Photoperiod Insensitivity in Pigeonpea Introgression Lines Derived from Wild Cajanus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Methodology
2.3. Data Collection and Statistical Analyses
2.4. Measurements of Photoperiod Sensitivity
3. Results
3.1. Analysis of Variance
3.2. Response of Extra-Early DT ILs to Photoperiod
3.2.1. End of Juvenile Phase
3.2.2. Days to Flowering
3.2.3. Node Number
3.2.4. Number of Primary Branches
3.2.5. Plant Height
3.2.6. Heritability
3.2.7. Trait Associations
3.2.8. Photoperiod Insensitivity Index
3.3. Responses of Early and Mid-Early IDT ILs to Photoperiod
3.3.1. Days to Flowering
3.3.2. Plant Height
4. Discussion
4.1. Photoperiod-Sensitivity-Related Traits Are Extensively Diverse and Heritable but Also Adaptable to Specific Environments
4.2. Implications of the Flowering Trait Diversity in the Development of New Pigeonpea Cultivars with Photoperiod Insensitivity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2018 Database. Available online: http://faostat.fao.org/database (accessed on 24 July 2021).
- Kassa, M.T.; Penmetsa, R.V.; Carrasquilla-Garcia, N.; Sarma, B.K.; Datta, S.; Upadhyaya, H.D.; Varshney, R.K.; von Wettberg, E.J.B.; Cook, D.R. Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives. PLoS ONE 2012, 7, e39563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gooding, H.J. The agronomic aspects of pigeonpeas. In Field Crop Abstracts; Elsevier: Tobago, Trinidad, 1962; Volume 15, pp. 1–5. [Google Scholar]
- Spence, J.A.; Williams, S.J.A. Use of Photoperiod Response to Change Plant Design. Crop Sci. 1972, 12, 121–122. [Google Scholar] [CrossRef]
- AICRP. All India Coordinated Research Project on Pigeonpea; Indian Institute of Pulses Research: Kanpur, India, 2020.
- Choudhary, A.K.; Nadarajan, N. Breeding Improved Cultivars of Pigeonpea in India; Indian Institute of Pulses Research: Kanpur, India, 2011.
- Saxena, K.; Nadarajan, N. Prospects of pigeonpea hybrids in Indian agriculture. Electron. J. Plant Breed. 2010, 1, 1107–1117. [Google Scholar]
- Whiteman, P.; Byth, D.; Wallis, E. Pigeonpea (Cajanus cajan (L.) Millsp.). In Grain Legume Crops; Summerfield, R.J., Roberts, E.H., Eds.; Collins: London, UK, 1985; pp. 658–698. [Google Scholar]
- Carberry, P.; Ranganathan, R.; Reddy, L.; Chauhan, Y.; Robertson, M. Predicting growth and development of pigeonpea: Flowering response to photoperiod. Field Crops Res. 2001, 69, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Silim, S.; Gwataa, E.; Coeb, R.; Omanga, P. Response of pigeonpea genotypes of different maturity duration to temperature and photoperiod in Kenya. Afr. Crop Sci. J. 2007, 15, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, L.; Ellis, M. Effect of incandescent and fluorescent lighting used in photoperiod extension on the vegetative growth and floral development of four lines of pigeonpea. Field Crops Res. 1987, 17, 25–36. [Google Scholar] [CrossRef]
- Turnbull, L.V.; Whiteman, P.C.; Byth, D.E. The influence of temperature and photoperiod on floral development of early flowering pigeonpea. In Proceedings of the International Workshop on Pigeonpea, Patancheru, India, 15–19 December 1980; Volume 2, pp. 217–222. [Google Scholar]
- Yan, W.; Wallace, D.H. Simulation and Prediction of Plant Phenology for Five Crops Based on Photoperiod × Temperature Interaction. Ann. Bot. 1998, 81, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Meekin, J.; Troedson, R.; Wallis, E.; Byth, D. Pigeonpea: A new summer legume crop. Qld. Agric. J. 1987, 113, 117–122. [Google Scholar]
- Nishida, H.; Yoshida, T.; Kawakami, K.; Fujita, M.; Long, B.; Akashi, Y.; Laurie, D.A.; Kato, K. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol. Breed. 2012, 31, 27–37. [Google Scholar] [CrossRef]
- Sun, F.; Xu, M.; Park, C.; Dwiyanti, M.S.; Nagano, A.J.; Zhu, J.; Watanabe, S.; Kong, F.; Liu, B.; Yamada, T.; et al. Characterization and quantitative trait locus mapping of late-flowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background. PLoS ONE 2019, 14, e0226116. [Google Scholar] [CrossRef] [Green Version]
- Worland, A.; Börner, A.; Korzun, V.; Li, W.; Petrovíc, S.; Sayers, E. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 1998, 100, 385–394. [Google Scholar] [CrossRef]
- Sharma, S.; Paul, P.J.; Kumar, C.S.; Rao, P.J.; Prashanti, L.; Muniswamy, S.; Sharma, M. Evaluation and Identification of Promising Introgression Lines Derived From Wild Cajanus Species for Broadening the Genetic Base of Cultivated Pigeonpea [Cajanus cajan (L.) Millsp.]. Front. Plant Sci. 2019, 10, 1269. [Google Scholar] [CrossRef]
- Sharma, S.; Upadhyaya, H.D. Interspecific hybridization to introduce useful genetic variability for pigeonpea improvement. Indian J. Genet. Plant Breed. 2016, 76, 496. [Google Scholar] [CrossRef]
- Dundas, I.S. Pigeonpea: Cytology and cytogenetics-perspectives and prospects. In The Pigeonpea; CAB International: Oxon, WA, USA, 1990; pp. 117–136. [Google Scholar]
- Mallikarjuna, N.; Moss, J.P. Production of hybrids between Cajanus platycarpus and Cajanus cajan. Euphytica 1995, 83, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.V.; Raju, T.N.; Sheila, V.K. Phytophthora blight resistance in wild pigeonpea. Int. Chickpea Newsl. 1996, 3, 52–53. [Google Scholar]
- Subbarao, G. Salinity Tolerance in Pigeonpea (Cajanus cajan) and Its Wild Relatives. Ph.D. Thesis, Indian Institute of Technology, Kharagpur, India, 1988. [Google Scholar]
- Sharma, H.C.; Sujana, G.; Rao, D.M. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interact. 2009, 3, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Mir, R.R.; Kudapa, H.; Srikanth, S.; Saxena, R.K.; Sharma, A.; Azam, S.; Saxena, K.; Penmetsa, R.V.; Varshney, R.K. Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor. Appl. Genet. 2014, 127, 2663–2678. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, H.D.; Reddy, K.N.; Sastry, D.V.S.S.R.; Gowda, C.L.L. Identification of photoperiod insensitive sources in the world collection of pigeonpea at ICRISAT. J. SAT Agric. Res. 2007, 3, 1–4. [Google Scholar]
- Islam, R.; Fujita, D.; Watanabe, S.; Zheng, S.-H. Variation in photosensitivity of flowering in the world soybean mini-core collections (GmWMC). Plant Prod. Sci. 2019, 22, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Mallikarjuna, N.; Srikant, S.; Kumar, C.V.S.; Srivastava, R.K.; Saxena, R.K.; Varshney, R.K. Pigeonpea. In Broadening the Genetic Base of Grain Legumes; Singh, M., Singh Bisht, I., Dutta, M., Eds.; Springer: New Delhi, India, 2014; pp. 149–159. [Google Scholar] [CrossRef]
- Sharma, S.; Paul, P.J.; Kumar, C.V.S.; Nimje, C. Utilizing Wild Cajanus platycarpus, a Tertiary Genepool Species for Enriching Variability in the Primary Genepool for Pigeonpea Improvement. Front. Plant Sci. 2020, 11, 1055. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Longman: London, UK, 2007. [Google Scholar]
- Adams, S.R.; Munir, M.; Valdés, V.M.; Langton, F.A.; Jackson, S.D. Using Flowering Times and Leaf Numbers to Model the Phases of Photoperiod Sensitivity in Antirrhinum majus L. Ann. Bot. 2003, 92, 689–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, R.H.; Summerfield, R.J.; Edmeades, G.O.; Roberts, E.H. Photoperiod, Leaf Number, and Interval from Tassel Initiation to Emergence in Diverse Cultivars of Maize. Crop Sci. 1992, 32, 398–403. [Google Scholar] [CrossRef]
- Koester, R.P.; Sisco, P.H.; Stuber, C.W. Identification of Quantitative Trait Loci Controlling Days to Flowering and Plant Height in Two Near Isogenic Lines of Maize. Crop Sci. 1993, 33, 1209–1216. [Google Scholar] [CrossRef]
- Moutiq, R.; Ribaut, J.M.; Edmeades, G.O.; Krakowsky, M.D.; Lee, M. Elements of genotype–environment interaction: Genetic components of the photoperiod response in maize. In Quantitative Genetics, Genomics, and Plant Breeding; Kang, M.S., Ed.; CABI: New York, NY, USA, 2002; pp. 257–267. [Google Scholar] [CrossRef]
- Wang, C.L.; Cheng, F.F.; Sun, Z.H.; Tang, J.H.; Wu, L.C.; Ku, L.X.; Chen, Y.H. Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 2008, 117, 1129–1139. [Google Scholar] [CrossRef]
- Papastylianou, P.; Vlachostergios, D.N.; Dordas, C.; Tigka, E.; Papakaloudis, P.; Kargiotidou, A.; Pratsinakis, E.; Koskosidis, A.; Pankou, C.; Kousta, A. Genotype × environment interaction analysis of faba bean (Vicia faba L.) for biomass and seed yield across different environments. Sustainability 2021, 13, 2586. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Mohammadi, M.; Sabaghni, N.; Mahmoodi, A.A.; Roustami, B.; Seyyedi, F.; Akbari, F. GGE Biplot Analysis of Yield Stability in Multi-environment Trials of Lentil Genotypes under Rainfed Condition. Not. Sci. Biol. 2013, 5, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, E.; Zhang, P.; Atwell, S.; Meng, D.; Nordborg, M. “Missing” G × E Variation Controls Flowering Time in Arabidopsis thaliana. PLoS Genet. 2015, 11, e1005597. [Google Scholar] [CrossRef] [Green Version]
- Paliwal, R.; Röder, M.S.; Kumar, U.; Srivastava, J.P.; Joshi, A.K. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor. Appl. Genet. 2012, 125, 561–575. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.S.; Reynolds, M.P.; Mathews, K.; McIntyre, C.; Olivares-Villegas, J.-J.; Chapman, S. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 2010, 121, 1001–1021. [Google Scholar] [CrossRef] [Green Version]
- Yohannes, S.; Loha, G.; Gessese, M.K. Performance Evaluation of Common Bean (Phaseolus vulgaris L.) Genotypes for Yield and Related Traits at Areka, Southern Ethiopia. Adv. Agric. 2020, 2020, 1497530. [Google Scholar] [CrossRef] [Green Version]
- Zeevaart, J.A. Physiology of flower formation. Annu. Rev. Plant Physiol. 1976, 27, 321–348. [Google Scholar] [CrossRef]
- Kinoshita, A.; Richter, R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J. Exp. Bot. 2020, 71, 2490–2504. [Google Scholar] [CrossRef]
- Chauhan, Y.S.; Johansen, C.; Moon, J.-K.; Lee, Y.-H.; Lee, S.-H. Photoperiod Responses of Extra-Short-Duration Pigeonpea Lines Developed at Different Latitudes. Crop Sci. 2002, 42, 1139–1146. [Google Scholar] [CrossRef]
- Bernard, R.L. Two Genes Affecting Stem Termination in Soybeans. Crop Sci. 1972, 12, 235–239. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, X.; Lee, R.; Li, Y.; Specht, J.E.; Nelson, R.L.; McClean, P.E.; Qiu, L.; Ma, J. Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 2010, 107, 8563–8568. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.E.S.; Ariyanayagam, R.P. The effect of photothermal environment on growth and flowering in dwarf pigeon pea (Cajanus cajan (L.) Millsp.) and Atylosia sericea Benth. ex Bak. Euphytica 1983, 32, 777–782. [Google Scholar] [CrossRef]
- Wallace, D.; Gniffke, P.A.; Masaya, P.; Zobel, R. Photoperiod, Temperature, and Interaction Effects on Days and Nodes Required for Flowering of Bean. J. Am. Soc. Hortic. Sci. 1991, 116, 534–543. [Google Scholar] [CrossRef] [Green Version]
- Bouché, F.; Lobet, G.; Tocquin, P.; Périlleux, C. FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 2015, 44, D1167–D1171. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yin, Y.; Ma, Q.; Tang, X.; Hao, D.; Xu, Y. Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol. 2012, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Vales, M.I.; Srivastava, R.K.; Sultana, R.; Singh, S.; Singh, I.; Singh, G.; Patil, S.B.; Saxena, K.B. Breeding for Earliness in Pigeonpea: Development of New Determinate and Nondeterminate Lines. Crop Sci. 2012, 52, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
- McPherson, H.G.; Warrington, I.J.; Turnbull, H.L. The Effects of Temperature and Daylength on the Rate of Development of Pigeonpea. Ann. Bot. 1985, 56, 597–611. [Google Scholar] [CrossRef]
- Wallis, E.S.; Byth, D.E.; Saxena, K.B. Flowering responses of thirty-seven early maturing lines of pigeonpea. In Proceedings of the International Workshop on Pigeonpea, Patancheru, India, 15–19 December 1980; Volume 2, pp. 15–19. [Google Scholar]
- Dahiya, S.; Chauhan, Y.S.; Johansen, C.; Waldia, R.S.; Sekhon, H.S.; Nandal, J.K. Extra-Short-Duration Pigeonpea for Diversifying Wheat-Based Cropping Systems in the Sub-Tropics. Exp. Agric. 2002, 38, 1–11. [Google Scholar] [CrossRef] [Green Version]
Sources of Variation | Df * | EJP | Fpr | DF | Fpr | NN | Fpr | NPB | Fpr | PH | Fpr |
---|---|---|---|---|---|---|---|---|---|---|---|
Replications | 2 | 2.2 | 4.7 | 1.56 | 0.33 | 7.42 | |||||
Genotypes (G) | 17 | 121.68 | <0.001 | 131.39 | <0.001 | 10.14 | <0.001 | 2.70 | <0.001 | 160.89 | <0.001 |
Treatment (E) | 1 | 828.37 | <0.001 | 933.33 | <0.001 | 268.89 | <0.001 | 170.66 | <0.001 | 4657.45 | <0.001 |
Year (Y) | 1 | 277.89 | <0.001 | 425.04 | <0.001 | 1044.56 | <0.001 | 29.62 | <0.001 | 198.37 | <0.001 |
G × E | 17 | 11.67 | <0.001 | 13.73 | <0.001 | 3.45 | 0.006 | 2.62 | <0.001 | 49.18 | <0.001 |
G × Year | 17 | 57.13 | <0.001 | 82.70 | <0.001 | 6.92 | <0.001 | 0.58 | 0.482 | 140.82 | <0.001 |
E × Y | 1 | 6.33 | 0.206 | 1.04 | 0.592 | 27.44 | <0.001 | 0.90 | 0.218 | 45.38 | 0.069 |
G × E × Y | 1 | 9.9 | 0.002 | 3.35 | 0.541 | 4.40 | <0.001 | 0.72 | 0.257 | 58.11 | <0.001 |
Residual | 142 | 3.92 | 3.6 | 1.54 | 0.59 | 13.50 | |||||
Total | 215 |
ID No. | Genotypes | Treatment | EJP * | DF | NN | NPB | PH |
---|---|---|---|---|---|---|---|
ID 01 | ICPL 11255 | ED | 55 ± 1.03 a# | 66 ± 0.70 a | 15 ± 1.05 a | 6 ± 0.23 a | 67.83 ± 2.63 a |
ND | 48 ± 1.09 b | 60 ± 0.85 b | 14 ± 0.85 a | 5 ± 0.64 a | 59 ± 2.68 b | ||
ID 02 | ICPL 85010 | ED | 63 ± 1.66 a | 76 ± 1.03 a | 18 ± 1.08 a | 7 ± 0.47 a | 76.67 ± 3.06 a |
ND | 60 ± 1.03 b | 74 ± 0.87 b | 15 ± 0.85 b | 6 ± 0.64 a | 62.5 ± 1.89b | ||
ID 03 | ICPP 171539 | ED | 63 ± 1.65 a | 75 ± 2.16 a | 19 ± 1.03 a | 7 ± 0.85 a | 78.17 ± 4.14 a |
ND | 58 ± 1.47 b | 69 ± 2.27 b | 18 ± 1.09 a | 5 ± 0.94 b | 66.67 ± 1.70 b | ||
ID 04 | ICPP 171540 | ED | 59 ± 2.32 a | 70 ± 2.28 a | 18 ± 1.05 a | 8 ± 0.23 a | 78.17 ± 4.59 a |
ND | 55 ± 2.49 b | 67 ± 2.69 b | 16 ± 0.64 b | 5 ± 0.87 b | 71.17 ± 3.34 b | ||
ID 05 | ICPP 171541 | ED | 59 ± 1.35 a | 75 ± 1.09 a | 16 ± 1.24 a | 7 ± 0.64 a | 76.67 ± 2.33 a |
ND | 54 ± 1.47 b | 67 ± 1.09 b | 14 ± 0.47 b | 6 ± 0.87 a | 73.5 ± 3.34 b | ||
ID 06 | ICPP 171542 | ED | 60 ± 1.93 a | 73 ± 2.95 a | 18 ± 0.62 a | 7 ± 0.64 a | 75 ± 2.29 a |
ND | 59 ± 1.66 a | 71 ± 1.24 b | 15 ± 1.22 b | 4 ± 0.47 b | 72.83 ± 2.25 b | ||
ID 07 | ICPP 171546 | ED | 57 ± 1.43 a | 69 ± 1.43 a | 18 ± 1.05 a | 8 ± 0.64 a | 75.83 ± 3.45a |
ND | 55 ± 1.66 b | 68 ± 1.22 a | 15 ± 0.94 b | 5 ± 0.23 b | 62.67 ± 3.84 b | ||
ID 08 | ICPP 171553 | ED | 62 ± 1.09 a | 75 ± 1.44 a | 18 ± 1.24 a | 7 ± 0.64 a | 69 ± 1.49 a |
ND | 56 ± 0.70 b | 70 ± 1.44 b | 16 ± 0.81 b | 5 ± 0.23 b | 63 ± 2.97 b | ||
ID 09 | ICPP 171556 | ED | 61 ± 2.49 a | 75 ± 1.03 a | 19 ± 1.22 a | 7 ± 0.47 a | 80.17 ± 2.67 a |
ND | 56 ± 1.03 b | 68 ± 1.32 b | 15 ± 0.64 b | 6 ± 0.85 a | 74 ± 2.2 b | ||
ID 10 | ICPP 171559 | ED | 64 ± 0.87 a | 76 ± 1.44 a | 20 ± 0.85 a | 7 ± 0.47 a | 80 ± 2.86 a |
ND | 58 ± 1.33 b | 69 ± 1.93 b | 15 ± 0.81 b | 5 ± 0.64 b | 70.67 ± 4.13 b | ||
ID 11 | ICPP 171561 | ED | 57 ± 1.69 a | 69 ± 1.08 a | 20 ± 0.81 a | 7 ± 0.47 a | 80 ± 2.05 a |
ND | 57 ± 1.31 a | 68 ± 1.03 a | 16 ± 0.47 b | 6 ± 0.23 a | 64.33 ± 3.33 b | ||
ID 12 | ICPP 171564 | ED | 59 ± 1.66 a | 72 ± 1.22 a | 19 ± 0.81 a | 8 ± 0.47 a | 75.17 ± 2.27 a |
ND | 58 ± 1.44 a | 68 ± 1.44 a | 15 ± 0.64 b | 7 ± 0.23 a | 63 ± 2.57 b | ||
ID 13 | ICPP 171566 | ED | 62 ± 2.18 a | 74 ± 1.63 a | 18 ± 0.84 a | 8 ± 0.47 a | 75.33 ± 3.69 a |
ND | 57 ± 0.64 b | 70 ± 1.22 b | 16 ± 0.81 b | 6 ± 0.47 b | 62.33 ± 2.25 b | ||
ID 14 | ICPP 171568 | ED | 62 ± 2.49 a | 75 ± 1.87 a | 18 ± 0.85 a | 7 ± 0.47 a | 73.5 ± 2.90 a |
ND | 58 ± 0.70 b | 70 ± 1.11 b | 16 ± 1.09 b | 6 ± 0.70 a | 64.17 ± 2.31 b | ||
ID 15 | ICPP 171578 | ED | 64 ± 1.54 a | 75 ± 1.26 a | 16 ± 1.09 a | 7 ± 0.64 a | 72.5 ± 2.28 a |
ND | 61 ± 0.64 b | 72 ± 0.70 b | 15 ± 0.81 a | 6 ± 0.47 a | 61.67 ± 1.17 b | ||
ID 16 | ICPP 171579 | ED | 64 ± 1.09 a | 76 ± 0.81 a | 18 ± 0.81 a | 7 ± 0.81 a | 72.83 ± 2.25 a |
ND | 61 ± 1.03 b | 74 ± 1.24 b | 17 ± 1.41 a | 6 ± 0.70 a | 70.5 ± 0.40b | ||
ID 17 | ICPP 171580 | ED | 67 ± 1.09 a | 79 ± 0.85 a | 17 ± 1.05 a | 7 ± 0.64 a | 73.17 ± 3.72 a |
ND | 61 ± 0.81 b | 72 ± 0.87 b | 15 ± 1.11 b | 5 ± 0.70 b | 61.67 ± 1.66 b | ||
ID 18 | ICPP 171581 | ED | 68 ± 1.03 a | 80 ± 1.49 a | 17 ± 1.09 a | 7 ± 0.47 a | 74.5 ± 2.33 a |
ND | 62 ± 1.99 b | 75 ± 1.65 b | 15 ± 0.64 b | 5 ± 0.64 b | 63.67 ± 2.66 b | ||
Mean | ED | 61 ± 1.59 a | 74 ± 1.43 a | 18 ± 0.99 a | 7 ± 0.54 a | 75.25 ± 2.83 a | |
ND | 57 ± 1.25 b | 70 ± 1.34 b | 15 ± 0.85 b | 5 ± 0.58 b | 65.96 ± 2.54 b | ||
SE(d) | ED | 1.81 | 1.62 | 1.08 | 0.55 | 3.10 | |
ND | 1.36 | 1.46 | 0.93 | 0.66 | 2.89 | ||
LSD (p ≤ 0.05) | ED | 3.62 | 3.2 | 2.16 | 1.10 | 6.19 | |
ND | 2.72 | 2.92 | 1.86 | 1.31 | 5.77 |
Genotypes | ED * | ND | PII | Score | Flowering Pattern |
---|---|---|---|---|---|
ICPL 11255 | 66 | 60 | 0.90 | Insensitive | Determinate |
ICPL 85010 | 76 | 74 | 0.97 | Insensitive | Determinate |
ICPP 171539 | 75 | 69 | 0.91 | Insensitive | Determinate |
ICPP 171540 | 70 | 67 | 0.96 | Insensitive | Determinate |
ICPP 171541 | 75 | 67 | 0.88 | Moderately sensitive | Determinate |
ICPP 171542 | 73 | 71 | 0.97 | Insensitive | Determinate |
ICPP 171546 | 69 | 68 | 0.99 | Insensitive | Determinate |
ICPP 171553 | 75 | 70 | 0.93 | Insensitive | Determinate |
ICPP 171556 | 75 | 68 | 0.90 | Insensitive | Determinate |
ICPP 171559 | 76 | 69 | 0.90 | Insensitive | Determinate |
ICPP 171561 | 69 | 68 | 0.99 | Insensitive | Determinate |
ICPP 171564 | 72 | 68 | 0.94 | Insensitive | Determinate |
ICPP 171566 | 74 | 70 | 0.94 | Insensitive | Determinate |
ICPP 171568 | 75 | 70 | 0.93 | Insensitive | Determinate |
ICPP 171578 | 75 | 72 | 0.96 | Insensitive | Determinate |
ICPP 171579 | 76 | 74 | 0.97 | Insensitive | Determinate |
ICPP 171580 | 79 | 72 | 0.90 | Insensitive | Determinate |
ICPP 171581 | 80 | 75 | 0.93 | Insensitive | Determinate |
Genotypes | Days to Flowering | Plant Height | Photoperiod Insensitivity | Flowering Pattern | |||
---|---|---|---|---|---|---|---|
ND * | ED | ND | ED | PII | Score | ||
ICPL 20325 | 76 | 77 | 96.70 | 128.33 | 0.98 | Insensitive | Indeterminate |
ICPL 88039 | 83 | No flowering | 108.30 | 116.66 | 0.00 | Sensitive | Indeterminate |
ICPL 87119 | 128 | No flowering | 156.70 | 173.33 | 0.00 | Sensitive | Indeterminate |
ICPP 171031 | 113 | No flowering | 103.33 | 123.33 | 0.00 | Sensitive | Indeterminate |
ICPP 171040 | 92 | No flowering | 106.67 | 145.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171073 | 102 | No flowering | 96.67 | 115.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171111 | 90 | No flowering | 131.67 | 155.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171112 | 87 | No flowering | 108.33 | 143.33 | 0.00 | Sensitive | Indeterminate |
ICPP 171113 | 96 | No flowering | 115.00 | 163.33 | 0.00 | Sensitive | Indeterminate |
ICPP 171117 | 91 | No flowering | 123.33 | 125.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171137 | 86 | No flowering | 140.00 | 165.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171188 | 89 | No flowering | 160.00 | 163.33 | 0.00 | Sensitive | Indeterminate |
ICPP 171328 | 87 | No flowering | 138.33 | 145.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171266 | 121 | No flowering | 115.00 | 168.33 | 0.00 | Sensitive | Indeterminate |
ICPP 171303 | 127 | No flowering | 151.67 | 165.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171537 | 120 | No flowering | 149.00 | 148.33 | 0.00 | Sensitive | Indeterminate |
ICPP 171498 | 118 | No flowering | 126.67 | 145.00 | 0.00 | Sensitive | Indeterminate |
ICPP 171406 | 97 | No flowering | 111.67 | 150.00 | 0.00 | Sensitive | Indeterminate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.E.; Sharma, S.; Joel, A.J.; Kilian, B. Photoperiod Insensitivity in Pigeonpea Introgression Lines Derived from Wild Cajanus Species. Agronomy 2022, 12, 1370. https://doi.org/10.3390/agronomy12061370
Hussain ME, Sharma S, Joel AJ, Kilian B. Photoperiod Insensitivity in Pigeonpea Introgression Lines Derived from Wild Cajanus Species. Agronomy. 2022; 12(6):1370. https://doi.org/10.3390/agronomy12061370
Chicago/Turabian StyleHussain, Mohammad Ekram, Shivali Sharma, A. John Joel, and Benjamin Kilian. 2022. "Photoperiod Insensitivity in Pigeonpea Introgression Lines Derived from Wild Cajanus Species" Agronomy 12, no. 6: 1370. https://doi.org/10.3390/agronomy12061370
APA StyleHussain, M. E., Sharma, S., Joel, A. J., & Kilian, B. (2022). Photoperiod Insensitivity in Pigeonpea Introgression Lines Derived from Wild Cajanus Species. Agronomy, 12(6), 1370. https://doi.org/10.3390/agronomy12061370