Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Process Description
2.3. Analytical Methods
2.4. Microorganism and Growth Conditions
2.5. Detoxification and Fermentation of the Prehydrolysate
2.6. Characteristics of the Configurations Adopted for the Fermentation of the WIS and Slurry
2.6.1. Sequential Hydrolysis and (Co-)Fermentation (SHCF) of the WIS and Slurry
2.6.2. Simultaneous Saccharification and (Co-)Fermentation (SSCF) of the Slurry
2.6.3. Presaccharification and Simultaneous Saccharification and (Co-)Fermentation (PSSCF) of the Slurry
2.7. Calculation of Yields
3. Results
3.1. Raw Material and Composition after SE Pretreatment
3.2. Detoxification and Fermentation of Prehydrolysate
3.3. Sequential Hydrolysis and Co-Fermentation of the WIS
3.4. Sequential Hydrolysis and Co-Fermentation (SHCF), Simultaneous Saccharification and Co-Fermentation (SSCF) and Presaccharification and Simultaneous Saccharification and Co-Fermentation (PSSCF) of the Slurry
3.5. Mass Balance for the Production of Second-Generation Ethanol from BS Biomass
4. Discussion
5. Conclusions
- BS can be used as a raw material for second-generation ethanol production, based on its sugar composition, following a process consisting of pretreatment, enzymatic hydrolysis and fermentation.
- Using both C6 and C5 sugars, namely glucose and xylose, and appropriate process configurations, including sequential or simultaneous saccharification and fermentation schemes, may produce the best results in terms of ethanol production.
- The SE pretreatment of phosphoric acid-soaked BS results in an enhanced release of glucose from the WIS fraction issued from the pretreatment.
- Following the separate fermentations of the WIS and the prehydrolysate, an overall process bioethanol yield of 51.1% (compared to the theoretical maximum) was achieved.
- Comparing the results among the three process configurations assayed, i.e., SHCF, SSCF and PSSCF, the best option proved to be PSSCF, based on the bioethanol yield of 41.9% (compared to the theoretical maximum) and based on the final bioethanol concentration obtained (20.6 g/L).
- In terms of slurry fermentation productivity, the best option was SHCF, as the total fermentation time was 42 h, reaching a yield of 37.6% (compared to the theoretical maximum).
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahlgren, E.O.; Hagberg, M.B.; Grahn, M. Transport biofuels in global energy economy modelling e a review of comprehensive energy systems assessment approaches. GCB Bioenergy 2017, 9, 1168–1180. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Star-COLIBRI. Joint European Biorefinery Vision for 2030 Strategic Targets for 2020, 7th EU Framework Program. Available online: https://bei.jcu.cz/Bioeconomy%20folders/documents/biofuels/biorefineries/joint-european-biorefinery-vision-for-2030 (accessed on 8 October 2021).
- Mahmood, H.; Moniruzzaman, M.; Iqbal, T.; Khan, M.J. Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Curr. Opin. Green Sustain. Chem. 2019, 20, 18–24. [Google Scholar] [CrossRef]
- Wang, Z.; Lei, T.; Yan, X.; Chen, G.; Xin, X.; Yang, M.; Gupta, A.K. Common characteristics of feedstock stage in life cycle assessments of agricultural residue-based biofuels. Fuel 2019, 253, 1256–1263. [Google Scholar] [CrossRef]
- López, S.; Davies, D.R.; Giráldez, F.J.; Dhanoa, M.S.; Dijkstra, D.; France, J. Assessment of nutritive value of cereal and legume straws based on chemical composition and in vitro digestibility. J. Sci. Food Agric. 2005, 85, 1550–1557. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. Availability of Cellulosic Residues and Wastes in the EU; White Paper; International Council on Clean Transportation: Washington, DC, USA, 2013. [Google Scholar]
- FAOSTAT. Available online: http://faostat3.fao.org/ (accessed on 8 October 2021).
- Larsen, U.S.; Bruun, S.; Lindedam, J. Straw yield and saccharification potential for ethanol in cereal species and wheat cultivars. Biomass Bioenergy 2012, 45, 239–250. [Google Scholar] [CrossRef]
- Werby, T.; Petersen, G. Top Value Added Chemicals from Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas; Department of Energy Efficiency and Renewable Energy, National Renewable Energy Lab.: Golden, CO, USA, 2004. [Google Scholar]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Garcia-Aparicio, M.P.; Ballesteros, M.; Manzanares, P.; Ballesteros, I.; Gonzalez, A.; Negro, M.J. Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl. Biochem. Biotechnol. 2007, 137–140, 353–365. [Google Scholar] [CrossRef]
- Kim, Y.; Yu, A.; Han, M.; Choi, G.W.; Chung, B. Enhanced enzymatic saccharification of barley straw pretreated by ethanolosolv technology. Appl. Biochem. Biotechnol. 2011, 163, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Sáez, F.; Ballesteros, M.; Ballesteros, I.; Manzanares, P.; Oliva, J.M.; Negro, M.J. Enzymatic hydrolysis from carbohydrates of barley straw pretreated by ionic liquids. J. Chem. Technol. Biotechnol. 2013, 88, 937–941. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.; Koukios, E.G. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds. J. Clean Prod. 2012, 32, 45–51. [Google Scholar] [CrossRef]
- Moraes, E.J.C.; Silva, D.D.V.; Dussán, K.J.; Tesche, L.Z.; de Almeida Silva, J.B.; Rai, M.; de Almeida Felipe, M.G. Xylitol-Sweetener production from barley straw: Optimization of acid hydrolysis condition with the energy consumption simulation. Waste Biomass Valorization 2020, 11, 1837–1849. [Google Scholar] [CrossRef]
- Han, M.; Kang, K.E.; Kim, Y.; Choi, G.W. High efficiency bioethanol production from barley straw using a continuous pretreatment reactor. Process. Biochem. 2013, 48, 488–495. [Google Scholar] [CrossRef]
- Duque, A.; Domenech, P.; Álvarez, C.; Ballesteros, M.; Manzanares, P. Study of the bioprocess conditions to produce bioethanol from barley straw pretreated by combined soda and enzyme-catalyzed extrusion. Renew. Energy 2020, 158, 263–270. [Google Scholar] [CrossRef]
- Sheikh, M.M.I.; Kim, C.H.; Park, H.H.; Nam, H.G.; Lee, G.S.; Jo, H.S.; Lee, J.Y.; Kim, J.W. A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production. J. Sci. Food Agric. 2015, 95, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Vargas, F.; Domínguez, E.; Vila, C.; Rodríguez, A.; Garrote, G. Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Bioresour. Technol. 2015, 191, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Raud, M.; Olt, J.; Kikas, T. N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass Bioenergy 2016, 90, 1–6. [Google Scholar] [CrossRef]
- Salapa, I.; Topakas, E.; Sidiras, D. Simulation and optimization of barley straw organosolv pretreatment. Ind. Crop. Prod. 2018, 113, 80–88. [Google Scholar] [CrossRef]
- Ibarra-Díaz, N.; Castañón-Rodríguez, J.F.; Gómez-Rodríguez, J.; Aguilar-Uscanga, M.G. Optimization of peroxide-alkaline pretreatment and enzymatic hydrolysis of barley straw (Hordeum vulgare L.) to produce fermentable sugars using a Box–Behnken design. Biomass Convers. Biorefin. 2020, 1–10. [Google Scholar] [CrossRef]
- Deveci, E.Ü.; Çağdaş, G.; Ceyhun, A. Pre-treatment optimization of barley straw as agro-industrial waste via alkaline peroxide and ultrasound for soluble sugar production and degradation. Biomass Convers. Biorefin. 2020, 11, 2167–2175. [Google Scholar] [CrossRef]
- Geddes, C.C.; Mullinnix, M.T.; Nieves, I.U.; Peterson, J.J.; Hoffman, R.W.; York, S.W.; Yomano, L.P.; Miller, E.N.; Shanmugam, K.T.; Ingram, L.O. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour. Technol. 2011, 102, 2702–2711. [Google Scholar] [CrossRef]
- Vasconcelos, S.M.; Pinheiro, A.M.; Moraes, G.J.; Souto-Maior, A.M. Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery. Bioresour. Technol. 2013, 135, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Review. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour. Technol. 2000, 74, 17–24. [Google Scholar] [CrossRef]
- Fernandes-Klajn, F.; Romero-García, J.M.; Díaz, M.J.; Castro, E. Comparison of fermentation strategies for ethanol production from olive tree pruning biomass. Ind. Crop. Prod. 2018, 122, 98–106. [Google Scholar] [CrossRef]
- Alkasrawi, M.; Rudolf, A.; Zacchi, G.; Lidén, G. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzym. Microb. Technol. 2006, 38, 279–286. [Google Scholar] [CrossRef]
- García-Aparicio, M.P.; Oliva, J.M.; Manzanares, P.; Ballesteros, M.; Ballesteros, I.; González, A.; Negro, M.J. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 2011, 90, 1624–1630. [Google Scholar] [CrossRef]
- Geddes, C.C.; Mullinnix, M.T.; Nieves, I.U.; Hoffman, R.W.; Sagues, W.J.; York, S.W.; Shanmugam, K.T.; Erickson, J.E.; Vermerris, W.E.; Ingram, L.O. Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process. Bioresour. Technol. 2013, 128, 716–724. [Google Scholar] [CrossRef]
- Castro, E.; Nieves, I.U.; Mullinnix, M.T.; Sagues, W.J.; Hoffman, R.W.; Fernández-Sandoval, M.T.; Tian, Z.; Rockwood, D.L.; Tamang, B.; Ingram, L.O. Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. App. Energy 2014, 125, 76–83. [Google Scholar] [CrossRef]
- Castro, E.; Nieves, I.U.; Rondón, V.; Sagues, W.J.; Fernández-Sandoval, M.T.; Yomano, L.P.; York, S.W.; Erickson, J.; Vermerris, W. Potential for ethanol production from different sorghum cultivars. Ind. Crop. Prod. 2017, 109, 367–373. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Galbe, M.; Zacchi, G. Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 2012, 46, 70–78. [Google Scholar] [CrossRef]
- Acevedo-García, V.; Padilla-Rascón, C.; Díaz, M.J.; Moya, M.; Castro, E. Fermentable sugars production from acid-catalysed steam exploded barley straw. Chem. Eng. Trans. 2018, 70, 1939–1944. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, J.Y. Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzym. Microb. Technol. 2011, 48, 92–99. [Google Scholar] [CrossRef]
- Martínez, A.; Grabar, T.B.; Shanmugam, K.T.; Yomano, L.P.; York, S.W.; Ingram, L.O. Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol. Lett. 2007, 29, 397–404. [Google Scholar] [CrossRef]
- Nieves, I.U.; Geddes, C.C.; Miller, E.N.; Mullinnix, M.T.; Hoffman, R.W.; Fu, Z.; Tong, Z.; Ingram, L.O. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli. Bioresour. Technol. 2011, 102, 5145–5152. [Google Scholar] [CrossRef] [PubMed]
- Contreras-López, E.; Jaimez-Ordaz, J.; Hernández-Madrigal, T.; Añorve-Morga, J.; Beltrán-Hernández, R. Composición química de cebadas cultivadas bajo diferentes condiciones de labranza en tres localidades del estado de Hidalgo, México. Bioagro 2008, 20, 201–208. [Google Scholar]
- García-Aparicio, M.P.; Ballesteros, I.; González, A.; Oliva, J.M.; Ballesteros, M.; Negro, M.J. Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl. Biochem. Biotechnol. 2006, 129, 278–288. [Google Scholar] [CrossRef]
- Martín, C.; Galbe, M.; Nilvebrant, N.O.; Jonson, L.J. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. In Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, USA, 2002; pp. 699–716. [Google Scholar] [CrossRef]
- Cara, C.; Ruiz, E.; Ballesteros, I.; Negro, M.J.; Castro, E. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process. Biochem. 2006, 41, 423–429. [Google Scholar] [CrossRef]
- Olofsson, K.; Bertilsson, M.; Lidén, G. A short review on SSF−An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 2008, 1, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Wang, F.; Sua, R.; Qia, W.; Hea, Z. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour. Technol. 2010, 101, 4959–4964. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.; Sáez, F.; González, A.; Ballesteros, I.; Oliva, J.M.; Negro, M.J. Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw. Holzforschung 2019, 73, 35–44. [Google Scholar] [CrossRef]
- Persson, T.; Ren, J.L.; Joelsson, E.; Jönsson, A. Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresour. Technol. 2009, 100, 3906–3913. [Google Scholar] [CrossRef] [PubMed]
- Won, K.Y.; Um, B.H.; Kim, S.W.; Oh, K.K. Fractionation of barley straw with dilute sulfuric acid for improving hemicellulose recovery. Korean J. Chem. Eng. 2012, 29, 614–620. [Google Scholar] [CrossRef]
- Zaldívar, J.; Ingram, L.O. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 1999, 66, 203–210. [Google Scholar] [CrossRef]
- Jennings, E.W.; Schell, D.J. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresour. Technol. 2011, 102, 1240–1245. [Google Scholar] [CrossRef]
- Díaz, M.J.; Ruiz, E.; Romero, I.; Cara, C.; Moya, M.; Castro, E. Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J. Microbiol. Biotechnol. 2009, 25, 891–899. [Google Scholar] [CrossRef]
- Alriksson, B.; Sjöde, A.; Nilvebrant, N.; Jönsson, L.J. Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl. Biochem. Biotechnol. 2006, 130, 599–611. [Google Scholar] [CrossRef]
- Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol–Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (No. NREL/TP-5100-47764); Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar]
- Lara-Serrano, M.; Sáez Angulo, F.; Negro, M.J.; Morales-de la Rosa, S.; Campos-Martin, J.M.; Fierro, J.L.G. Optimization of peroxide-alkaline pretreatment and enzymatic hydrolysis of barley straw (Hordeum vulgare L.) to produce fermentable sugars using a Box–Behnken design. ACS Sustain. Chem. Eng. 2018, 6, 7086–7095. [Google Scholar] [CrossRef]
- Rudolf, A.; Alkasrawi, M.; Zacchi, G.; Lidén, G. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzym. Microb. Technol. 2005, 37, 195–204. [Google Scholar] [CrossRef]
- Álvarez, C.; González, A.; Ballesteros, I.; Negro, M.J. Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion. Bioresour. Technol. 2021, 342, 125953. [Google Scholar] [CrossRef] [PubMed]
Configuration | Fraction | Number of Steps | Equipment | Variables |
---|---|---|---|---|
SHCF | WIS | (1) EH 1 | Rotary shaker | 50 °C 150 rpm pH 4.8 |
(2) Co-F 2 | Dasgip Bioblock | 37 °C 150 rpm pH 6.5 | ||
Slurry | (1) EH | Rotary shaker | 50 °C 150 rpm pH 4.8 | |
(2) Co-F | Dasgip Bioblock | 37 °C 150 rpm pH 6.5 | ||
SSCF | Slurry | (1) EH + Co-F | Dasgip Bioblock | 37 °C 150 rpm pH 6.5 |
PSSCF | (1) PreS 3 | Dasgip Bioblock | 50 °C 150 rpm pH 4.8 | |
(2) EH + Co-F | 37 °C 150 rpm pH 6.5 |
Compounds | % Dry Weight |
---|---|
Cellulose | 38.43 ± 1.75 |
as glucose | 42.27 ± 1.75 |
Hemicellulose | 28.55 ± 0.44 |
xylose | 30.23 ± 0.26 |
arabinose | 1.59 ± 0.12 |
galactose | 0.43 ± 0.04 |
Lignin | 16.26 ± 1.80 |
AIL 1 | 14.22 ± 1.40 |
ASL 2 | 2.04 ± 0.40 |
Extractives | 18.57 ± 0.54 |
glucose | 2.53 ± 0.02 |
Ash | 1.97 ± 0.40 |
Acetyl groups | 1.05 ± 0.09 |
Compounds | Raw Material | WIS |
---|---|---|
Glucose | 42.27 ± 1.75 | 65.11 ± 1.45 (68.33) 1 |
Xylose | 30.23 ± 0.26 | 3.72 ± 0.13 (5.75) |
Lignin | 16.26 ± 1.80 | 12.62 ± 0.88 (77.59) |
Extractives | 18.57 ± 0.54 | 5.2 ± 0.24 (12.32) |
Compounds | Prehydrolysate 1 |
---|---|
Glucose | 1.68 ± 0.26 (8.77) |
Xylose | 12.85 ± 0.75 (42.44) |
Acetic acid | 0.94 ± 0.07 |
Formic acid | 0.65 ± 0.05 |
Furfural | 0.23 ± 0.02 |
HMF | 0.08 ± 0.01 |
Reference | Conditions | Glucose | Xylose | Lignin |
---|---|---|---|---|
This study | 160 °C 30 min [H3PO4] 1 2.88% w/v | 65.11 (68.33) 2 | 3.72 (5.75) | 12.62 (77.59) |
[47] | 180 °C 30 min | 61.38 (89.4) | 10.85 (21.9) | 30.7 |
[42] | 120 °C 30 min [H2SO4] 3% v/v | 66.0 | 5.3 | 30.0 |
[31] | 210 °C 5 min | 64.46 | 7.0 | 21.6 3 |
[48] | 190 °C 10 min 2% NaOH | 69.3 | 21.47 | n.r. 4 |
Author | Substrate | Microorganism | Configuration | YEmax 1 |
---|---|---|---|---|
This study | WIS | E. coli SL100 | SHCF | 89.1 |
slurry | SHCF | 78.8 | ||
SSCF | 56.7 | |||
PSSCF | 74.6 | |||
[31] | WIS | K. marxianus | SHF | 56.8 |
SSF | 67.4 | |||
PSSF | 56.8 | |||
[47] | WIS | S. cerevisiae | SHF | 76.0 |
PSSF | 75.1 | |||
[21] | WIS | S. cerevisiae | SHF | 72.1 |
[19] | WIS | S. cerevisiae | SHF | 40.5 |
[49] | WIS | S. cerevisiae DKIC | SHF | 64.3 |
SSF | 76.5 | |||
[55] | WIS | S. cerevisiae Ethanol Red | SSF | 97.0 |
PSSF | 97.0 | |||
[20] | WIS | S. cerevisiae | SSF | 93.0 |
[17] | WIS | S. cerevisiae | SSF | 93.0 |
[18] | WIS | Yeast CelluxTM 4 | PSSCF | 53.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, M.J.; Moya, M.; Castro, E. Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100. Agronomy 2022, 12, 874. https://doi.org/10.3390/agronomy12040874
Díaz MJ, Moya M, Castro E. Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100. Agronomy. 2022; 12(4):874. https://doi.org/10.3390/agronomy12040874
Chicago/Turabian StyleDíaz, Manuel J., Manuel Moya, and Eulogio Castro. 2022. "Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100" Agronomy 12, no. 4: 874. https://doi.org/10.3390/agronomy12040874
APA StyleDíaz, M. J., Moya, M., & Castro, E. (2022). Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100. Agronomy, 12(4), 874. https://doi.org/10.3390/agronomy12040874