarium Head Blight Index (%)—2019/2020 | ||||||||||||||||||||
Varieties | utc | utc + inoc | Fung. A | Fung. B | Fung. C | |||||||||||||||
% | St_er | % | St_er | % | St_er | % | St_er | % | St_er | |||||||||||
Oregrain | 0.04 | ± | 0.00 | c | 0.50 | ± | 0.00 | a | 0.25 | ± | 0.00 | b | 0.25 | ± | 0.00 | b | 0.33 | ± | 0.08 | ab |
Lancillotto | 0.10 | ± | 0.08 | b | 0.42 | ± | 0.08 | a | 0.04 | ± | 0.00 | b | 0.06 | ± | 0.02 | b | 0.04 | ± | 0.00 | b |
Marakas | 0.01 | ± | 0.01 | b | 0.25 | ± | 0.00 | a | 0.03 | ± | 0.01 | b | 0.03 | ± | 0.01 | b | 0.11 | ± | 0.07 | ab |
Egeo | 0.26 | ± | 0.13 | a | 0.67 | ± | 0.17 | a | 0.18 | ± | 0.07 | a | 0.18 | ± | 0.07 | a | 0.25 | ± | 0.00 | a |
Ramirez | 0.11 | ± | 0.07 | b | 0.83 | ± | 0.17 | a | 0.04 | ± | 0.00 | b | 0.04 | ± | 0.00 | b | 0.04 | ± | 0.00 | b |
Kanakis | 0.13 | ± | 0.06 | a | 0.51 | ± | 0.28 | a | 0.06 | ± | 0.02 | a | 0.04 | ± | 0.00 | a | 0.04 | ± | 0.00 | a |
Altavista | 0.00 | ± | 0.00 | b | 0.04 | ± | 0.00 | a | 0.01 | ± | 0.01 | ab | 0.00 | ± | 0.00 | b | 0.00 | ± | 0.00 | b |
Nogal | 0.25 | ± | 0.00 | b | 0.83 | ± | 0.08 | a | 0.25 | ± | 0.00 | b | 0.20 | ± | 0.05 | b | 0.33 | ± | 0.08 | b |
Monastir | 0.04 | ± | 0.00 | b | 0.58 | ± | 0.22 | a | 0.08 | ± | 0.02 | b | 0.06 | ± | 0.02 | b | 0.04 | ± | 0.00 | b |
Farah | 0.04 | ± | 0.00 | b | 0.25 | ± | 0.00 | a | 0.03 | ± | 0.01 | b | 0.03 | ± | 0.01 | b | 0.05 | ± | 0.03 | b |
Don Matteo | 0.04 | ± | 0.00 | b | 0.33 | ± | 0.08 | a | 0.04 | ± | 0.00 | b | 0.04 | ± | 0.00 | b | 0.06 | ± | 0.02 | b |
Antalis | 0.04 | ± | 0.00 | b | 0.33 | ± | 0.08 | a | 0.11 | ± | 0.07 | ab | 0.11 | ± | 0.07 | ab | 0.06 | ± | 0.02 | b |
Metropolis | 0.01 | ± | 0.01 | b | 0.67 | ± | 0.17 | a | 0.06 | ± | 0.02 | b | 0.08 | ± | 0.02 | b | 0.05 | ± | 0.03 | b |
Solehio | 0.00 | ± | 0.00 | a | 0.11 | ± | 0.07 | a | 0.00 | ± | 0.00 | a | 0.00 | ± | 0.00 | a | 0.00 | ± | 0.00 | a |
Rebelde | 0.04 | ± | 0.00 | b | 0.42 | ± | 0.08 | a | 0.06 | ± | 0.02 | b | 0.03 | ± | 0.01 | b | 0.11 | ± | 0.07 | b |
Total | 0.07 | ± | 0.02 | a | 0.45 | ± | 0.04 | a | 0.08 | ± | 0.01 | b | 0.08 | ± | 0.01 | b | 0.10 | ± | 0.02 | b |
DW | 0.08 | ± | 0.02 | b | 0.47 | ± | 0.06 | a | 0.07 | ± | 0.01 | b | 0.07 | ± | 0.01 | b | 0.08 | ± | 0.02 | b |
BW | 0.06 | ± | 0.02 | b | 0.43 | ± | 0.06 | a | 0.10 | ± | 0.02 | b | 0.09 | ± | 0.02 | b | 0.12 | ± | 0.03 | b |
Deoxynivalenol (µg/kg)—2018/2019 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Varieties | utc 1 | utc + inoc 1 | Fung. A 1 | Fung. B 1 | Fung. C 1 | |||||||||||||||
µg/kg 2 | St_er 3 | µg/kg | St_er | µg/kg | St_er | µg/kg | St_er | µg/kg | St_er | |||||||||||
Oregrain | 231.5 | ± | 114.5 | ab | 1762.0 | ± | 646.0 | a | 50.0 | ± | 0.0 | ab | 25.0 | ± | 25.0 | b | 213.0 | ± | 163.0 | ab |
Lancillotto | 184.0 | ± | 71.0 | b | 5575.0 | ± | 975.0 | a | 244.0 | ± | 194.0 | b | 194.5 | ± | 51.5 | b | 1201.5 | ± | 105.5 | b |
Marakas | 105.5 | ± | 105.5 | b | 5540.0 | ± | 430.0 | a | 128.0 | ± | 78.0 | b | 50.0 | ± | 0.0 | b | 228.5 | ± | 39.5 | b |
Egeo | 1326.0 | ± | 381.0 | b | 13,177.5 | ± | 837.5 | a | 635.0 | ± | 117.0 | b | 1134.0 | ± | 0.0 | b | 584.0 | ± | 240.0 | b |
Ramirez | 1604.5 | ± | 95.5 | ab | 4820.0 | ± | 1500.0 | a | 631.0 | ± | 321.0 | b | 213.5 | ± | 78.5 | b | 836.0 | ± | 54.0 | b |
Kanakis | 452.0 | ± | 147.0 | b | 11,685.0 | ± | 575.0 | a | 2421.5 | ± | 240.5 | b | 1954.0 | ± | 809.0 | b | 1066.5 | ± | 127.5 | b |
Altavista | 758.0 | ± | 236.0 | b | 6160.0 | ± | 1610.0 | a | 390.0 | ± | 340.0 | b | 184.5 | ± | 134.5 | b | 126.0 | ± | 76.0 | b |
Nogal | 358.0 | ± | 171.0 | b | 2269.5 | ± | 89.5 | a | 105.0 | ± | 55.0 | b | 196.5 | ± | 50.5 | b | 353.5 | ± | 68.5 | b |
Monastir | 169.0 | ± | 45.0 | b | 2564.0 | ± | 166.0 | a | 155.5 | ± | 105.5 | b | 196.0 | ± | 44.0 | b | 136.0 | ± | 35.0 | b |
Farah | 122.5 | ± | 72.5 | b | 3688.0 | ± | 1044.0 | a | 87.0 | ± | 37.0 | ab | 173.0 | ± | 123.0 | b | 346.5 | ± | 157.5 | ab |
Don Matteo | 2311.5 | ± | 66.5 | ab | 3495.0 | ± | 735.0 | a | 335.0 | ± | 66.0 | b | 360.0 | ± | 5.0 | b | 525.5 | ± | 367.5 | b |
Antalis | 570.0 | ± | 154.0 | b | 6295.0 | ± | 925.0 | a | 750.5 | ± | 203.5 | b | 234.5 | ± | 3.5 | b | 1042.5 | ± | 679.5 | b |
Metropolis | 92.5 | ± | 42.5 | b | 5010.0 | ± | 480.0 | a | 233.5 | ± | 79.5 | b | 915.3 | ± | 14.8 | b | 244.0 | ± | 194.0 | b |
Solehio | 217.0 | ± | 110.0 | b | 4887.0 | ± | 1143.0 | a | 671.0 | ± | 298.0 | b | 695.0 | ± | 91.0 | b | 861.5 | ± | 119.5 | b |
Rebelde | 175.5 | ± | 125.5 | b | 2532.0 | ± | 73.0 | a | 25.0 | ± | 25.0 | b | 50.0 | ± | 0.0 | b | 50.0 | ± | 0.0 | b |
Total 4 | 578.5 | ± | 122.0 | b | 5297.3 | ± | 605.3 | a | 457.5 | ± | 112.1 | b | 438.4 | ± | 103.6 | b | 521.0 | ± | 81.6 | b |
DW 4 | 832.6 | ± | 202.8 | b | 6408.1 | ± | 973.0 | a | 642.9 | ± | 189.8 | b | 539.4 | ± | 176.9 | b | 595.7 | ± | 115.2 | b |
BW 4 | 288.1 | ± | 68.6 | b | 4027.9 | ± | 520.1 | a | 245.5 | ± | 78.5 | b | 323.0 | ± | 90.0 | b | 435.6 | ± | 78.5 | b |
Deoxynivalenol (µg/kg)—2019/2020 | ||||||||||||||||||||
Varieties | utc | Utc + inoc | Fung. A | Fung. B | Fung. C | |||||||||||||||
µg/kg | St_er | µg/kg | St_er | µg/kg | St_er | µg/kg | St_er | µg/kg | St_er | |||||||||||
Oregrain | 50.0 | ± | 0.0 | b | 595.0 | ± | 90.0 | a | 0.0 | ± | 0.0 | b | 146.0 | ± | 16.0 | b | 50.0 | ± | 0.0 | b |
Lancillotto | 25.0 | ± | 25.0 | b | 1068.0 | ± | 150.0 | a | 85.5 | ± | 35.5 | b | 142.5 | ± | 92.5 | b | 25.0 | ± | 25.0 | b |
Marakas | 331.5 | ± | 91.5 | b | 2744.5 | ± | 339.5 | a | 467.0 | ± | 266.0 | b | 1021.0 | ± | 99.0 | b | 415.5 | ± | 227.5 | b |
Egeo | 78.0 | ± | 28.0 | b | 2254.5 | ± | 144.5 | a | 195.5 | ± | 145.5 | b | 241.0 | ± | 72.0 | b | 255.5 | ± | 205.5 | b |
Ramirez | 312.0 | ± | 32.0 | b | 3520.5 | ± | 603.5 | a | 99.5 | ± | 49.5 | b | 288.0 | ± | 238.0 | b | 337.5 | ± | 79.5 | b |
Kanakis | 165.0 | ± | 17.0 | b | 2816.0 | ± | 657.0 | a | 454.0 | ± | 324.0 | b | 170.5 | ± | 120.5 | b | 675.5 | ± | 212.5 | b |
Altavista | 0.0 | ± | 0.0 | b | 912.5 | ± | 153.5 | a | 95.5 | ± | 45.5 | b | 160.0 | ± | 0.0 | b | 150.0 | ± | 150.0 | b |
Nogal | 25.0 | ± | 25.0 | b | 280.8 | ± | 39.3 | a | 50.0 | ± | 0.0 | b | 74.3 | ± | 24.3 | b | 0.0 | ± | 0.0 | b |
Monastir | 171.0 | ± | 121.0 | b | 2879.5 | ± | 354.5 | a | 427.5 | ± | 20.5 | b | 775.5 | ± | 148.5 | b | 907.5 | ± | 251.5 | b |
Farah | 70.0 | ± | 70.0 | b | 850.5 | ± | 287.5 | a | 50.0 | ± | 0.0 | b | 111.5 | ± | 61.5 | ab | 164.0 | ± | 44.0 | ab |
Don Matteo | 155.5 | ± | 21.5 | b | 3757.0 | ± | 77.0 | a | 148.0 | ± | 98.0 | b | 329.0 | ± | 135.0 | b | 320.0 | ± | 172.0 | b |
Antalis | 25.0 | ± | 25.0 | b | 1586.5 | ± | 204.5 | a | 25.0 | ± | 25.0 | b | 254.5 | ± | 134.5 | b | 119.5 | ± | 69.5 | b |
Metropolis | 0.0 | ± | 0.0 | b | 1435.0 | ± | 37.0 | a | 154.0 | ± | 154.0 | b | 556.0 | ± | 162.0 | ab | 335.5 | ± | 285.5 | b |
Solehio | 25.0 | ± | 25.0 | 25.0 | ± | 25.0 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | |||||
Rebelde | 25.0 | ± | 25.0 | b | 1019.5 | ± | 110.5 | a | 303.5 | ± | 188.5 | ab | 322.0 | ± | 192.0 | ab | 259.5 | ± | 155.5 | ab |
Total | 97.2 | ± | 21.2 | b | 1716.3 | ± | 220.6 | a | 170.3 | ± | 38.7 | b | 306.1 | ± | 54.7 | b | 267.7 | ± | 54.2 | b |
DW | 163.5 | ± | 31.2 | b | 2551.1 | ± | 253.4 | a | 233.3 | ± | 61.6 | b | 398.9 | ± | 85.4 | b | 399.4 | ± | 78.8 | b |
BW | 21.4 | ± | 6.9 | b | 762.3 | ± | 128.7 | a | 98.4 | ± | 37.7 | b | 200.1 | ± | 55.2 | b | 117.1 | ± | 51.2 | b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balducci, E.; Tini, F.; Beccari, G.; Ricci, G.; Ceron-Bustamante, M.; Orfei, M.; Guiducci, M.; Covarelli, L. A Two-Year Field Experiment for the Integrated Management of Bread and Durum Wheat Fungal Diseases and of Deoxynivalenol Accumulation in the Grain in Central Italy. Agronomy 2022, 12, 840. https://doi.org/10.3390/agronomy12040840
Balducci E, Tini F, Beccari G, Ricci G, Ceron-Bustamante M, Orfei M, Guiducci M, Covarelli L. A Two-Year Field Experiment for the Integrated Management of Bread and Durum Wheat Fungal Diseases and of Deoxynivalenol Accumulation in the Grain in Central Italy. Agronomy. 2022; 12(4):840. https://doi.org/10.3390/agronomy12040840
Chicago/Turabian StyleBalducci, Emilio, Francesco Tini, Giovanni Beccari, Giacomo Ricci, Minely Ceron-Bustamante, Maurizio Orfei, Marcello Guiducci, and Lorenzo Covarelli. 2022. "A Two-Year Field Experiment for the Integrated Management of Bread and Durum Wheat Fungal Diseases and of Deoxynivalenol Accumulation in the Grain in Central Italy" Agronomy 12, no. 4: 840. https://doi.org/10.3390/agronomy12040840
APA StyleBalducci, E., Tini, F., Beccari, G., Ricci, G., Ceron-Bustamante, M., Orfei, M., Guiducci, M., & Covarelli, L. (2022). A Two-Year Field Experiment for the Integrated Management of Bread and Durum Wheat Fungal Diseases and of Deoxynivalenol Accumulation in the Grain in Central Italy. Agronomy, 12(4), 840. https://doi.org/10.3390/agronomy12040840