Assessing Ecosystem Services of Rice–Fish Co-Culture and Rice Monoculture in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Description
2.2. Rice–Fish Co-Culture and Conventional Rice Systems
2.2.1. Rice–Fish Co-Culture System
2.2.2. Conventional Rice System
2.3. Data Collection
2.4. Ecosystem Service Value Evaluation Method
2.4.1. Provisioning Services
2.4.2. Gas Regulation
2.4.3. Temperature and Humidity Regulation
2.4.4. Air Purification
2.4.5. Pest Control
2.4.6. Increase in Fauna Diversity and Microorganisms
2.4.7. Maintaining Soil Nutrients
2.4.8. Water Conditions
2.4.9. Energy Losses for Irrigation
CICES V5.1 Section | Division | Ecosystem Services of Rice–Fish Co-Cultures | Goods and Benefits Valued | Direction of Value |
---|---|---|---|---|
Provisioning | Biomass | 1. Rice and fish provided food and nutrition | Provisioning service | Positive |
Regulation and Maintenance | Transformation of biochemical or physical inputs to ecosystems | 2. CO2 fixation from photosynthesis | Gas regulation | Positive |
3. O2 release from photosynthesis | Gas regulation | Positive | ||
4. SO2, NOx, HF, and dust absorbed by the paddy field | Air purification | Positive | ||
5. Nutrient cycling and organic accumulation | Maintaining soil nutrients | Positive | ||
6. Reduction of GHG emissions | Maintaining soil nutrients | Positive | ||
Regulation of physical, chemical, biological conditions | 7. Reducing land abandonment | X | X | |
8. Improving soil salinization | X | X | ||
9. Pesticides and herbicides reduction | Pest control | Positive | ||
10. Regulation of temperature and humidity | Climate control | Positive | ||
11. Enhancing humidification and rain | X | X | ||
12. Increase of fauna diversity and micro-organisms | Biodiversity | Positive | ||
13. Increase water storage | Water storage and retention | Positive | ||
14. Groundwater conservation | Water storage and retention | Positive | ||
15. Energy losses in lifting irrigation | Energy losses for irrigation | Negative | ||
Cultural | Other types of regulation and maintenance service | 16. Securing the rural poor | X | X |
Direct, in situ, and outdoor interactions with living systems that depend on presence in the environmental setting | 17. Development of tourism | Development of tourism | Positive | |
18. Experiential use of plants, animals, and land | X | X | ||
19. Education opportunities | X | X | ||
20. Research subject | X | X | ||
21. Cultural value and heritage | X | X | ||
22. Artistic inspiration (theater, painting, sculpture) | X | X | ||
23. Willingness to preserve for future generations | X | X |
2.4.10. Development of Tourism
3. Results
3.1. Farm Investigation
3.1.1. Rice–Fish Co-Culture Farms
3.1.2. Conventional Rice Farms
3.2. Provisioning Services
3.3. Regulation and Maintenance
3.3.1. Gas Regulation
3.3.2. Nutrient Cycling and Organic Accumulation, and Reduction of GHG Emissions
3.3.3. Pesticide and Herbicide Reduction
3.3.4. Regulation of Temperature and Humidity
3.3.5. Increase in Fauna Diversity and Microorganisms
3.3.6. Increase in Water Storage
3.3.7. Groundwater Conservation
3.3.8. Energy Losses in Lift Irrigation
3.4. Cultural Services
Development of Tourism
4. Discussion
4.1. Ecosystem Service Value of the Rice–Fish Co-Culture System
4.2. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wynn, T. Rice Farming: How the Economic Crisis Affects the Rice Industry; Rice Producers Forum USRPA: Houston, TX, USA, 2008. [Google Scholar]
- Food and Agricultural Organization (FAO). Rice in the World; The Fifth External Programme and Management Review of the International Plant Genetic Resources Institute (IPGRI); FAO: Rome, Italy, 2001. [Google Scholar]
- Global Rice Science Partnership (GRiSP). Rice Almanac, 4th ed.; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Office of Agricultural Economics (OAE). Agricultural Statistics of Thailand; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2021. Available online: https://www.oae.go.th/assets/portals/1/files/jounal/2565/yearbook2564.pdf (accessed on 20 December 2021).
- Halwart, M.; Gupta, M.V. Culture of Fish in Rice Fields; FAO: Rome, Italy; The WorldFish Center: Penang, Malaysia, 2004. [Google Scholar]
- Pingali, P.L.; Moya, P.F.; Velasco, L.E. The Post-Green Revolution Blues in Asian Rice Production—The Diminished Gap between Experiment Station and Farmer Yields; Social Science Division Paper No. 90-01; International Rice Researech Institute: Manila, Philippines, 1990. [Google Scholar]
- Dwiyana, E.; Mendoza, T.C. Determinants of productivity and profitability of rice–fish farming systems. Asia Life Sci. 2008, 17, 21–42. [Google Scholar]
- Xie, J.; Hu, L.L.; Tang, J.J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X. Ecological mechanisms underlying the sustainability of the agriculture heritage rice–fish coculture system. Proc. Natl. Acad. Sci. USA 2011, 108, 1381–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Hu, L.L.; Ren, W.Z.; Guo, L.; Tang, J.J.; Shu, M.A.; Chen, X. Rice-soft shell turtle coculture effects on yield and its environment. Agric. Ecosyst. Environ. 2016, 224, 116–122. [Google Scholar] [CrossRef]
- Frei, M.; Becker, K. Integrated rice–fish culture: Coupled production saves resources. Nat. Resour. Forum. 2005, 29, 135–143. [Google Scholar] [CrossRef]
- Ahmed, N.; Garnett, S.T. Integrated rice-fish farming in Bangladesh: Meeting the challenges of food security. Food Secur. 2011, 3, 81–92. [Google Scholar] [CrossRef]
- Ali, A.B. Seasonal dynamics of microcrustacean and rotifer communities in Malaysian rice fields used for rice-fish farming. Hydrobiologia 1990, 206, 139–148. [Google Scholar] [CrossRef]
- Mackay, K.T.; Chapman, G.; Sollows, J.; Thongpan, N. Rice-fish culture in northeast Thailand: Stability and sustainability. In Global Perspectives on Agroecology and Sustainable Agricultural System; Allen, P., van Dusen, D., Eds.; University of California: Santa Cruz, CA, USA, 1987; pp. 355–372. [Google Scholar]
- Willer, H.; Yussefi, M. The World of Organic Agriculture—Statistics and Emerging Trends 2006. International Federation of Organic Agriculture Movements (IFOAM), Research Institute of Organic Agriculture FiBL, 2006. Available online: https://orgprints.org/id/eprint/5161/2/willer-yussefi-2005-world-of-organic.pdf (accessed on 8 February 2022).
- Office of Agricultural Economics (OAE). Organic Agriculture Action Plan 2017–2022; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2020.
- Lee, S. In the Era of Climate Change: Moving Beyond Conventional Agriculture in Thailand. Asian J. Agric. Dev. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Beings: Synthesis; Island Press: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 10 April 2021).
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Xie, J.; Liu, L.; Chen, X.; Chen, J.; Yang, X.X.; Tang, J.J. Control of Diseases, Pests and Weeds in Traditional Rice–fish Ecosystem in Zhejiang, China. Bull. Sci. Technol. 2009, 25, 802–810. [Google Scholar]
- Berg, H.; Tam, N.T. Decreased use of pesticides for increased yields of rice and fish-options for sustainable food production in the Mekong Delta. Sci. Total Environ. 2018, 619–620, 319–327. [Google Scholar] [CrossRef]
- Liu, D.; Tang, R.; Xie, J.; Tian, J.; Shi, R.; Zhang, K. Valuation of ecosystem services of rice-fish coculture systems in Ruyuan County. China Ecosyst. Serv. 2020, 41, 101054. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, T.; Guo, H.; Dou, Z.; Gao, H.; Zhang, H. Conversion from rice—Wheat rotation to rice—Crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China. J. Clean. Prod. 2021, 319, 128883. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure; Fabis Consulting Ltd.: Nottingham, UK, 2018; Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 10 April 2021).
- Liu, D.; Feng, Q.; Zhang, J.; Zhang, K.; Tian, J.; Xie, J. Ecosystem services analysis for sustainable agriculture expansion: Rice-fish co-culture system breaking through the Hu Line. Ecol. Indic. 2021, 133, 108385. [Google Scholar] [CrossRef]
- Costanza, R.; D’ Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’ Neill, R.V.; Paruelo, J.; et al. The value of the world ’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Christie, M.; Fazey, I.; Cooper, R.; Hyde, T.; Kenter, J.O. An evaluation of monetary and non-monetary techniques for assessing the importance of biodiversity and ecosystem services to people in countries with developing economies. Ecol. Econ. 2012, 83, 67–78. [Google Scholar] [CrossRef]
- World Bank Group. Carbon Pricing Dashboard. Available online: https://carbonpricingdashboard.worldbank.org/ (accessed on 27 December 2020).
- Ma, X.H.; Ren, Z.Y.; Sun, G.N. The calculation and assessment to the values of air purification by vegetation in Xi’ An City. Chin. J. Eco-Agric. 2004, 12, 180–182. (In Chinese) [Google Scholar]
- Xie, G.-D.; Zhang, C.-X.; Zhang, L.-M.; Chen, W.-H.; Li, S.-M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Ma, S.; He, F.; Tian, D.; Zou, D.; Yan, Z.; Yang, Y.; Zhou, T.; Huang, K.; Shen, H.; Jingyun Fang, J. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 2018, 15, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Zhang, W.; Guo, L.; Cheng, Y.; Li, J.; Li, K.; Zhu, Z.; Zhang, J.; Luo, S.; Cheng, L.; et al. Can the co-cultivation of rice and fish help sustain rice production? Sci. Rep. 2016, 6, 28728. [Google Scholar] [CrossRef] [Green Version]
- Berg, H.; Ekman Söderholm, A.; Söderström, A.-S.; Tam, N.T. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong Delta, Vietnam. Sustain. Sci. 2017, 12, 137–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arunrat, N.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil organic carbon in sandy paddy fields of Northeast Thailand: A Review. Agronomy 2020, 10, 1061. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Hatano, R. Assessing soil organic carbon, soil nutrients and soil erodibility under terraced paddy fields and upland rice in Northern Thailand. Agronomy 2022, 12, 537. [Google Scholar] [CrossRef]
- Nayak, A.K.; Shahid, M.; Nayak, A.D.; Dhal, B.; Moharana, K.C.; Mondal, B.; Tripathi, R.; Mohapatra, S.D.; Bhattacharyya, P.; Jambhulkar, N.N.; et al. Assessment of ecosystem services of rice farms in eastern India. Ecol. Process. 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Hu, L.; Guo, L.; Zhang, J.; Tang, L.; Zhang, E.; Zhang, J.; Luo, S.; Tang, J.; Chen, X. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system. Proc. Natl. Acad. Sci. USA 2018, 115, E546–E554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, N.-F.; Li, S.-X.; Li, T.; Cavalieri, A.; Weiner, J.; Zheng, X.-Q.; Ji, X.-Y.; Zhang, J.-Q.; Zhang, H.-L.; Zhang, H.; et al. Ecological intensification of rice production through rice-fish co-culture. J. Clean. Prod. 2019, 234, 1002–1012. [Google Scholar] [CrossRef]
- Hjalager, A.M. Agricultural diversification into tourism: Evidence of a European Community development programme. Tour. Manag. 1996, 7, 103–111. [Google Scholar] [CrossRef]
Region | Province | District | Sub-District | Number of Rice-Fish Co-Culture (Farm) | Number of Rice Monoculture (Farm) | Climate * | ||
---|---|---|---|---|---|---|---|---|
Tmax (°C) | Tmin (°C) | Precipitation (mm year−1) | ||||||
Northern | Mae Hong Son | Khun Yuam | Mueang Pon | 1 | 1 | 33.0 | 20.0 | 1100.0 |
Phichit | Dong Charoen | Samnak Khun Nen | 1 | 1 | 32.9 | 23.3 | 1264.8 | |
Northeastern | Amnat Charoen | Lue Amnat | Rai Khee | 1 | 1 | 22.1 | 27.2 | 1581.7 |
Sakon Nakhon | Phang Khon | Rae | 1 | 1 | 22.0 | 31.7 | 1650.0 | |
Nakhon Phanom | Renu | Na Kham | 1 | 1 | 21.8 | 31.8 | 1600.0 | |
Sisaket | Kantharalak | Phu Ngoen | 1 | 1 | 22.3 | 33.6 | 1439.6 | |
Ubon Ratchathani | Khueang Nai | Ban Thai | 3 | 3 | 22.1 | 33.0 | 1700.0 | |
Det Udom | Tha Pho Si | 3 | 3 | |||||
Surin | Prasat | Chok Na Sam | 1 | 1 | 22.7 | 32.7 | 1432.2 | |
Rattanaburi | Rattanaburi | 3 | 3 | |||||
Buriram | Ban Kruat | Sai Ta Ku | 1 | 1 | 22.2 | 33.0 | 1100.0 | |
Yasothon | Mueang | Nong Khu | 1 | 1 | 22.5 | 32.3 | 1200.0 | |
Central | Ang Thong | Pa Mok | Bang Sadet | 1 | 1 | 22.0 | 34.0 | 1100.0 |
Ecosystem Services | Rice-Fish Co-Cultures (THB ha−1 year−1) | Rice Monoculture System (THB ha−1 year−1) | Changing of Ecological Service Values (THB ha−1 year−1) | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Positive value | |||||
Rice and fish provided food and nutrition | 50,400.0 | 868.8 | 37,600.0 | 618.8 | 12,800.0 |
CO2 fixation from photosynthesis | 358,092.2 | 139,500.7 | 456,106.6 | 90,978.7 | −98,014.4 |
O2 release from photosynthesis | 14,697.9 | 5725.8 | 18,720.9 | 3734.2 | −4023.0 |
SO2, NOx, HF, and dust absorbed by the paddy field | 31,681.5 | 0 | 31,681.5 | 0 | 0 |
Nutrient cycling and organic accumulation | 23,798,852.3 | 0 | 21,678,588.0 | 0 | 2,120,264.3 |
Reduction of GHG emissions | |||||
Pesticides and herbicides reduction | 937,500.0 | 0 | 187,500.0 | 0 | 750,000.0 |
Regulation of temperature and humidity | 23,179,661.4 | 0 | 20,018,798.5 | 0 | 3,160,862.9 |
Increase of fauna diversity and micro-organisms | 10,584.0 | 182.4 | 7896.0 | 129.9 | 2688.0 |
Increase water storage | 16,682.3 | 6341.9 | 295.0 | 6341.9 | 16,387.3 |
Groundwater conservation | 13,992.0 | 1017.6 | 9540.0 | 1017.6 | 4452.0 |
Development of tourism | 53,000.0 | 7000.0 | 0 | 0 | 53,000.0 |
Sub total | 48,465,143.6 | - | 42,446,726.5 | - | 6,018,417.2 |
Negative value | |||||
Energy losses in lifting irrigation | 14,175.2 | 1786 | 24,128.0 | 2115.0 | −9952.8 |
Sub total | 14,175.2 | - | 24,128.0 | - | −9952.8 |
Net value | 48,450,968.4 | - | 42,422,598.5 | - | 6,028,370.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunrat, N.; Sereenonchai, S. Assessing Ecosystem Services of Rice–Fish Co-Culture and Rice Monoculture in Thailand. Agronomy 2022, 12, 1241. https://doi.org/10.3390/agronomy12051241
Arunrat N, Sereenonchai S. Assessing Ecosystem Services of Rice–Fish Co-Culture and Rice Monoculture in Thailand. Agronomy. 2022; 12(5):1241. https://doi.org/10.3390/agronomy12051241
Chicago/Turabian StyleArunrat, Noppol, and Sukanya Sereenonchai. 2022. "Assessing Ecosystem Services of Rice–Fish Co-Culture and Rice Monoculture in Thailand" Agronomy 12, no. 5: 1241. https://doi.org/10.3390/agronomy12051241
APA StyleArunrat, N., & Sereenonchai, S. (2022). Assessing Ecosystem Services of Rice–Fish Co-Culture and Rice Monoculture in Thailand. Agronomy, 12(5), 1241. https://doi.org/10.3390/agronomy12051241