Carbon Budget of Paddy Fields after Implementing Water-Saving Irrigation in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. C Mineralized Losses
2.4. NECB Calculation
2.5. Net Global Warming Potential
2.6. Statistical Analysis
3. Results
3.1. Environmental Conditions
3.2. Net Primary Productivity
3.3. Carbon Mineralized Losses
3.4. Net Ecosystem Carbon Budget
3.5. Net Global Warming Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. 2019. Available online: http://www.fao.org/faostat/zh/#data (accessed on 18 March 2020).
- Dinar, A.; Tieu, A.; Huynh, H. Water scarcity impacts on global food production. Glob. Food Secur. 2019, 23, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Tian, Z.; He, X.; Wang, J.; Sun, L.; Fischer, G.; Fan, D.; Zhong, H.; Wu, W.; Pope, E.; et al. Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agric. Water Manag. 2019, 213, 594–604. [Google Scholar] [CrossRef]
- Dong, W.; Guo, J.; Xu, L.; Song, Z.; Zhang, J.; Tang, A.; Zhang, X.; Leng, C.; Liu, Y.; Wang, L.; et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China. J. Environ. Sci. 2017, 64, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Towa, J.J.; Guo, X. Effects of irrigation and weed-control methods on growth of weed and rice. Int. J. Agr. Biol. Eng. 2014, 7, 22–33. [Google Scholar]
- Yao, F.; Huang, J.; Cui, K.; Nie, L.; Xiang, J.; Liu, X.; Wu, W.; Chen, M.; Peng, S. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crop. Res. 2012, 126, 16–22. [Google Scholar] [CrossRef]
- Yang, S.; Sun, X.; Ding, J.; Jiang, Z.; Liu, X.; Xu, J. Effect of biochar addition on CO2 exchange in paddy fields under water-saving irrigation in Southeast China. J. Environ. Manag. 2020, 271, 111029. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Akter, M.; Deroo, H.; Kamal, A.M.; Kader, M.A.; Verhoeven, E.; Decock, C.; Boeckx, P.; Sleutel, S. Impact of irrigation management on paddy soil N supply and depth distribution of abiotic drivers. Agric. Ecosyst. Environ. 2018, 261, 12–24. [Google Scholar] [CrossRef]
- Wang, M.; Yu, S.; Shao, G.; Gao, S.; Wang, J.; Zhang, Y. Impact of Alternate Drought and Flooding Stress on Water Use, and Nitrogen and Phosphorus Losses in a Paddy Field. Pol. J. Environ. Stud. 2018, 27, 345–355. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W.; Cao, Z.; Fiedler, S.; Frenzel, P.; Jahn, R.; Kalbitz, K.; Kölbl, A.; Schloter, M. Biogeochemistry of paddy soils. Geoderma 2010, 157, 1–14. [Google Scholar] [CrossRef]
- Li, Z.-G.; Zhang, R.-H.; Wang, X.-J.; Wang, J.-P.; Zhang, C.-P.; Tian, C.-Y. Carbon Dioxide Fluxes and Concentrations in a Cotton Field in Northwestern China: Effects of Plastic Mulching and Drip Irrigation. Pedosphere 2011, 21, 178–185. [Google Scholar] [CrossRef]
- Miyata, A.; Leuning, R.; Denmead, O.T.; Kim, J.; Harazono, Y. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric. For. Meteorol. 2000, 102, 287–303. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Meyer-Aurich, A.; Drastig, K.; Baumecker, M.; Ellmer, F. Effects of irrigation and nitrogen fertilization on the greenhouse gas emissions of a cropping system on a sandy soil in northeast Germany. Eur. J. Agron. 2016, 81, 117–128. [Google Scholar] [CrossRef]
- Qi, L.; Niu, H.-D.; Zhou, P.; Jia, R.-J.; Gao, M. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils. Sustainability 2018, 10, 1403. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Guo, S.; Dong, Y.; Peng, Q.; Jia, J.; Cao, C.; Sun, L.; Yan, Z.; He, Y. Advances in Research on the Effects of Irrigation on the Greenhouse Gases Emission and Soil Carbon Sequestration in Agro-ecosystem. Sci. Agric. Sinica. 2014, 47, 1764–1773. [Google Scholar]
- Yang, S.; Liu, X.; Liu, X.; Xu, J. Effect of water management on soil respiration and NEE of paddy fields in Southeast China. Paddy Water Environ. 2017, 15, 787–796. [Google Scholar] [CrossRef]
- Nie, T.; Chen, P.; Zhang, Z.; Qi, Z.; Zhao, J.; Jiang, L.; Lin, Y. Effects of irrigation method and rice straw incorporation on CH4 emissions of paddy fields in Northeast China. Paddy Water Environ. 2019, 18, 111–120. [Google Scholar] [CrossRef]
- Peng, S.; He, Y.; Yang, S.; Xu, J.; Hou, H. Mitigation of methane emissions from paddy fields under controlled irrigation. Trans. Chin. Soc. Agric. Eng. 2013, 29, 100–107. [Google Scholar]
- Wang, M.; Zhang, Z.; Lu, C.; Lin, Y. CH4 and N2O Emissions from Rice Paddy Field and Their GWPs Research in Different Irrigation Modes in Cold Region. Int. Soil Water Conse. 2016, 23, 95–100. [Google Scholar]
- Xin, F.; Xiao, X.; Dong, J.; Zhang, G.; Zhang, Y.; Wu, X.; Li, X.; Zou, Z.; Ma, J.; Du, G.; et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 2020, 711, 135183. [Google Scholar] [CrossRef] [PubMed]
- CHINA WATER. 2019. Available online: http://slt.hlj.gov.cn/contents/9/4645.html (accessed on 23 July 2019).
- Chen, P.; Nie, T.; Chen, S.; Zhang, Z.; Qi, Z.; Liu, W. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system under water saving irrigation in the Songnen Plain of Northeast China. Agric. Water Manag. 2019, 222, 139–153. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z. Optimal water-saving irrigation mode reducing N2O emission from rice paddy field in cold region and increasing rice yield. Trans. Chin. Soc. Agric. Eng. 2015, 31, 72–79. [Google Scholar]
- Zheng, E.; Yang, H.; Zhang, Z. Influence of different nitrogen forms application on rice photosynthesis: Fluorescence with water-saving irrigation in black soil region of Songnen Plain, Northeast China. Paddy Water Environ. 2018, 16, 795–804. [Google Scholar]
- Chen, P.; Xu, J.; Zhang, Z.; Wang, K.; Li, T.; Wei, Q.; Li, Y. Carbon pathways in aggregates and density fractions in Mollisols under water and straw management: Evidence from 13C natural abundance. Soil Biol. Biochem. 2022, 169, 108684. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, R.; Li, H.; Zhang, J.; Chen, S.; Lu, B. Effect of the Applied Fertilization Method under Full Straw Return on the Growth of Mechanically Transplanted Rice. Plants 2020, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Sun, Y.; Xu, H.; Yin, Y.; Wang, H.; Wang, C.; Guo, C.; Yang, Z.; Sun, Y.; Ma, J. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility. Paddy Water Environ. 2018, 16, 507–518. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhong, Y.; Yang, J.; Wu, Y.; Li, H.; Zheng, L. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci. Total Environ. 2019, 670, 210–217. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Guo, L.; Cai, M.; Cao, C. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos. Environ. 2013, 80, 438–444. [Google Scholar] [CrossRef]
- Reeves, S.; Wang, W. Optimum sampling time and frequency for measuring N2O emissions from a rain-fed cereal cropping system. Sci. Total Environ. 2015, 530–531, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, M.; Zhang, J.; Lam, S.K.; Li, H.; Wang, L. Management practices to improve economic benefit and decrease greenhouse gas intensity in a green onion-winter wheat relay intercropping system in the North China Plain. J. Clean. Prod. 2018, 208, 709–715. [Google Scholar] [CrossRef]
- Xu, Y.; Zhan, M.; Cao, C.; Tian, S.; Ge, J.; Li, S.; Wang, M.; Yuan, G. Improved water management to reduce greenhouse gas emissions in no-till rapeseed–rice rotations in Central China. Agric. Ecosyst. Environ. 2016, 221, 87–98. [Google Scholar] [CrossRef]
- Lou, Y.; Li, Z.; Zhang, T.; Liang, Y. CO2 emissions from subtropical arable soils of China. Soil Biol. Biochem. 2004, 36, 1835–1842. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.S.; Kashyap, A.K. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 1999, 31, 1219–1228. [Google Scholar] [CrossRef]
- Haque, M.M.; Kim, S.Y.; Ali, M.A.; Kim, P.J. Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant Soil 2014, 387, 251–264. [Google Scholar] [CrossRef]
- Ma, Y.C.; Kong, X.W.; Yang, B.; Zhang, X.L.; Yan, X.Y.; Yang, J.C.; Xiong, Z.Q. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 2013, 164, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.W.; Jeong, S.T.; Kim, P.J.; Gwon, H.S. Influence of nitrogen fertilization on the net ecosystem carbon budget in a temperate mono-rice paddy. Geoderma 2017, 306, 58–66. [Google Scholar] [CrossRef]
- Qi, L.; Pokharel, P.; Chang, S.X.; Zhou, P.; Niu, H.; He, X.; Wang, Z.; Gao, M. Biochar application increased methane emission, soil carbon storage and net ecosystem carbon budget in a 2-year vegetable-rice rotation. Agr. Ecosyst. Environ. 2020, 292, 106831. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, J.; Liu, H.; Wang, W. Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands. Soil Biol. Biochem. 2018, 124, 255–265. [Google Scholar] [CrossRef]
- Haque, M.M.; Kim, G.W.; Kim, P.J.; Kim, S.Y. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crop. Res. 2016, 193, 133–142. [Google Scholar] [CrossRef]
- Lun, F.; Liu, Y.; He, L.; Yang, L.; Liu, M.; Li, W. Life cycle research on the carbon budget of the Larix principis-rupprechtii plantation forest ecosystem in North China. J. Clean. Prod. 2018, 177, 178–186. [Google Scholar] [CrossRef]
- Smith, P.; Lanigan, G.; Kutsch, W.L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Béziat, P.; Yeluripati, J.; Osborne, B.; et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric. Ecosyst. Environ. 2010, 139, 302–315. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, G.S.; Wang, Y.H.; Hu, T.Y.; Sui, X.H. The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. J. Clean. Prod. 2015, 107, 195–201. [Google Scholar] [CrossRef]
- Kimura, M.; Murase, J.; Lu, Y. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol. Biochem. 2004, 36, 1399–1416. [Google Scholar] [CrossRef]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon flow in the rhizosphere: Carbon trading at the soil–root interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Kim, G.W.; Kim, S.Y.; Haque, M.; Khan, M.I.; Kim, P.J. Effect of cover cropping on the net global warming potential of rice paddy soil. Geoderma 2017, 292, 49–58. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Soussana, J.-F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [Green Version]
- HLJNEWS. 2019. Available online: http://slt.hlj.gov.cn/contents/9/4001.html (accessed on 1 January 2019).
- Mudge, P.L.; Wallace, D.F.; Rutledge, S.; Campbell, D.I.; Schipper, L.A.; Hosking, C.L. Carbon balance of an intensively grazed temperate pasture in two climatically contrasting years. Agric. Ecosyst. Environ. 2011, 144, 271–280. [Google Scholar] [CrossRef]
- Zeeman, M.J.; Hiller, R.; Gilgen, A.K.; Michna, P.; Plüss, P.; Buchmann, N.; Eugster, W. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agric. For. Meteorol. 2010, 150, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Byrne, K.A.; Kiely, G.; Leahy, P. Carbon sequestration determined using farm scale carbon balance and eddy covariance. Agric. Ecosyst. Environ. 2007, 121, 357–364. [Google Scholar] [CrossRef]
- Song, C.; Wang, G.; Hu, Z.; Zhang, T.; Huang, K.; Chen, X.; Li, Y. Net ecosystem carbon budget of a grassland ecosystem in central Qinghai-Tibet Plateau: Integrating terrestrial and aquatic carbon fluxes at catchment scale. Agric. For. Meteorol. 2020, 290, 108021. [Google Scholar] [CrossRef]
- Pan, G.X.; Li, L.Q.; Wu, L.S.; Zhang, X.H. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Change Biol. 2004, 10, 79–92. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Wang, S.; Xing, G. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant Soil 2014, 378, 279–294. [Google Scholar] [CrossRef]
- Jia, J.X.; Ma, Y.C.; Xiong, Z.Q. Net ecosystem carbon budget, net global warming potential and greenhouse gas intensity in intensive vegetable ecosystems in China. Agric. Ecosyst. Environ. 2012, 150, 27–37. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Meena, R.S.; Saha, P.; Singh, R.; Datta, M. Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J. Clean. Prod. 2018, 191, 144–157. [Google Scholar] [CrossRef]
- Janzen, H.H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Shakoor, A.; Gan, M.Q.; Yin, H.X.; Yang, W.; He, F.; Zuo, H.F.; Ma, Y.H.; Yang, S.Y. Influence of nitrogen fertilizer and straw returning on CH4 emission from a paddy field in chao lake basin, China. Appl. Ecol. Environ. Res. 2020, 18, 1585–1600. [Google Scholar] [CrossRef]
- Wu, L.; Wu, X.; Lin, S.; Wu, Y.; Tang, S.; Zhou, M.; Shaaban, M.; Zhao, J.; Hu, R.; Kuzyakov, Y.; et al. Carbon budget and greenhouse gas balance during the initial years after rice paddy conversion to vegetable cultivation. Sci. Total Environ. 2018, 627, 46–56. [Google Scholar] [CrossRef]
- Xia, L.; Ti, C.; Li, B.; Xia, Y.; Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Xiong, Z.Q. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A three-year field study. Atmos. Environ. 2016, 145, 92–103. [Google Scholar] [CrossRef]
Irrigation Regime | Turning -Green Stage | Early Tillering Stage | Middle Tillering Stage | Late Tillering Stage | Jointing -Booting Stage | Heading-Flowering Stage | Milk Stage | Yellow -Ripe Stage |
---|---|---|---|---|---|---|---|---|
FI | 0~30 mm | 0~50 mm | 0~50 mm | Drainage | 0~50 mm | 0~50 mm | 0~50 mm | Naturally drying |
CI | 0~30 mm | 0.7 θs~0 | 0.7 θs~0 | Drainage | 0.8 θs~0 | 0.8 θs~0 | 0.7 θs~0 | Naturally drying |
II | 0~30 mm | 0~40 mm | 0~40 mm | Drainage | 0~30 mm | 0~40 mm | 0~40 mm | Naturally drying |
Year | 2018 | 2019 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | FN110 | FN165 | CN110 | CN165 | IN110 | IN165 | FN110 | FN165 | CN110 | CN165 | IN110 | IN165 | ||||||||
NPPgrain (kg C ha−1) | 2824 ± 71e | 3578 ± 126cd | 3766 ± 89c | 4765 ± 119a | 3490 ± 106d | 4290 ± 87b | 1928 ± 42g | 2538 ± 53f | 2985 ± 98e | 3580 ± 186cd | 2829 ± 97e | 3573 ± 114cd | ||||||||
NPPstem (kg C ha−1) | 1529 ± 38e | 1934 ± 59b | 1738 ± 49cd | 2062 ± 61a | 1685 ± 56cd | 2031 ± 46ab | 1285 ± 34f | 1693 ± 58cd | 1687 ± 53cd | 2046 ± 41a | 1648 ± 29d | 1781 ± 46c | ||||||||
NPPleaf (kg C ha−1) | 514 ± 13g | 664 ± 14cd | 644 ± 20de | 741 ± 19a | 621 ± 21e | 684 ± 16bc | 402 ± 12h | 613 ± 16e | 562 ± 17f | 702 ± 19b | 522 ± 15g | 632 ± 17de | ||||||||
NPProot (kg C ha−1) | 610 ± 13b | 716 ± 22a | 465 ± 17e | 569 ± 21c | 507 ± 15d | 627 ± 17b | 472 ± 17de | 627 ± 15b | 416 ± 17f | 507 ± 16d | 452 ± 14e | 597 ± 18bc | ||||||||
NPPlitter (kg C ha−1) | 268 ± 6e | 339 ± 10c | 327 ± 8cd | 402 ± 10a | 314 ± 10d | 371 ± 9b | 205 ± 5f | 270 ± 7e | 279 ± 9e | 339 ± 9c | 272 ± 7e | 321 ± 9cd | ||||||||
NPPrhizodeposit (kg C ha−1) | 602 ± 14e | 758 ± 24c | 727 ± 17cd | 895 ± 22a | 693 ± 22d | 839 ± 18b | 450 ± 11f | 602 ± 15e | 622 ± 20e | 752 ± 27c | 600 ± 16e | 724 ± 20cd | ||||||||
NPP (kg C ha−1) | 6347 ± 148e | 7988 ± 249c | 7666 ± 181cd | 9435 ± 234a | 7310 ± 229d | 8841 ± 190b | 4742 ± 119f | 6343 ± 159e | 6552 ± 213e | 7926 ± 285c | 6323 ± 173e | 7628 ± 211cd | ||||||||
Statistical analysis | ||||||||||||||||||||
Year (A) | Irrigation regime (B) | N fertilization (C) | NPPgrain (kg C ha−1) | NPPstem (kg C ha−1) | NPPleaf (kg C ha−1) | NPProot (kg C ha−1) | NPPlitter (kg C ha−1) | NPPrhizodeposit (kg C ha−1) | ||||||||||||
A (year) | *** | *** | *** | *** | *** | *** | ||||||||||||||
B (irrigation regime) | *** | *** | *** | *** | *** | *** | ||||||||||||||
C (N fertilization) | *** | *** | *** | *** | *** | *** | ||||||||||||||
A × B | * | ** | ns | ** | ns | ns | ||||||||||||||
A × C | * | ns | ** | ns | ns | ns | ||||||||||||||
B × C | ns | ** | *** | ns | ns | ns | ||||||||||||||
A × B × C | ns | * | ns | ns | ns | ns |
Year | Treatment | C Input (kg C ha−1) | C Output (kg C ha−1) | NECB (kg C ha−1) | net GWP (kg C ha−1) | ||||
---|---|---|---|---|---|---|---|---|---|
NPP | Sum | Harvest | Rh | CH4 | Sum | ||||
2018 | FN110 | 6437 ± 148e | 6437 ± 148e | 2824 ± 71e | 758 ± 155ef | 869 ± 20b | 4451 ± 244d | 1896 ± 97c | 17371 ± 252b |
FN165 | 7988 ± 249c | 7988 ± 249c | 3578 ± 126cd | 1000 ± 150def | 960 ± 28a | 5538 ± 291c | 2450 ± 76b | 17915 ± 543ab | |
CN110 | 7666 ± 181cd | 7666 ± 181cd | 3766 ± 89c | 2338 ± 166b | 389 ± 19e | 6493 ± 188b | 1173 ± 8f | 4769 ± 528de | |
CN165 | 9435 ± 234a | 9435 ± 234a | 4765 ± 119a | 2709 ± 145a | 482 ± 21d | 7956 ± 281a | 1478 ± 123d | 8067 ± 749cd | |
IN110 | 7310 ± 229d | 7310 ± 229d | 3490 ± 106d | 1067 ± 142de | 516 ± 17cd | 5072 ± 247c | 2238 ± 73b | 6242 ± 246e | |
IN165 | 8841 ± 190b | 8841 ± 190b | 4290 ± 87b | 1324 ± 143d | 564 ± 19c | 6178 ± 249b | 2663 ± 64a | 6037 ± 416e | |
2019 | FN110 | 4742 ± 119f | 4742 ± 119f | 1928 ± 42g | 703 ± 140f | 856 ± 40b | 3488 ± 222e | 1255 ± 115ef | 19377 ± 819a |
FN165 | 6343 ± 159e | 6343 ± 159e | 2538 ± 53f | 921 ± 164ef | 885 ± 39b | 4344 ± 256d | 1999 ± 112c | 17441 ± 862b | |
CN110 | 6552 ± 213e | 6552 ± 213e | 2985 ± 98e | 1931 ± 156c | 484 ± 37d | 5401 ± 271c | 1151 ± 134f | 9341 ± 1133c | |
CN165 | 7926 ± 285c | 7926 ± 285c | 3580 ± 186cd | 2430 ± 156ab | 513 ± 37cd | 6521 ± 378b | 1404 ± 96de | 9196 ± 962c | |
IN110 | 6323 ± 173e | 6323 ± 173e | 2829 ± 97e | 1008 ± 162def | 513 ± 36cd | 4351 ± 282d | 1973 ± 122c | 7131 ± 801de | |
IN165 | 7628 ± 211cd | 7628 ± 211cd | 3573 ± 114cd | 1277 ± 153d | 535 ± 37cd | 5386 ± 275c | 2243 ± 113b | 6757 ± 998de | |
Statistical analysis | |||||||||
A (year) | *** | *** | *** | * | ns | *** | *** | ** | |
B (irrigation regime) | *** | *** | *** | *** | *** | *** | *** | *** | |
C (N fertilization) | *** | *** | *** | *** | *** | *** | *** | ns | |
A × B | ns | ns | * | ns | ** | ns | *** | ns | |
A × C | ns | ns | * | ns | ns | ns | ns | ns | |
B × C | ns | ns | ns | ns | ns | ns | ** | ns | |
A × B × C | ns | ns | ns | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Nie, T.; Chen, P.; Zhang, Z.; Lan, J.; Zhang, Z.; Qi, Z.; Han, Y.; Jiang, L. Carbon Budget of Paddy Fields after Implementing Water-Saving Irrigation in Northeast China. Agronomy 2022, 12, 1481. https://doi.org/10.3390/agronomy12061481
Li T, Nie T, Chen P, Zhang Z, Lan J, Zhang Z, Qi Z, Han Y, Jiang L. Carbon Budget of Paddy Fields after Implementing Water-Saving Irrigation in Northeast China. Agronomy. 2022; 12(6):1481. https://doi.org/10.3390/agronomy12061481
Chicago/Turabian StyleLi, Tiecheng, Tangzhe Nie, Peng Chen, Zuohe Zhang, Jiaxin Lan, Zhongxue Zhang, Zhijuan Qi, Yu Han, and Lili Jiang. 2022. "Carbon Budget of Paddy Fields after Implementing Water-Saving Irrigation in Northeast China" Agronomy 12, no. 6: 1481. https://doi.org/10.3390/agronomy12061481
APA StyleLi, T., Nie, T., Chen, P., Zhang, Z., Lan, J., Zhang, Z., Qi, Z., Han, Y., & Jiang, L. (2022). Carbon Budget of Paddy Fields after Implementing Water-Saving Irrigation in Northeast China. Agronomy, 12(6), 1481. https://doi.org/10.3390/agronomy12061481