A Nutritional Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty Acid Profile, and Geographic Distribution of Fusarium Species and the Mycotoxin Zearalenone (ZEN)
Abstract
:1. Introduction
2. Material and Methods
2.1. Barley Samples
2.2. Determination of Mineral Content
2.3. Phytate Content Measurement and Bioavailability of Iron and Zinc
2.4. Fatty Acid Composition of Grain Barley Populations
2.5. Identification of Fusarium Species and Toxigenic Potential of Zearalenone (ZEN)
2.5.1. Field Sampling and Fusarium Isolation
2.5.2. Morphological Characterization of Fusarium spp.
2.5.3. Molecular Characterization of Fusarium spp.
2.6. Mycotoxin Quantification–Extraction of Zearalenone (ZEN)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Mineral Element Concentrations in Barley Populations
3.2. Fatty Acid Profiling
3.3. Fusarium Species Spectrum in Tunisian Barley Populations
3.3.1. Method Validation of HPLC
3.3.2. Occurrence of ZEN in Barley Populations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Zeng, Y.; Pu, X.; Du, J.; Yang, X.; Li, X.; Mandal, S.N.; Yang, T.; Yang, J. Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 3836172. [Google Scholar] [CrossRef]
- Kashian, S.; Fathivand, A.A. Estimated daily intake of Fe, Cu, Ca and Zn through common cereals in Tehran, Iran. Food Chem. 2015, 176, 193–196. [Google Scholar] [CrossRef] [PubMed]
- La Frano, M.; De Moura, F.F.; Boy, E.; Lönnerdal, B.; Burri, B.J. Bioavailability of iron; zinc; and provitamin A carotenoids in biofortified staple crops. Nutr. Rev. 2014, 72, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Qiu, L.; Xu, Y.; Cai, S.; Qiu, B.; Zhang, G. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys. J. Agric. Food Chem. 2010, 58, 11821–11824. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Egli, I.; Campion, B.; Nielsen, E.; Hurrell, R. Genetic Reduction of Phytate in Common Bean (Phaseolus vulgaris L.) Seeds Increases Iron Absorption in Young Women. J. Nutr. 2013, 143, 1219–1224. [Google Scholar] [CrossRef] [Green Version]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug. Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boubakri, H.; Ahmed Jdey, A.; Amani Taamalli, A.; Wael Taamalli, W.; Moez Jebara, M.; Brini, F.; Ylenia Riciputi, Y.; Pasini, F.; Magné Christian, M.; Verardo, V. Phenolic composition as measured by liquid chromatography/mass spectrometry and biological properties of Tunisian barley. Inter.J. Food Prop. 2017, 20, 1783–1797. [Google Scholar] [CrossRef] [Green Version]
- Lahouar, L.; Ghrairi, F.; El Arem, A.; Medimagh, S.; El Felah, M.; Ben Salem, H.; Achour, L. Biochemical composition and nutritional evaluation of barley rihane (Hordeum vulgare L.). Afr. J. Tradit. Complementary Altern. Med. 2017, 14, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Kan, L. Characterization of the Fatty Acid and Mineral Compositions of Selected Cereal Cultivars from Turkey. Rec. Nat. Prod. 2015, 9, 124–134. [Google Scholar]
- Cubadda, F.; Aureli, F.; Raggi, A.; Carcea, M. Effect of milling; pasta making and cooking on minerals in durum wheat. J. Cereal. Sci. 2009, 49, 92–97. [Google Scholar] [CrossRef]
- Bouajila, A.; Zoghlami, N.; Murad, S.; Baum, M.; Ghorbel, A.; Nazari, K. Genetic differentiation in Pyrenophorateres f. teres populations from Syria and Tunisia as assessed by AFLP markers. Lett. Appl. Microbiol. 2013, 56, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Hana, Y.; Jin, H.; Khaldi, A.; Kwak, M.; Lee, T.; Khaine, I.; Jang, J.; Lee, H.; Kim, I.; Ahn, T.; et al. Plant diversity in different bioclimatic zones in Tunisia. J. Asia-Pac. Biodivers. 2016, 9, 56–62. [Google Scholar]
- Dbira, S.; Al Hassan, M.; Gramazio, P.; Ferchichi, A.; Vicente, O.; Prohens, J.; Boscaiu, M. Variable Levels of Tolerance to Water Stress (Drought) and Associated Biochemical Markers in Tunisian Barley Landraces. Molecules 2018, 23, 613. [Google Scholar] [CrossRef] [Green Version]
- Mahdjoubi, C.K.; Arroyo Manzanares, N.; Hamini Kadar, N.; García Campaña, A.M.; Mebrouk, K.; Gracia, G.L. Multi-Mycotoxin Occurrence and Exposure Assessment Approach in Foodstuffs from Algeria. Toxins 2020, 12, 194. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, C.; Pizzo, F.; Spicer, L.J.; Caloni, F. Fusariummycotoxins, Effects on reproductive function in domestic animals—A review. Theriogenology 2013, 80, 557–564. [Google Scholar] [CrossRef]
- European Commission (EC) No 1126/2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. EU 2007, 255, 14–17.
- Gomez-Becerra, H.F.; Erdem, H.; Yazici, A.; Tutus, Y.; Torun, B.; Ozturk, L.; Cakmak, I. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal Sci. 2010, 52, 342–349. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis of the Association of Official Analytical Chemists; AOAC International: Arlington, VA, USA, 1996. [Google Scholar]
- Fazaeli, H.; Golmohammadi, H.A.; Tabatabayee, S.N.; Asghari-Tabrizi, M. Productivity and Nutritive Value of Barley Green Fodder Yield in Hydroponic System. World Appl. Sci. J. 2012, 16, 531–539. [Google Scholar]
- Van Soest, P.J.; Van Amburgh, M.E.; Robertson, J.B.; Knaus, W.F. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytic acid in cereals and cereals products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Bouajila, A.; Ammar, H.; Chahine, M.; Khouja, M.; Hamdi, Z.; Khechini, J.; Mohamed Salem, A.; Ghorbel, A.; Lopez, S. Changes in phytase activity; phosphorus and phytate contents during grain germination of barley (Hordeumvulgare L.) cultivars. Agrofor. Syst. 2019, 94, 1151–1159. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461–1467. [Google Scholar] [CrossRef]
- FAO/INFOODS; IZiNCG. Global Food Composition; Database for Phytate Version 1.0—PhyFoodComp1.0; The FAO of the United Nations and International Zinc Nutrition Consultative Group Rome: Rome, Italy, 2018. [Google Scholar]
- AOCS. Official Method Ce 1 h-05 Determination of Cis-; Trans-; Saturated; Monounsaturated and Polyunsaturated Fatty Acids in Vegetable or Non-Ruminant Animal Oils and Fats by Capillary GLC Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; American Oil Chemists’ Society: Boulder, CO, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; Horwitz, W., Ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell: Ames, IA, USA, 2006. [Google Scholar]
- Vogelgsang, S.; Sulyok, M.; Hecker, A.; Jenny, E.; Krska, R.; Schuhmacher, R.; Forrer, H.-R. Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. Eur. J. Plant Pathol. 2008, 122, 265–276. [Google Scholar] [CrossRef]
- Bouajila, A.; Abang, M.; Haouas, S.; Udupa, S.; Rezgui, S.; Baum, M.; Yahyaoui, A. Genetic diversity of Rhynchosporium secalis in Tunisia as revealed by pathotype, AFLP, and microsatellite analyses. Mycopathologia. 2007, 163, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Kikot, G.K.; Hours, R.A.; Alconada, T.M. Extracellular Enzymes of Fusarium graminearum Isolates. Braz. Arch. Biol. Technol. 2010, 53, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Bouajila, A.; Lamine, M.; Rahali, F.Z.; Melki, I.; Gangashetty, P.; Ghorbel, A. Pearl millet populations characterized by Fusarium prevalence, morphological traits, phenolic content, and antioxidant potential. J. Sci. Food Agric. 2020, 100, 4172–4181. [Google Scholar] [CrossRef]
- Schollenberger, M.; Müller, H.-M.; Rüfle, M.; Suchy, S.; Plank, S.; Drochner, W. Natural occurrence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 2006, 161, 43–52. [Google Scholar] [CrossRef]
- Nakandalage, N.; Nicolas, M.; Norton, R.M.; Hirotsu, N.; Milham, P.J.; Seneweera, S. Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front. Plant Sci. 2016, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Du, J.; Yang, X.M.; Pu, X.Y.; Wang, L.X.; Yang, J.Z.; Du, J.; Yang, T.; Yang, S.M.; Sun, Z.H. Identification of quantitative trait loci for mineral elements in grains and grass powder of barley. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Biel, A.M.; Moser, M.; Meier, I. A role for plant KASH proteins in regulating stomataldynamics. Plant Physiol. 2020, 182, 1100–1113. [Google Scholar] [CrossRef] [Green Version]
- Izydorczyk, M.S.; Chornick, T.L.; Paulley, F.G.; Edwards, N.M.; Dexter, J.E. Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread. Food Chem. 2008, 108, 561–570. [Google Scholar] [CrossRef]
- Erdal, M.B.; Oeppen, C. Migrant Balancing Acts, Understanding the Interactions between Integration and Transnationalism. J. Ethn. Migr. Stud. 2013, 39, 867–884. [Google Scholar] [CrossRef]
- Ongol, M.P.; Owino, J.; Lungaho, M.; Dusingizimana, T.; Vasanthakaalam, H. Micro-Mineral Retention and Anti-Nutritional Compounds Degradation During Bean Cooking Process. Curr. Res. Nutr. Food Sci. 2018, 6, 526–535. [Google Scholar] [CrossRef]
- Hummel, M.; Talsma, E.F.; Taleon, V.; Londoño, L.; Brychkova, G.; Gallego, S.; Raatz, B.; Spillane, C. Iron, Zinc and Phytic Acid Retention of Biofortified, Low Phytic Acid, and Conventional Bean Varieties When Preparing Common Household Recipes. Nutrients 2020, 12, 658. [Google Scholar] [CrossRef] [Green Version]
- Nejadsadeghi, L.; Maali-Amiri, R.; Zeinali, H.; Ramezanpour, S.; Sadeghzade, B. Membrane fatty acid compositions and cold-induced responses in tetraploid and hexaploidwheats. Mol. Biol. Rep. 2015, 42, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, K.; Govindaraj, M.; Vellaikumar, S.; Shobhana, V.G.L.; Karthikeyan, A.; Akilan, M.; Sathishkumar, J. Comparative Profiling of Volatile Compounds in Popular South Indian Traditional and Modern Rice Varieties by Gas Chromatography-Mass Spectrometry Analysis. Front. Nutr. 2020, 7, 599–619. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.A.; Ausman, L.M.; Lawton, C.W.; Hegsted, M.; Nicolosi, R.J. Comparative cholesterol lowering properties of vegetable oils, beyond fatty acids. J. Am. Coll. Nutr. 2000, 19, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Priore, P.; Gnoni, A.; Natali, F.; Testini, M.; Gnoni, G.V.; Siculella, L.; Damiano, F. Oleic acid and hydroxytyrosol inhibit cholesterol and fatty acid synthesis in C6 glioma cells. Oxid. Med. Cell. Longev. 2017, 2017, 9076052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D. Does alpha-linolenic acid intake reduce the risk of coronary heart disease? A review of the evidence. Altern.Ther. Health Med. 2005, 11, 24–79. [Google Scholar]
- Kosiak, B.; Torn, M.; Skierve, E.; Thrane, U. The prevalence and distribution of Fusarium species in Norwegian cereals, a survey. Acta Agric. Scand. 2003, 53, 168–176. [Google Scholar]
- Figueroa, M.; Hammond Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective, a review of wheat diseases. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Maul, R.; Schwake-Anduschus, C.; Wiesner, M. Contaminants in Crop Plants. Encycl. Appl. Plant Sci. 2017, 3, 442–446. [Google Scholar]
- Glenn, A.E. Mycotoxigenic Fusarium species in animal feed. Anim. Feed Sci. Technol. 2007, 137, 213–240. [Google Scholar] [CrossRef]
- Zaied, C.; Zouaoui, N.; Bacha, H.; Abid, S. Natural occurrence of zearalenone in Tunisian wheat grains. Food Control. 2012, 25, 773–777. [Google Scholar] [CrossRef]
- Rodrigues, I.; Handl, J.; Binder, E.M. Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa. Food Addit. Contam. Part B 2011, 4, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Haubruge, E.; Chasseur, C.; Suetens, C.; Mathieu, F.; Begaux, F.; Malaisse, F. Mycotoxin in stored barley (H. vulgare) in Tibet autonomous regions (People’s Republic of China). Mt. Res. Dev. 2003, 23, 284–287. [Google Scholar] [CrossRef] [Green Version]
- Zoghlami, N.; Bouajila, A.; Lamine, M.; Hajri, H.; Ghorbel, A. Population genetic structure analysis in endangered Hordeum vulgare landraces from Tunisia, conservation strategies. Afr. J. Biotechnol. 2011, 10, 10344–10351. [Google Scholar]
- Birr, T.; Hasler, M.; Verreet, J.A.; Klink, H. Composition and Predominance of Fusarium Species Causing Fusarium Head Blight in Winter Wheat Grain Depending on Cultivar Susceptibility and Meteorological Factors. Microorganisms 2020, 8, 617. [Google Scholar] [CrossRef] [PubMed]
Origin/Collection Site (District) | Geographic Position and Annual Precipitation (mm) | Elevation (m) | Mean Monthly Temperature (°C) | Latitude | Longitude | Bioclimatic Zone |
---|---|---|---|---|---|---|
Continental North: Testour (Béja) | Northeast/HR (500–700) | 93 | 6.1–34.7 | 36°33′04″ N | 9°26′35″ E | Sub-Humid |
Coastal Center: Enfidha (Sousse) | Center East/MR (300–400) | 6 | 7.7–31 | 36°8′7″ N | 10°22′51″ E | Semi-Arid Inferior |
Coastal South: Gergis (Mednine) | Southeast/LR (100–200) | 18 | 6.9–34.3 | 33°30′14″ N | 11°6′44″ E | Arid Inferior |
Elements Content | Testour | Enfidha | Gergis | SEM (n = 3) | p Value |
---|---|---|---|---|---|
P (mg/kg) | 3200 b | 4200 a | 3400 b | 0.26 | 0.00 |
P (mg/grain) | 0.128 b | 0.14 a | 0.141 a | 0.01 | 0.00 |
K (mg/kg) | 3260 b | 4467 a | 3367 b | 0.03 | 0.01 |
K (mg/grain) | 0.13 b | 0.15 a | 0.14 a | 0.02 | 0.01 |
Ca (mg/kg) | 1500 b | 1510 a | 1507 a | 0.01 | 0.006 |
Ca (mg/grain) | 0.06 a | 0.05 b | 0.06 a | 0.031 | 0.002 |
Mg (mg/kg) | 1467 a | 1500 a | 1100 b | 0.032 | 0.01 |
Mg (mg/grain) | 0.058 a | 0.05 a | 0.045 b | 0.23 | 0.01 |
N% | 2.18 b | 2.69 a | 2.41 b | 0.105 | 0.01 |
Na (mg/kg) | 3.50 b | 4.67 b | 11.34 a | 0.233 | 0.004 |
Na (µg/grain) | 0.13 b | 0.15 b | 0.47 a | 0.25 | 0.01 |
Fe (mg/kg) | 96.58 a | 74.89 b | 69.97 b | 0.231 | 0.038 |
Fe (µg/grain) | 3.86 a | 2.49 b | 2.91 b | 0.45 | 0.01 |
Cu (mg/kg) | 19.57 a | 15.04 a | 13.4 a | 2.613 | 0.156 |
Cu (µg/grain) | 0.782 a | 0.50 a | 0.56 a | 0.43 | 0.01 |
Zn (mg/kg) | 58.7 a | 41.88 b | 24.55 c | 0.013 | 0.004 |
Zn (µg/grain) | 2.348 a | 1.396 b | 1.02 c | 0.55 | 0.01 |
Protein (%) | 13.6 b | 16.84 a | 15.08 a | 0.658 | 0.001 |
Crude Protein (mg/g) | 136.25 b | 168.1 a | 150.6 a | 0.721 | 0.002 |
Crude Protein (mg/grain) | 5.45 b | 5.60 a | 6.27 a | 0.63 | 0.01 |
Fiber: NDF (%) | 89.71 a | 82.65 b | 85.49 a | 0.43 | 0.02 |
ADF% | 14.37 a | 11.45 a | 11.29 a | 0.001 | 0.522 |
Phytate (mg/g dry matter) | 4.31 ab | 4.22 a | 4.63 a | 0.030 | 0.001 |
Phytate/Fe | 3.77 c | 4.76 b | 5.55 a | 0.023 | 0.001 |
Phytate/Zn | 7.27 b | 9.98 b | 18.68 a | 0.45 | 0.003 |
Fatty Acid Composition | Testour | Gergis | Enfidha | f Value | p Value | −log10 (p) | FDR | |
---|---|---|---|---|---|---|---|---|
Myristic acid | C14:0 | 3.21 | 2.48 | 1.93 | 8.33E + 30 | 2.59E − 122 | 121.59 | 3.23E − 122 |
Palmitic acid | C16:0 | 9.70 | 9.29 | 8.21 | 5.25E + 30 | 1.64E − 121 | 120.78 | 1.64E − 121 |
Margaric acid | C17:0 | 3.50 | 1.76 | 2.16 | 2.62E + 31 | 2.64E − 124 | 123.58 | 4.95E − 124 |
Stearic acid | C18:0 | 5.44 | 5.92 | 7.05 | 1.26E + 31 | 4.98E − 123 | 122.3 | 8.30E − 123 |
Arachidic acid | C20:0 | 2.45 | 6.10 | 5.04 | 8.46E + 30 | 2.43E − 122 | 121.61 | 3.23E − 122 |
Behenic acid | C22:0 | 1.99 | 1.64 | 2.23 | 1.03E + 31 | 1.09E − 122 | 121.96 | 1.64E − 122 |
Palmitoleic acid | C16:1 | 4.78 | 14.24 | 12.95 | 5.05E + 32 | 1.92E − 129 | 128.72 | 1.44E − 128 |
Oleic acid | C18:1 | 18.71 | 17.02 | 15.29 | 7.85E + 31 | 3.28E − 126 | 125.48 | 1.64E − 125 |
Gondoic acid | C20:1 | 2.03 | 3.80 | 4.40 | 7.91E + 30 | 3.18E − 122 | 121.5 | 3.67E − 122 |
Erucic acid | C22:1 | 7.10 | 2.57 | 3.22 | 6.41E + 30 | 7.38E − 122 | 121.13 | 7.91E − 122 |
Nervonic acid | C24:1 | 2.28 | 2.00 | 1.73 | 8.37E + 33 | 2.53E − 134 | 133.6 | 3.80E − 133 |
Alpha-linolenic acid | C18:3 | 24.79 | 22.14 | 20.54 | 5.65E + 31 | 1.22E − 125 | 124.91 | 2.61E − 125 |
Docosahexaenoic acid | C22:6 | 4.70 | 3.59 | 3.43 | 6.18E + 31 | 8.56E − 126 | 125.07 | 2.14E − 125 |
Linoleic acid | C18:2 | 14.74 | 13.81 | 16.02 | 1.26E + 31 | 4.98E − 123 | 122.3 | 8.30E − 123 |
Arachidonic acid | C20:4 | 3.12 | 4.77 | 3.73 | 6.50E + 31 | 6.98E − 126 | 125.16 | 2.09E − 125 |
Adrenic acid | C22:4 | 5.88 | 1.90 | 2.83 | 6.91E + 31 | 5.47E − 126 | 125.26 | 2.05E − 125 |
ω3/ω6 | 1.24 | 1.26 | 1.06 | |||||
Ʃ MUFA | 34.90 | 39.63 | 37.59 | |||||
Ʃ PUFA | 53.23 | 46.21 | 46.55 | |||||
Ʃ UFA | 88.13 | 85.84 | 84.14 | |||||
Ʃ SFA | 26.29 | 27.19 | 26.62 | |||||
PUFA/SFA | 2.02 | 1.70 | 1.75 | |||||
SFA/UFA | 0.30 | 0.32 | 0.32 |
Locations/Fusarium Species | Mean Incidence of Fusarium Species (%) | ZEN Mycotoxin Content (µg/kg) | |||||
---|---|---|---|---|---|---|---|
F. culmorum | F. graminearum | Contaminated Samples over Total | Range of ZEN | Average of Total Samples | Average of Positive Samples | Median of Total Samples | |
Testour | 1.3 ± 1.5 | 1.3 ± 1.8 | 57/102 | 0−140 | 92 | 95 | 78 |
Enfidha | 1.1 ± 0.3 | 2.7 ± 1.3 | 47/87 | 0−52 | 41 | 47 | 35 |
Gergis | 0.8 ± 0.7 | 1.5 ± 1.3 | 33/51 | 0−86 | 51 | 57 | 67 |
Total | 137/240 | 0−140 | 53 | 73 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouajila, A.; Lamine, M.; Hamdi, Z.; Ghorbel, A.; Gangashetty, P. A Nutritional Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty Acid Profile, and Geographic Distribution of Fusarium Species and the Mycotoxin Zearalenone (ZEN). Agronomy 2022, 12, 916. https://doi.org/10.3390/agronomy12040916
Bouajila A, Lamine M, Hamdi Z, Ghorbel A, Gangashetty P. A Nutritional Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty Acid Profile, and Geographic Distribution of Fusarium Species and the Mycotoxin Zearalenone (ZEN). Agronomy. 2022; 12(4):916. https://doi.org/10.3390/agronomy12040916
Chicago/Turabian StyleBouajila, Aida, Myriam Lamine, Zohra Hamdi, Abdelwahed Ghorbel, and Prakash Gangashetty. 2022. "A Nutritional Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty Acid Profile, and Geographic Distribution of Fusarium Species and the Mycotoxin Zearalenone (ZEN)" Agronomy 12, no. 4: 916. https://doi.org/10.3390/agronomy12040916
APA StyleBouajila, A., Lamine, M., Hamdi, Z., Ghorbel, A., & Gangashetty, P. (2022). A Nutritional Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty Acid Profile, and Geographic Distribution of Fusarium Species and the Mycotoxin Zearalenone (ZEN). Agronomy, 12(4), 916. https://doi.org/10.3390/agronomy12040916