Effect of Ammonium Sulphate Incorporated with Calcium Nitrate Fertilizers on Nutritional Status, Fruit Set and Yield of Pomegranate Trees cv. Wonderful
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant material, Experimental Site, and Fertilizer Treatments
2.2. Measurement of Nutritional Status
2.2.1. Percentages of Fruit Set and Fruit Drop
2.2.2. Percentages of Fruit Sunburn, Fruit Cracking, Tree Yield, and Marketable Yield
2.3. Statistical Analysis
3. Results and Discussion
3.1. Climatic Data
3.2. Effect of (NH4)2SO4:Ca(NO3)2 Ratios on Nutritional Status in the Leaves
3.3. Effect of (NH4)2SO4:Ca(NO3)2 Ratios on Chlorophyll Contents in the Leaves
3.4. Effect of (NH4)2SO4:Ca(NO3)2 Ratios on Leaf Dry Matter
3.5. Changes in Fruit Characteristics with Changes in (NH4)2SO4:Ca(NO3)2 Ratios
3.5.1. Percentage of Fruit Set
3.5.2. Percentage of Fruit Drop
3.5.3. Percentage of Fruit Cracking
3.5.4. Percentage of Fruit Sunburn
3.6. Changes in Fruit Yield and Marketable Yield (kg/tree) upon (NH4)2SO4:Ca(NO3)2 Ratios
3.6.1. Yield
3.6.2. Marketable Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selahvarzi, Y.; Zamani, Z.; Fatahi, R.; Talaei, A.-R. Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar). Agric. Water Manag. 2017, 192, 189–197. [Google Scholar] [CrossRef]
- Davarpanah, S.; Tehranifar, A.; Zarei, M.; Aran, M.; Davarynejad, G.; Abadía, J. Early Season Foliar Iron Fertilization Increases Fruit Yield and Quality in Pomegranate. Agronomy 2020, 10, 832. [Google Scholar] [CrossRef]
- Modaihsh, A.S.; Sallam, A.S.; Ghoneim, A.M.; Mahjoub, M.O. Assessing salt-affected degraded soils using remote sensing. Case study: Al-Qassim region, Saudi Arabia. J. Food Agric. Environ. 2014, 12, 383–388. [Google Scholar]
- GASTAT (General Authority for Statistics). Agricultural Production Survey Bulletin. Kingdom of Saudi Arabia, 2019. Available online: https://www.stats.gov.sa (accessed on 1 March 2022).
- Legua, P.; Melgarejo, P.; Abdelmajid, H.; Martínez, J.J.; Martinez, R.; Ilham, H.; Hafida, H.; Hernández, F. Total Phenols and Antioxidant Capacity in 10 Moroccan Pomegranate Varieties. J. Food Sci. 2012, 77, C115–C120. [Google Scholar] [CrossRef] [PubMed]
- Palou, L.; Carlos, H.; Aguilar, G.; David, G. Combination of postharvest antifungal chemical treatments and controlled atmosphere storage to control gray mold and improve storability of ‘Wonderful’ pomegranates. Postharvest Biol. Technol. 2007, 43, 133–142. [Google Scholar] [CrossRef]
- Mashavhathakha, K.L. Yield and Quality of Pomegranate on Selected Geographical Areas in Western Cape Province, South Africa. Master’s Thesis, University of South Africa, Pretoria, South Africa, 2014. Unpublished. [Google Scholar]
- Mansour, N. Promising Impacts of Humic Acid and Some Organic Fertilizers on Yield, Fruit Quality and Leaf Mineral Content of Wonderful Pomegranate (Punica granatum L.) Trees. Egypt. J. Hortic. 2018, 45, 105–119. [Google Scholar] [CrossRef]
- Melgarejo-Sánchez, P.; Martínez, J.J.; Hernández, F.; Legua, P.; Martínez, R.; Melgarejo, P. The pomegranate tree in the world: New cultivars and uses. Acta Hortic. 2015, 1089, 327–332. [Google Scholar] [CrossRef]
- Franck, N. The cultivation of Pomegranate cv. Wonderful in Chile. In Zaragoza: CIHEAM/Universidad Miguel Hernández Options Méditerranéennes: Série A, Proceedings of the II International Symposium on the Pomegranate, Madrid, Spain, 19–21 October 2011; Melgarejo, P., Valero, D., Eds.; CIHEAM: Paris, France, 2012; Volume 103, pp. 97–99. [Google Scholar]
- Mohamed, A.S.; Ali, A.A.M.; Nassar, H.N.; Elsawy, A.M. Performance of Manfalouty and Wonderful pomegranate cultivars under four Egyptian climate regions. J. Hortic. Sci. Ornam. Plants 2020, 12, 169–181. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Abdel-Sattar, M.; Mahdy, A.M.; El-Mahrouky, M.A. Co-application of mineral and organic fertilizers under deficit irrigation improves the fruit quality of the Wonderful pomegranate. PeerJ 2021, 9, e11328. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, R.A.; Ghasemzadeh, A.; Ramlan, M.F.; Sakimin, S.Z. Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean. PeerJ 2018, 6, e5280. [Google Scholar] [CrossRef] [Green Version]
- Assimakopoulou, A.; Salmas, I.; Kounavis, N.; Bastas, A.I.; Michopoulou, V.; Michail, E. The Impact of Ammonium to Nitrate Ratio on the Growth and Nutritional Status of Kale. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 848–859. [Google Scholar] [CrossRef] [Green Version]
- Agrios, N.G. Plant Pathology, 5th ed.; Elsevier-Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Torshiz, A.O.; Goldansaz, S.H.; Motesharezadeh, B.; Askari, M.A.; Zarei, A. The Influence of Fertilization on Pomegranate Susceptibility to Infestation by Ectomyelois ceratoniae. Int. J. Fruit Sci. 2020, 20, S1156–S1173. [Google Scholar] [CrossRef]
- Kashyap, P.; Pramanick, K.K.; Meena, K.K.; Meena, V. Effect of N and K application on yield and quality of pomegranate cv. Ganesh under rainfed conditions. Indian J. Hortic. 2012, 69, 322–327. [Google Scholar]
- Korkmaz, N.; Aşkın, M. Effects of calcium and boron foliar application on pomegranate (punica granatum L.) Fruit quality, yield, and seasonal changes of leaf mineral nutrition. Acta Hortic. 2015, 2015, 413–422. [Google Scholar] [CrossRef]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Aran, M.; Abadia, J.; Khorassani, R. Effects of Foliar Nano-nitrogen and Urea Fertilizers on the Physical and Chemical Properties of Pomegranate (Punica granatum cv. Ardestani) Fruits. HortScience 2017, 52, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Porat, R.; Yermiyahu, U.; Heler, Y.; Holland, D.; Dag, A. Effects of nitrogen fertilization on pomegranate fruit, aril and juice quality. J. Sci. Food Agric. 2019, 100, 1678–1686. [Google Scholar] [CrossRef]
- Abd El-Rhman, I.E.; Shadia, A.A. Effect of foliar sprays of urea and zinc on yield and physico chemical composition on jujube (Ziziphus mauritiana). Middle East J. Agric. Res. 2012, 1, 52–57. [Google Scholar]
- Obaid, E.A.; Al-Hadethi, M.E.A. Effect of foliar application with manganese and zinc on pomegranate growth, yield and fruit quality. J. Hortic. Sci. Ornam. Plants 2013, 5, 41–45. [Google Scholar]
- Neilsen, G.; Neilsen, D.; Peryea, F. Response of Soil and Irrigated Fruit Trees to Fertigation or Broadcast Application of Nitrogen, Phosphorus, and Potassium. HortTechnology 1999, 9, 393–401. [Google Scholar] [CrossRef]
- Amiri, M.E.; Fallahi, E.; Golchin, A. Influence of Foliar and Ground Fertilization on Yield, Fruit Quality, and Soil, Leaf, and Fruit Mineral Nutrients in Apple. J. Plant Nutr. 2008, 31, 515–525. [Google Scholar] [CrossRef]
- Tanari, N.; Ramegowda, S.; Thottan, A.; Girigowda, M. Effect of fertigation of primary nutrients on pomegranate (Punica granatum L.) fruit productivity and quality. Trop. Plant Res. 2019, 6, 424–432. [Google Scholar] [CrossRef]
- Bernardi, A.C.D.C.; Carmello, Q.A.D.C.; De Carvalho, S.A.; Machado, E.C.; Medina, C.L.; Gomes, M.D.M.D.A.; Lima, D.M. Nitrogen, Phosphorus and Potassium Fertilization Interactions on the Photosynthesis of Containerized Citrus Nursery Trees. J. Plant Nutr. 2015, 38, 1902–1912. [Google Scholar] [CrossRef]
- Bonner, J.; Varner, J.E. Plant Biochemistry; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Lea, P.J.; Morot-Gaudry, J.F. Plant Nitrogen; Springer Science & Business Media and INRA: Paris, France, 2013. [Google Scholar]
- Lin, Y.-L.; Tsay, Y.-F. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 2017, 68, 2603–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Masry, S.E.M. Physiological Studies to Control Pomegranate Fruit Disorders. Master’s Thesis, Faculty of Agriculture, Assiut University, Assiut, Egypt, 1995. Unpublished. [Google Scholar]
- Lazare, S.; Lyu, Y.; Yermiyahu, U.; Heler, Y.; Ben-Gal, A.; Holland, D.; Dag, A. Optimizing Nitrogen Application for Growth and Productivity of Pomegranates. Agronomy 2020, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Elmer, P.; Spiers, M.; Wood, P. Effects of pre-harvest foliar calcium sprays on fruit calcium levels and brown rot of peaches. Crop Prot. 2007, 26, 11–18. [Google Scholar] [CrossRef]
- Faust, M. Physiology of Temperate Zone Fruit Trees; Wiley-Interscience: Hoboken, NJ, USA, 1989. [Google Scholar]
- Hernández-Muñoz, P.; Almenar, E.; Ocio, M.J.; Gavara, R. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria × ananassa). Postharvest Biol. Technol. 2006, 39, 247–253. [Google Scholar] [CrossRef]
- Lanauskas, J.; Kvikliene, N. Effect of calcium foliar application on some fruit quality characteristics of Sinap Orlovskij apple. Agron. Res. 2006, 4, 31–36. [Google Scholar]
- Bonomelli, C.; Ruiz, R. Effects of foliar and soil calcium application on yield and quality of table grape cv. ‘thompson seedless’. J. Plant Nutr. 2010, 33, 299–314. [Google Scholar] [CrossRef]
- Chen, F.; Liu, H.; Yang, B.; Hou, H.; Yao, Y.; Zhang, S.; Bu, G.; Deng, Y. Quality attributes and cell wall properties of Strawberries (Fragaria × Ananasa Duch.) under calcium chloride treatment. Food Chem. 2011, 1260, 450–459. [Google Scholar] [CrossRef]
- Irfan, P.; Vanjakshi, V.; Prakash, M.K.; Ravi, R.; Kudachikar, V. Calcium chloride extends the keeping quality of fig fruit (Ficus carica L.) during storage and shelf-life. Postharvest Biol. Technol. 2013, 82, 70–75. [Google Scholar] [CrossRef]
- Lal, S.; Ahmed, N.; Mir, J.I. Effect of different chemicals on fruit cracking in pomegranate under Karewa condition of Kashmir valley. Indian J. Plant Physiol. 2011, 16, 326–330. [Google Scholar]
- EL-Akkad, M.M.; EL-Zaharaa, F.; Guda, M.A.; Ibrahim, R.A. Effect of GA3, calcium chloride and vaporguard spraying on yield and fruit quality of Manfalouty pomegranate trees. Assiut J. Agric. Sci. 2016, 47, 181–195. [Google Scholar]
- Masoud, A.A.B.; Radwan, E.M.A.; Abou-Zaid, E.A.A. Effect of some micronutrients, silicon and GA3 spraying on yield and fruit quality of pomegranate. Assiut J. Agric. Sci. 2018, 49, 97–106. [Google Scholar]
- Mastrangelo, M.M.; Rojas, A.M.; Castro, M.A.; Gerschenson, L.N.; Alzamora, S.M. Texture and structure of glucose-infused melon. J. Sci. Food Agric. 2000, 80, 769–776. [Google Scholar] [CrossRef]
- Picchioni, G.; Weinbaum, S.; Brown, P. Retention and the Kinetics of Uptake and Export of Foliage-applied, Labeled Boron by Apple, Pear, Prune, and Sweet Cherry Leaves. J. Am. Soc. Hortic. Sci. 1995, 120, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Lanauskas, J.; Uselis, N.; Valiuskaite, A.; Viskelis, P. Effect of foliar and soil applied fertilizers on strawberry healthiness, yield and berry quality. Agron. Res. 2006, 4, 247–250. [Google Scholar]
- Badawy, I.F.M.; Abou-Zaid, E.A.A.; Hussein, E.M.E. Cracking and fruit quality of Manfalouty pomegranate as affected by pre-harvest of Chitosan, Calcium chloride and Gibbrellic acid spraying. Middle East J. Agric. Res. 2019, 8, 873–882. [Google Scholar]
- Swietlik, D. The interaction between CaCl2 and ammonium-nitrogen on growth, N uptake and translocation in apple and sour orange. Acta Hortic. 2006, 721, 159–164. [Google Scholar] [CrossRef]
- Lea-Cox, J.; Syvertsen, J. Salinity reduces water use and nitrate use efficiency of citrus. Ann. Bot. 1993, 72, 47–54. [Google Scholar] [CrossRef]
- Cushman, J. Osmoregulation in plants: Implications for agriculture. Am. Zool. 2001, 41, 758–769. [Google Scholar] [CrossRef] [Green Version]
- Sima, N.A.K.; Khalvati, M.A.; Hu, Y. Response of Plant Growth to Different Salinization in Root Zone. J. Plant Nutr. 2008, 31, 411–425. [Google Scholar] [CrossRef]
- Yadava, U.L. A rapid and non-destructive method to determine chlorophyll in intact leaves. HortScience 1986, 21, 1449–1450. [Google Scholar]
- Reisenauer, H.M. Soil and Plant Tissue Testing in California; Bulletin 1879; University of California Agriculture and Natural Resources (UC ANR): Singapore, 1976. [Google Scholar]
- Evenhuis, B.; De Waard, P.W. Principles and practices in plant analysis. FAO Soils Bull. 1980, 38, 152–163. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of analysis for soils, plants and waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef] [Green Version]
- Evenhuis, B. Nitrogen Determination; Department of Agricultural Research Royal Tropical Inst.: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Murphy, J.A.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Jackson, N.L. Soil Chemical Analysis; Prentice-Hall Inc.: Englewood Cliffs, NS, USA, 1967. [Google Scholar]
- Carter, M.R. (Ed.) Soil Sampling and Methods of Analysis; Canadian Society of Soil Science, Lewis Publishers: London, UK; Tokyo, Japan, 1993. [Google Scholar]
- Abdel-Sattar, M.; Mohamed, Y.I. Pomegranate Trees Productivity in Response to Three Levels of Irrigation and Slow or Fast Nitrogen Release Fertilizer as Well as their Combinations. J. Plant Prod. 2017, 8, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- SAS Statistical Package. The SAS System for Windows; Version 9.13; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Urlić, B.; Špika, M.J.; Becker, C.; Kläring, H.-P.; Krumbein, A.; Ban, S.G.; Schwarz, D. Effect of NO3 and NH4 concentrations in nutrient solution on yield and nitrate concentration in seasonally grown leaf lettuce. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2017, 67, 748–757. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, J.; Dawuda, M.M.; Xie, J.; Yu, J.; Li, J.; Zhang, X.; Tang, C.; Wang, C.; Gan, Y. Appropriate Ammonium-Nitrate Ratio Improves Nutrient Accumulation and Fruit Quality in Pepper (Capsicum annuum L.). Agronomy 2019, 9, 683. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Guo, S.; Zhou, Y.; Shen, Q.; Zhang, F. Effect of Ammonium and Nitrate Nutrition On Some Physiological Processes in Higher Plants—Growth, Photosynthesis, Photorespiration, and Water Relations. Plant Biol. 2007, 9, 21–29. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Stewart, B. Responses of Crop Plants to Ammonium and Nitrate N. Adv. Agron. 2013, 118, 205–397. [Google Scholar] [CrossRef]
- Marschner, P.; Rengel, Z. Nutrient Availability in Soils. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marshner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 315–330. [Google Scholar]
- Mendoza-Villarreal, R.; Valdez-Aguilar, L.A.; Sandoval-Rangel, A.; Robledo-Torres, V.; Benavides-Mendoza, A. Tolerance of Lisianthus to High Ammonium Levels in Rockwool Culture. J. Plant Nutr. 2014, 38, 73–82. [Google Scholar] [CrossRef]
- Assunção, N.S.; Fernandes, E.S.; Aquino, L.A.; Fernandes, F.L.; Silva, N.O. Nutritional quality of tomatoes as a function of nitrogen sources and doses. Afr. J. Agric. Res. 2018, 13, 996–1000. [Google Scholar]
- Serna, M.D.; Borrás, R.; Legaz, F.; Primo-Millo, E. The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake, mineral composition and yield of citrus. Plant Soil 1992, 147, 13–23. [Google Scholar] [CrossRef]
- Geisseler, D.; Ortiz, R.S.; Diaz, J. Nitrogen nutrition and fertilization of onions (Allium cepa L—A literature review. Sci. Hortic. 2021, 291, 110591. [Google Scholar] [CrossRef]
- Kaur, M.; Sharma, S.; Verma, M.L. Leaf nutrient status of pomegranate (Punica granatum) orchards in district Kullu of Himachal Pradesh. Int. J. Chem. Stud. 2018, 6, 1401–1404. [Google Scholar]
- Kolekar, P.B.; Bhagyaresha, G. Studies on macro and micro nutrient status in leaf tissue of pomegranate (Punica granatum) orchards of Latur district. Int. J. Curr. Microbiol. Appl. Sci. 2018, 6, 112–119. [Google Scholar]
- Tabatabaei, S.J.; Fatemi, L.S.; Fallahi, E. Effect of Ammonium: Nitrate Ratio on Yield, Calcium Concentration, and Photosynthesis Rate in Strawberry. J. Plant Nutr. 2006, 29, 1273–1285. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lai, N.; Gao, K.; Chen, F.; Yuan, L.; Mi, G. Ammonium Inhibits Primary Root Growth by Reducing the Length of Meristem and Elongation Zone and Decreasing Elemental Expansion Rate in the Root Apex in Arabidopsis thaliana. PLoS ONE 2013, 8, e61031. [Google Scholar] [CrossRef] [Green Version]
- Na, L.; Li, Z.; Xiangxiang, M.; Ara, N.; Jinghua, Y.; Mingfang, Z. Effect of Nitrate/Ammonium Ratios on Growth, Root Morphology and Nutrient Elements Uptake of Watermelon (Citrullus lanatus) Seedlings. J. Plant Nutr. 2014, 37, 1859–1872. [Google Scholar] [CrossRef]
- Borrero, C.; Trillas, M.; Delgado, A.; Avilés, M. Effect of ammonium/nitrate ratio in nutrient solution on control of Fusarium wilt of tomato by Trichoderma asperellum T34. Plant Pathol. 2012, 61, 132–139. [Google Scholar] [CrossRef]
- Khorsandi, F.; Yazdi, F.A.; Vazifehshenas, M.R. Foliar zinc fertilization improves marketable fruit yield and quality attributes of pomegranate. Int. J. Agric. Biol. 2009, 11, 766–770. [Google Scholar]
- Hasani, M.; Zamani, Z.; Savaghebi, G.; Fatahi, R. Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. J. Soil Sci. Plant Nutr. 2012, 12, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Abadía, J.; Khorasani, R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 2016, 210, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Chater, J.M.; Garner, L.C. Foliar nutrient applications to ‘Wonderful’ pomegranate (Punica granatum L.). II. Effects on leaf nutrient status and fruit split, yield and size. Sci. Hortic. 2018, 242, 207–213. [Google Scholar] [CrossRef]
- Ibrahim, R.; El-Mahdy, M.; Taha, M.; Shaaban, M. Improving the quantitative and qualitative of Manfalouty pomegranate cultivar. SVU-Int. J. Agric. Sci. 2021, 3, 31–52. [Google Scholar] [CrossRef]
- Hamouda, H.A.; Elham, Z.A.M.; Zahran, N.G. Nutritional status and improving fruit quality by potassium, magnesium and manganese foliar application in pomegranate shrubs. Int. J. ChemTech Res. 2015, 8, 858–867. [Google Scholar]
- Holland, D.; Hatib, K.; Bar-Ya’Akov, I. Pomegranate: Botany, Horticulture, Breeding. In Horticultural Review; Janick, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 127–191. [Google Scholar] [CrossRef]
- Ruamrungsri, S.; Khuankaew, T.; Ohyama, T.; Sato, T. Nitrogen Sources and Its Uptake in Dendrobium Orchid by 15n Tracer Study. Acta Hortic. 2014, 1025, 207–211. [Google Scholar] [CrossRef]
- Pal, R.; Laloraya, M. Effect of Calcium Levels on Chlorophyll Synthesis in Peanut and Linseed Plants. Biochem. Und Physiol. Der Pflanz. 1972, 163, 443–449. [Google Scholar] [CrossRef]
- Eticha, D.; Kwast, A.; Chiachia, T.R.D.S.; Horowitz, N.; Stützel, H. Calcium Nutrition of Orange and Its Impact on Growth, Nutrient Uptake and Leaf Cell Wall. Citrus Res. Technol. 2017, 38, 62–70. [Google Scholar] [CrossRef]
- Yang, H.; Yang, J.; Lv, Y.; He, J. SPAD Values and Nitrogen Nutrition Index for the Evaluation of Rice Nitrogen Status. Plant Prod. Sci. 2014, 17, 81–92. [Google Scholar] [CrossRef]
- Bonasia, A.; Conversa, G.; Gonnella, M.; Serio, F.; Santamaria, P. Effects of ammonium and nitrate nutrition on yield and quality in endive. J. Hortic. Sci. Biotechnol. 2008, 83, 64–70. [Google Scholar] [CrossRef]
- De Oliveira, M.O.A.; Alves, S.M.F.; Freitas, E.F.M.; Faria, H.F.L.; Lisboa, C.F. Relative chlorophyll index on doses of nitrogen fertilization for cherry tomato culture. Afr. J. Agric. Res. 2017, 12, 2946–2953. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D. Nitrogen form and ratio impact Swiss chard (Beta vulgaris subsp. cicla) shoot tissue carotenoid and chlorophyll concentrations. Sci. Hortic. 2016, 204, 99–105. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, B.; Ni, X.; He, Y. Ammonium/nitrate ratio affects the growth and glucosinolates content of pakchoi. Hortic. Bras. 2020, 38, 246–253. [Google Scholar] [CrossRef]
- Da Silva, G.B.; Prado, R.D.M.; Silva, S.L.O.; Campos, C.N.S.; Castellanos, L.G.; Dos Santos, L.C.N.; Barreto, R.F.; Teodoro, P.E. Nitrogen concentrations and proportions of ammonium and nitrate in the nutrition and growth of yellow passion fruit seedlings. J. Plant Nutr. 2020, 43, 2533–2547. [Google Scholar] [CrossRef]
- Podgórska, A.; Burian, M.; Rychter, A.M.; Rasmusson, A.G.; Szal, B. Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves. Physiol. Plant. 2017, 160, 65–83. [Google Scholar] [CrossRef]
- Jampeetong, A.; Brix, H.; Kantawanichkul, S. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aquat. Bot. 2012, 97, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Borgognone, D.; Colla, G.; Rouphael, Y.; Cardarelli, M.; Rea, E.; Schwarz, D. Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Sci. Hortic. 2012, 149, 61–69. [Google Scholar] [CrossRef]
- Huang, L.; Lu, Y.; Gao, X.; Du, G.; Ma, X.; Liu, M.; Guo, J.; Chen, Y. Ammonium-induced oxidative stress on plant growth and antioxidative response of duckweed (Lemna minor L.). Ecol. Eng. 2013, 58, 355–362. [Google Scholar] [CrossRef]
- Cid, N.S.C.; Renato, D.M.P.; Gustavo, C.; Antonio, J.A.O.D.L.N.; Bio, L.C.M.F.A.; Campos, C.N.S.; Prado, R.D.M.; Caione, G.; Neto, A.J.D.L.; Mingotte, F.L.C. Silicon and excess ammonium and nitrate in cucumber plants. Afr. J. Agric. Res. 2016, 11, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lin, X.; Zhang, Y.; Du, S. Effects of nitrogen forms on content and distribution of nitrate and oxalate forms in spinach plants. Acta Hortic. Sin. 2005, 32, 648–652. [Google Scholar]
- Zhu, Y.; Qi, B.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Appropriate NH4+/NO3-Ratio triggers plant growth and nutrient uptake of flowering Chinese cabbage by optimizing the pH value of nutrient solution. Front. Plant Sci. 2021, 12, 656144. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bingruia, L.I.; Xiaopenga, L.I.; Xudonga, Z.H.U.; Chuangenb, Z.H.U.; Haifeng, J.I.A. Evaluation of N fertilizers effects on grape based on the expression of N metabolic genes. Hortic. Plant J. 2016, 2, 261–271. [Google Scholar] [CrossRef]
- Hashem, M.; Omran, Y.A.M.M.; Sallam, N.M.A. Efficacy of yeast extracts in the management of root-knot nematode (Meloidogyne incognita), in Flame Seedless grape vines and the consequent effect on the productivity of the vines. Biocontrol. Sci. Technol. 2008, 18, 357–375. [Google Scholar] [CrossRef]
- El-Khawaga, A.S.; Zaeneldeen, E.M.A.; Yossef, M.A. Response of three pomegranate cultivars (Punica granatum L.) to salinity stress. Middle East J. Agric. Res. 2013, 1, 64–75. [Google Scholar]
- Kumar, R.; Saroj, P.L.; Sharma, B.D.; Yadav, P.K. Studies on flowering induction, sex ratio and fruit set improvement in pomegranate. Indian J. Hortic. 2020, 77, 610–618. [Google Scholar] [CrossRef]
- Miller, J.S.; Diggle, P.K. Correlated evolution of fruit size and sexual expression in andromonoecious Solanum sections Acanthophora and Lasiocarpa (Solanaceae). Am. J. Bot. 2007, 94, 1706–1715. [Google Scholar] [CrossRef] [Green Version]
- Wetzstein, H.Y.; Ravid, N.; Wilkins, E.; Martinelli, A. A Morphological and Histological Characterization of Bisexual and Male Flower Types in Pomegranate. J. Am. Soc. Hortic. Sci. 2011, 136, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, S.M.; Desai, U.T. Effects of plant growth regulators on flower sex in pomegranate (Punica granatum L.). Indian J. Agric. Sci. 1993, 63, 34–35. [Google Scholar]
- Mars, M. Pomegranate plant material: Genetic resources and breeding, a review. Options Mediterr. 2000, 42, 55–62. [Google Scholar]
- Ramniwas; Kaushik, R.A.; Sarolia, D.K. Response of irrigation and fertigation scheduling on flowering, physiological parameters and fruit yield of guava (Psidium guajava L.) under high density planting. Ann. Agric. Res. 2012, 33, 115–120. [Google Scholar]
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R.R. Fertilizers and fertilization strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Petrucio, M.M.; Esteves, F.A. Uptake rates of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata. Rev. Bras. De Biol. 2000, 60, 229–236. [Google Scholar] [CrossRef]
- Torshiz, A.O.; Goldansaz, S.H.; Motesharezadeh, B.; Sarcheshmeh, M.A.A.; Zarei, A. Effect of organic and biological fertilizers on pomegranate trees: Yield, cracking, sunburning and infestation to pomegranate fruit moth Ectomyelois ceratoniae (Lepidoptera: Pyralidae). J. Crop Prot. 2017, 6, 327–340. [Google Scholar]
- Aziz, R.A.; Naira, A.; Moieza, A.; Abubakar, A.R.; Ashraf, N. Effect of plant biostimulants on fruit cracking and quality attributes of pomegranate cv. Kandharikabuli. Sci. Res. Essays 2013, 8, 2171–2175. [Google Scholar] [CrossRef]
- Jackman, R.L.; Stanley, D.W. Perspectives in the textural evaluation of plant foods. Trends Food Sci. Technol. 1995, 6, 187–194. [Google Scholar] [CrossRef]
- Asgharzade, A.; Babaeian, M. Foliar application of calcium borate and micronutrients effects on some characters of apple fruits in Shirvan Region. Ann. Biol. Res. 2012, 3, 527–533. [Google Scholar]
- Davarpanah, S.; Tehranifar, A.; Abadia, J.; Val, J.; Davarynejad, G.; Aran, M.; Khorassani, R. Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv. Ardestani). Sci. Hortic. 2018, 230, 86–91. [Google Scholar] [CrossRef]
- Khadivi-Khub, A. Physiological and genetic factors influencing fruit cracking. Acta Physiol. Plant. 2015, 37, 1718. [Google Scholar] [CrossRef]
- Hegazi, A.; Samra, N.R.; El-Baz, E.E.T.; Khalil, B.M.; Gawish, M.S. Improving fruit quality of Manfaloty and Wonderful pomegranates by using bagging and some spray treatments with gibberellic acid, calcium chloride and kaolin. J. Plant Prod. Mansoura Univ. 2014, 5, 779–792. [Google Scholar]
- Abou El-Wafa, M. Effect of some treatments on reducing sunburn in Wonderful pomegranate fruit trees. Egypt. J. Hortic. 2015, 42, 795–806. [Google Scholar]
- Harhash, M.M.; Aly, M.A.M.; Abd El-Megeed, N.A.; Ben Hifaa, A.B.S. Effect of some growth regulators, nutrient elements and kaolin on cracking and fruit quality of pomegranate ‘Wonderful’ cultivar. J. Adv. Agric. Res. 2019, 24, 280–297. [Google Scholar] [CrossRef]
- Saad, F.A.; Shaheen, M.A.; Tawfik, H.A. Anatomical study of cracking in pomegranate fruit. Alex. J. Agric. Res. 1988, 33, 155–166. [Google Scholar]
- Bakeer, S. Effect of ammonium nitrate fertilizer and calcium chloride foliar spray on fruit cracking and sunburn of Manfalouty pomegranate trees. Sci. Hortic. 2016, 209, 300–308. [Google Scholar] [CrossRef]
- Melgarejo, P.; Martínez, J.; Hernández, F.; Martínez-Font, R.; Barrows, P.; Erez, A. Kaolin treatment to reduce pomegranate sunburn. Sci. Hortic. 2004, 100, 349–353. [Google Scholar] [CrossRef]
- Parashar, A.; Ansari, A. A therapy to protect pomegranate (Punica granatum L.) from sunburn. Int. J. Compr. Pharm. 2012, 3, 1–3. [Google Scholar]
- Ghorbani, M.; Dabbagh, G.R.; Yousefi, S.; Khademi, S.; Taki, M. The effect of application of different kinds of covers on the sunburn and internal qualities of pomegranate in Iran. Biol. Forum—Int. J. 2015, 7, 64–68. [Google Scholar]
- Salama, A.S.; El Gammal, O.H.; Shaddad, A.M.G.E. Effect of Salicylic and Ascorbic Acids on Yield and Fruit Quality of Wonderful Pomegranate Trees. Int. J. Adv. Res. 2020, 8, 1059–1068. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, A. Salicylic Acid: A Plant Hormone; Springer Science and Business Media LLC: Berlin, Germany, 2007; pp. 1–14. [Google Scholar]
- Taghavi, S.T.; Babalar, M.; Ebadi, A.; Ebrahimzadeh, H.; Asgari, A.M. Effects of nitrate to ammonium ratio on yield and nitrogen metabolism of strawberry (Fragaria × ananassa cv. Selva). Int. J. Agric. Biol. 2004, 6, 994–997. [Google Scholar]
- Tanan, T.T.; da Silva, A.L.; de Oliveira, U.C.; Neto, L.P.G.; do Nascimento, M.N.D. Effect of nitrogen sources on fruit characteristics and seed physiological quality of Physalis angulata L. Pesq. Agropec. Trop. Goiânia 2019, 49, e55074. [Google Scholar] [CrossRef] [Green Version]
- Khalil, N.H.; Agah, R.J. Effect of chemical, organic and bio fertilization on growth and yield of strawberry plant. Int. J. Adv. Chem. Eng. Biol. Sci. 2017, 4, 167–171. [Google Scholar]
- Santamaría, P.; Elia, A.; Parente, A.; Serio, F. Fertilization strategies for lowering nitrate content in leafy vegetables: Chicory and rocket salad cases. J. Plant Nutr. 1998, 21, 1791–1803. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Nitrogen. In Principles of Plant Nutrition; Springer: Berlin, Germany, 2001; pp. 397–434. [Google Scholar]
- Zhang, F.C.; Kang, S.Z.; Li, F.S.; Zhang, J.H. Growth and major nutrient concentrations in brassica campestris supplied with different NH4+/NO3-ratios. J. Integr. Plant Biol. 2007, 49, 455–462. [Google Scholar] [CrossRef]
Soil Depth (cm) | Soil Fractions | Soil Texture | pH | Electrical Conductivity (dS/m) | CaCO3 (%) | ||
---|---|---|---|---|---|---|---|
Sand (%) | Clay (%) | Silt (%) | |||||
0–30 | 57.9 | 14.9 | 27.2 | Sandy loam | 8.3 | 2.47 | 3.6 |
30–60 | 50.3 | 15.9 | 33.8 | Loam | 7.9 | 1.11 | 3.9 |
Average | 54.1 | 15.4 | 30.5 | Sandy loam | 8.1 | 1.79 | 3.8 |
Soil Depth (cm) | Soluble Cations (meq/L) | Soluble Anions (meq/L) | |||||
---|---|---|---|---|---|---|---|
Na+ | Ca2+ | Mg2+ | K+ | HCO3− | Cl− | SO42 − | |
0–30 | 2.0 | 9.6 | 13.0 | 0.1 | 1.3 | 13.3 | 10.1 |
30–60 | 4.3 | 3.6 | 2.4 | 0.8 | 2.1 | 6.0 | 3.0 |
Average | 3.2 | 6.6 | 7.7 | 0.4 | 1.7 | 9.7 | 6.55 |
Months | Relative Humidity (%) | Minimum Temperature (°C) | Maximum Temperature (°C) | Rainfall (mm) |
---|---|---|---|---|
January | 66 | 9.2 | 22.3 | 4.4 |
February | 67 | 8.9 | 21.8 | 17.9 |
March | 48 | 10.9 | 26.3 | 1.7 |
April | 48 | 16.0 | 30.8 | 14.2 |
May | 35 | 23.0 | 38.8 | 1.2 |
June | 21 | 26.8 | 44.2 | 0.0 |
July | 22 | 26.2 | 44.3 | 0.0 |
August | 22 | 25.9 | 43.7 | 0.0 |
September | 24 | 24.9 | 42.9 | 0.0 |
October | 41 | 21.5 | 37.1 | 1.3 |
November | 69 | 14.1 | 26.9 | 27.8 |
December | 63 | 8.6 | 32.7 | 3.9 |
Average | 43.8 | 18.0 | 34.3 | 6.0 |
Minimum | 21 | 8.6 | 21.8 | 0.0 |
Maximum | 69 | 26.8 | 44.3 | 27.8 |
Total | 72.4 |
(NH4)2SO4:Ca(NO3)2 Ratio | (NH4)2SO4 | Ca(NO3)2 | Total N Unit/ha | Total CaO Unit/ha | ||||
---|---|---|---|---|---|---|---|---|
Amount (kg) | No. of Units/ha | Amount (kg) | No. of Units/ha | |||||
N | CaO | N | CaO | |||||
100:0 | 952.38 | 200 | 0 | 0 | 0 | 0 | 200 | 0 |
90:10 | 857.14 | 180 | 0 | 133.33 | 20 | 36 | 200 | 36 |
80:20 | 761.90 | 160 | 0 | 266.66 | 40 | 72 | 200 | 72 |
70:30 | 666.67 | 140 | 0 | 400.00 | 60 | 108 | 200 | 108 |
60:40 | 571.43 | 120 | 0 | 533.32 | 80 | 144 | 200 | 144 |
Season | (NH4)2SO4:Ca(NO3) | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | Fe (mg/kg) |
---|---|---|---|---|---|---|---|
2019 | 100:0 | 1.45 e | 0.43 a | 1.14 e | 0.47 e | 0.40 d | 127.00 a |
90:10 | 1.63 d | 0.39 b | 1.24 d | 0.62 d | 0.42 cd | 124.50 b | |
80:20 | 1.73 c | 0.35 c | 1.33 c | 0.75 c | 0.43 c | 121.00 c | |
70:30 | 1.80 b | 0.34 cd | 1.38 b | 0.85 b | 0.47 b | 118.25 d | |
60:40 | 2.08 a | 0.33 d | 1.42 a | 0.94 a | 0.54 a | 115.50 e | |
LSD (5%) | 0.04 | 0.02 | 0.02 | 0.03 | 0.02 | 2.02 | |
2020 | 100:0 | 1.53 e | 0.45 a | 1.17 e | 0.47 e | 0.41 d | 129.25 a |
90:10 | 1.64 d | 0.38 b | 1.26 d | 0.64 d | 0.45 c | 125.50 b | |
80:20 | 1.75 c | 0.33 c | 1.34 c | 0.77 c | 0.48 | 121.00 c | |
70:30 | 1.84 b | 0.32 c | 1.41 b | 0.93 b | 0.49 b | 117.25 d | |
60:40 | 2.14 a | 0.29 d | 1.45 a | 0.98 a | 0.56 a | 114.00 e | |
LSD (5%) | 0.03 | 0.02 | 0.03 | 0.03 | 0.02 | 1.93 |
Season | (NH4)2SO4:Ca(NO3)2 ratio | Fruit Set (%) | Fruit Drop (%) | Fruit Cracking (%) | Fruit Sunburn (%) |
---|---|---|---|---|---|
2019 | 100:0 | 17.40 e | 31.72 a | 19.91 a | 7.81 c |
90:10 | 20.23 d | 23.44 b | 15.49 b | 8.09 bc | |
80:20 | 27.16 c | 17.53 c | 11.38 c | 8.98 ba | |
70:30 | 31.85 b | 8.05 d | 6.45 e | 9.54 a | |
60:40 | 33.65 a | 6.74 d | 9.56 d | 10.08 a | |
LSD (5%) | 0.93 | 1.75 | 1.21 | 1.14 | |
2020 | 100:0 | 16.19 e | 32.19 a | 20.19 a | 7.14 d |
90:10 | 21.13 d | 22.10 b | 14.19 b | 8.39 c | |
80:20 | 25.66 c | 16.58 c | 10.09 c | 9.20 bc | |
70:30 | 29.92 b | 7.79 d | 5.64 e | 9.74 b | |
60:40 | 31.40 a | 6.25 d | 8.20 d | 10.77 a | |
LSD (5%) | 0.87 | 2.19 | 1.68 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dosary, N.M.N.; Abdel-Sattar, M.; Aboukarima, A.M. Effect of Ammonium Sulphate Incorporated with Calcium Nitrate Fertilizers on Nutritional Status, Fruit Set and Yield of Pomegranate Trees cv. Wonderful. Agronomy 2022, 12, 971. https://doi.org/10.3390/agronomy12040971
Al-Dosary NMN, Abdel-Sattar M, Aboukarima AM. Effect of Ammonium Sulphate Incorporated with Calcium Nitrate Fertilizers on Nutritional Status, Fruit Set and Yield of Pomegranate Trees cv. Wonderful. Agronomy. 2022; 12(4):971. https://doi.org/10.3390/agronomy12040971
Chicago/Turabian StyleAl-Dosary, Naji Mordi Naji, Mahmoud Abdel-Sattar, and Abdulwahed M. Aboukarima. 2022. "Effect of Ammonium Sulphate Incorporated with Calcium Nitrate Fertilizers on Nutritional Status, Fruit Set and Yield of Pomegranate Trees cv. Wonderful" Agronomy 12, no. 4: 971. https://doi.org/10.3390/agronomy12040971
APA StyleAl-Dosary, N. M. N., Abdel-Sattar, M., & Aboukarima, A. M. (2022). Effect of Ammonium Sulphate Incorporated with Calcium Nitrate Fertilizers on Nutritional Status, Fruit Set and Yield of Pomegranate Trees cv. Wonderful. Agronomy, 12(4), 971. https://doi.org/10.3390/agronomy12040971