Nutritional Composition and Antioxidant Activity of Selected Underutilized Fruits Grown in Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemicals and Reagents
2.3. Sample Preparation
2.4. Determination of Proximate Composition
2.5. Determination of Total Dietary Fiber (TDF) Content
2.6. Preparation of Plant Extracts for Antioxidant and Total Phenolic Content
2.7. Determination of Total Phenolic Content (TPC)
2.8. Determination of Antioxidant Activity
2.8.1. Determination of DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical Scavenging Activity
2.8.2. Determination of Ferric Reducing Antioxidant Power (FRAP)
2.9. Quantification of Vanillin
2.10. Determination of Mineral Content by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.11. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Total Dietary Fiber (TDF) Content
3.3. Total Phenolic Content (TPC) and Antioxidant Activity (FRAP and DPPH)
3.3.1. Total Phenolic Content (TPC)
3.3.2. Antioxidant Activity (AOA)
3.4. Vanillin Content
3.5. Mineral Content
4. Discussion
4.1. Proximate Composition
4.2. Total Dietary Fiber (TDF) Content
4.3. Total Phenolic Content (TPC) and Antioxidant Activity (FRAP and DPPH)
4.3.1. Total Phenolic Content (TPC)
4.3.2. Antioxidant Activity (AOA)
4.4. Vanillin Content
4.5. Mineral Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aune, D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv. Nutr. 2019, 10, S404–S421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streppel, M.; Ocké, M.; Boshuizen, H.C.; Kok, F.J.; Kromhout, D. Dietary fiber intake in relation to coronary heart disease and all-cause mortality over 40 y: The Zutphen Study. Am. J. Clin. Nutr. 2008, 88, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Darren, C.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer, and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cornago, A.; Crowe, F.L.; Appleby, P.N.; Bradbury, K.E.; Wood, A.M.; Jakobsen, M.U.; Johnson, L.; Sacerdote, C.; Steur, M.; Weiderpass, E.; et al. Plant foods, dietary fiber and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Int. J. Epidemiol. 2021, 50, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Gunatilleke, N.; Pethiyagoda, R.; Gunatilleke, S. Biodiversity of Sri Lanka. J. Natl. Sci. Found. 2017, 36, 25. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, S.; Kumar, L.; Kariyawasam, C. Neglected and underutilized fruit species in Sri Lanka: Prioritisation and understanding the potential distribution under climate change. Agronomy 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Dahanayake, N. Some neglected and underutilized fruit crops in Sri Lanka. Int. J. Sci. Res. 2015, 5, 1–7. [Google Scholar]
- Wargovich, M.J. Anticancer properties of fruits and vegetables. HortScience 2000, 35, 573–575. [Google Scholar] [CrossRef] [Green Version]
- Magaia, T.; Uamusse, A.; Sjöholmet, I.; Skog, K. Proximate analysis of five wild fruits of Mozambique. Sci. World J. 2013, 2013, 601435. [Google Scholar] [CrossRef] [Green Version]
- Hettiarachchi, H.A.C.O.; Gunathilake, K.D.P. Bioactives and bioactivity of selected underutilized fruits, vegetables and legumes grown in Sri Lanka: A review. J. Med. Plants Stud. 2020, 8, 34–44. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.-M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Pap, N.; Fidelis, M.; Azevedo, L.; Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Burri, J.; Graf, M.; Lambelet, P.; Löliger, J. Vanillin: More than a flavouring agent-a potent antioxidant. J. Sci. Food Agric. 1989, 48, 49–56. [Google Scholar] [CrossRef]
- Goodner, K.; Jella, P.; Rouseff, R. Determination of Vanillin in Orange, Grapefruit, Tangerine, Lemon and Lime Juices Using GC−Olfactometry and GC−MS/MS. J. Agric. Food Chem. 2000, 48, 2882–2886. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G. Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience 2000, 35, 588–592. [Google Scholar] [CrossRef] [Green Version]
- Bythrow, J.D. Vanilla as a Medicinal Plant. Semin. Integr. Med. 2005, 3, 129–131. [Google Scholar] [CrossRef]
- Oliveira, C.B.S.; Meurer, Y.S.R.; Oliveira, M.G.; Medeiros, W.M.T.Q.; Silva, F.O.N.; Brito, A.C.F.; Pontes, D.L.; Andrade-Neto, V.F. Comparative Study on the Antioxidant and Anti-Toxoplasma Activities of Vanillin and Its Resorcinarene Derivative. Molecules 2014, 19, 5898–5912. [Google Scholar] [CrossRef] [Green Version]
- Sakho, M.; Chassagne, D.; Crouzet, J. African Mango Glycosidically Bound Volatile Compounds. J. Agric. Food Chem. 1997, 45, 883–888. [Google Scholar] [CrossRef]
- Hirvi, T.; Honkanen, E. The aroma of blueberries. J. Sci. Food Agric. 1983, 34, 992–996. [Google Scholar] [CrossRef]
- Pyysalo, T.; Honkanen, E.; Hirvi, T. Volatiles of wild strawberries, Fragaria vesca L., compared to those of cultivated berries, Fragaria. times. ananassa cv Senga Sengana. J. Agric. Food Chem. 1979, 27, 19–22. [Google Scholar] [CrossRef]
- Ong, P.; Acree, T. Gas Chromatography/Olfactory Analysis of Lychee (Litchi chinesis Sonn.). J. Agric. Food Chem. 1998, 46, 2282–2286. [Google Scholar] [CrossRef]
- Latimer, G.W. AOAC 930.15, AOAC Official Methods of Analysis, 21st ed.; Volume 1, AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Latimer, G.W. AOAC 942.05, AOAC Official Methods of Analysis, 21st ed.; Volume 1, AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Latimer, G.W. AOAC 2003.05, AOAC Official Methods of Analysis, 21st ed.; Volume 1, AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Latimer, G.W. AOAC 995.04, AOAC Official Methods of Analysis, 21st ed.; Volume 1, AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Latimer, G.W. AOAC 985.29, AOAC Official Methods of Analysis, 21st ed.; Volume 3, AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Latimer, G.W. AOAC 955.04, AOAC Official Methods of Analysis, 21st ed.; Volume 1, AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Canuto, G.; Oliveira, D.; da Conceição, L.; Farah, J.P.S.; Tavares, M.F.M. Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chem. 2016, 192, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Orthofer, R.; Lamuela-Raventós, R. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Oxidants and Antioxidants Part A. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Deng, J.; Cheng, W.; Yang, G. A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chem. 2011, 125, 1430–1435. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of Antioxidant Power: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Waliszewski, K.N.; Pardio, V.T.; Ovando, S.L. A simple and rapid HPLC technique for vanillin determination in alcohol extract. Food Chem. 2006, 101, 1059–1062. [Google Scholar] [CrossRef]
- Sujalmi, S.; Suharso, S.; Supriyanto, R.; Buchari, B. 2010. Determination of vanillin in vanilla (Vanilla planifolia Andrews) from Lampung Indonesia by high performance liquid chromatography. Indones. J. Chem. 2010, 5, 7–10. [Google Scholar]
- Zarcinas, B.; Cartwright, B.; Spouncer, L.R. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1987, 18, 131–146. [Google Scholar] [CrossRef]
- Silva, R.B.; Silva-júnior, E.V.; Rodrigues, L.; Andradesuzene, L.H.C.; Da Silva, S.I.; Harand, W.; Oliveira, A.F.M. A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae. An. Acad. Bras. Ciênc. 2015, 87, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- de Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry, and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlett, J.; Vollendorf, N. Dietary fiber content and composition of different forms of fruits. Food Chem. 1994, 51, 39–44. [Google Scholar] [CrossRef]
- Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef] [Green Version]
- Song, F.-L.; Gan, R.-Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.-B. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef]
- Jayathilake, C.; Rizliya, V.; Liyanage, R. Antioxidant and free radical scavenging capacity of extensively used medicinal plants in Sri Lanka. Proc. Food Sci. 2016, 6, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra), and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Denardin, C.; Hirsch, G.; da Rocha, R.; Vizzotto, M.; Henriques, A.; Moreira, J.; Guma, F.; Emanuelli, T. Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J. Food Drug Anal. 2015, 23, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Attanayake, A.P.; Jayatilaka, K.A.P.W. Evaluation of antioxidant properties of 20 medicinal plant extracts traditionally used in Ayurvedic medicine in Sri Lanka. Indian J. Tradit. Knowl. 2016, 15, 50–56. [Google Scholar]
- Djenidi, H.; Khennouf, S.; Bouaziz, A. Antioxidant activity and phenolic content of commonly consumed fruits and vegetables in Algeria. Prog. Nutr. 2021, 22, 224–235. [Google Scholar]
- Hangun-Balkir, Y.; McKenney, M. Determination of antioxidant activities of berries and resveratrol. Green Chem. Lett. Rev. 2012, 5, 147–153. [Google Scholar] [CrossRef]
- Shyamala, K.A.B.; Naidu, M. Vanilla- Its science of cultivation, curing, chemistry, and nutraceutical properties. Crit. Rev. Food Sci. Nutr. 2013, 53, 1250–1276. [Google Scholar]
- Dnyaneshwar, J.; Rekha, B.N.; Gogate, P.R.; Rathod, V.K. Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction. J. Food Eng. 2009, 93, 421–426. [Google Scholar]
- Groff, J.; Gropper, S. Advanced Nutrition and Human Metabolism, 5th ed.; West Publishing Company: St Paul, Australia, 2009; p. 561. [Google Scholar]
Fruit | Moisture | Ash | Protein | Fat |
---|---|---|---|---|
Màdan | 82.65 ± 1.67 a,b | 4.67 ± 0.44 b | 0.18 ± 0.01 a | 1.62 ± 0.22 b |
Uguressa | 78.61 ± 1.17 a | 3.17 ± 0.43 a | 0.53 ± 0.03 b | 0.5 ± 0.08 a,b |
Maha karamba | 79.37 ± 0.28 a | 5.74 ± 0.04 c | 0.92 ± 0.03 c | 4.58 ± 0.06 c |
Himbutu | 80.83 ± 1.06 a | 3.34 ± 0.47 a | 1.15 ± 0.05 d | 0.42 ± 0.13 a,b |
Barbados cherry | 88.01 ± 0.48 c | 3.01 ± 0.25 a | 1.24 ± 0.13 d | 0.18 ± 0.02 a |
Ceylon gooseberry | 85.71 ± 0.48 b,c | 5.66 ± 0.29 c | 1.05 ± 0.09 c,d | 0.22 ± 0.02 a,b |
Fruit | Dietary Fiber Content |
---|---|
Màdan (Syzygium cumini) | 6.23 ± 0.21 a,b |
Ugurassa (Flacourtia indica) | 12.25 ± 0.29 c |
Maha karamba (Carissa carandas) | 8.26 ± 0.87 b |
Himbutu (Salacia chinensis) | 6.07 ± 0.63 a,b |
Barbados cherry (Malpighia emarginata) | 6.01 ± 1.10 a |
Ceylon gooseberry (Dovyalis hebecarpa) | 5.37 ± 2.53 a |
Fruits | TPC mg GAE/g Fruit | FRAP mM Fe 2+/g Fruit | DPPH IC50 (mg/mL) |
---|---|---|---|
Màdan | 8.901 ± 0.81 a | 0.020 ± 0.003 a | 0.067 ± 0.001 b |
Uguressa | 8.137 ± 0.89 a | 0.015 ± 0.003 a | 0.089 ± 0.001 c |
Maha karamba | 7.153 ± 0.21 a | 0.020 ± 0.002 a | 0.072 ± 0.001 b |
Himbutu | 9.148 ± 0.10 a | 0.018 ± 0.003 a | 0.043 ± 0.004 a |
Barbados cherry | 10.295 ± 0.29 a | 0.022 ± 0.003 a | 0.040 ± 0.002 a |
Ceylon gooseberry | 6.770 ± 0.38 a | 0.020 ± 0.004 a | 0.070 ± 0.001 b |
Mineral | Madan | Uguressa | Maha Karamba | Himbatu | Barbados Cherry | Ceylon Gooseberry |
---|---|---|---|---|---|---|
K | 149.70 ± 0.75 d | 434.60 ± 0.36 a | 219.20 ± 0.70 b | 109.10 ± 0.36 e | 150.50 ± 0.79 d | 216.00 ± 1.28 c |
Mg | 13.25 ± 0.38 a | 9.83 ± 0.74 b | 8.33 ± 0.34 c | 12.32 ± 0.37 a | 2.10 ± 0.19 d | 1.95 ± 0.23 d |
Na | 5.28 ± 0.30 a | 3.56 ± 0.14 c | 4.70 ± 0.20 b | 2.86 ± 0.11 d | 2.85 ± 0.15 d | 2.90 ± 0.29 d |
P | 9.73 ± 0.11 c | 16.69 ± 0.46 a | 15.16 ± 0.45 b | 7.03 ± 0.21 e | 7.50 ± 0.49 d,e | 8.50 ± 0.71 c,d |
Ca | 9.45 ± 0.58 e | 23.43 ± 0.45 a | 16.93 ± 0.41 c | 14.29 ± 0.59 d | 18.50 ± 0.71 b | 19.00 ± 0.29 b |
Fe | 0.65 ± 0.12 a | 0.28 ± 0.08 b | 0.29 ± 0.04 b | 0.15 ± 0.03 b | 0.14 ± 0.04 b | 0.14 ± 0.05 b |
Mn | 0.11 ± 0.06 c | 0.47 ± 0.11 b | 0.08 ± 0.03 c | 0.98 ± 0.18 a | 0.02 ± 0.00 c | 0.02 ± 0.01 c |
Al | 1.15 ± 0.16 a | 0.33 ± 0.04 c,d | 0.54 ± 0.11 b,c | 0.12 ± 0.04 d | 0.65 ± 0.11 b | 0.44 ± 0.05 b,c |
Cu | 0.07 ± 0.03 a,b | 0.11 ± 0.04 a | 0.11 ± 0.03 a | 0.08 ± 0.03 a,b | 0.03 ± 0.00 b | 0.03 ± 0.00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, S.; Silva, A.B.G.; Amarathunga, Y.; De Silva, S.; Jayatissa, R.; Gamage, A.; Merah, O.; Madhujith, T. Nutritional Composition and Antioxidant Activity of Selected Underutilized Fruits Grown in Sri Lanka. Agronomy 2022, 12, 1073. https://doi.org/10.3390/agronomy12051073
Perera S, Silva ABG, Amarathunga Y, De Silva S, Jayatissa R, Gamage A, Merah O, Madhujith T. Nutritional Composition and Antioxidant Activity of Selected Underutilized Fruits Grown in Sri Lanka. Agronomy. 2022; 12(5):1073. https://doi.org/10.3390/agronomy12051073
Chicago/Turabian StylePerera, Shamara, A. Buddhika G. Silva, Yashora Amarathunga, Shiromi De Silva, Renuka Jayatissa, Ashoka Gamage, Othmane Merah, and Terrence Madhujith. 2022. "Nutritional Composition and Antioxidant Activity of Selected Underutilized Fruits Grown in Sri Lanka" Agronomy 12, no. 5: 1073. https://doi.org/10.3390/agronomy12051073
APA StylePerera, S., Silva, A. B. G., Amarathunga, Y., De Silva, S., Jayatissa, R., Gamage, A., Merah, O., & Madhujith, T. (2022). Nutritional Composition and Antioxidant Activity of Selected Underutilized Fruits Grown in Sri Lanka. Agronomy, 12(5), 1073. https://doi.org/10.3390/agronomy12051073