Performance of Different Varieties of Spring Field Pea (Pisum sativum L.) under Irrigated and Rainfed Environments in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotypes, Testing Location, and Experimental Design
2.2. Data Collection and Analysis
3. Results and Discussion
3.1. Analysis of Variance of Grain Yield
3.2. Mean Performance of Different Genotypes and Environment
3.3. GGE-Biplot Analysis for Adaptation and Yield Stability
3.4. Performance of Main Agronomic Traits and Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, A.K.; Rubiales, D.; Wang, Y.; Fang, P.; Sun, T.; Liu, N.; Xu, P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor. Appl. Genet. 2021, 134, 755–776. [Google Scholar] [CrossRef] [PubMed]
- Bocianowski, J.; Księżak, J.; Nowosad, K. Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 191. [Google Scholar] [CrossRef] [Green Version]
- Pellicanò, A.; Romeo, M.; Pristeri, A.; Preiti, G.; Monti, M. Cereal-pea intercrops to improve sustainability in bioethanol production. Agron. Sustain. Dev. 2015, 35, 827–835. [Google Scholar] [CrossRef]
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Brit. J. Nutr. 2012, 108, S3–S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Yang, T.; Liu, R.; Redden, B.; Maalouf, F.; Zong, X. Food legume production in China. Crop J. 2017, 5, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Gou, Z.; Zhu, Z.; Wang, C.; Zhang, L.; Min, G. Breeding and Evaluation of a New-Bred Semi-Leafless Pea (Pisum sativum L.) Cultivar Longwan No. 6. Agronomy 2022, 12, 850. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Value of Agricultural Production, Food and Agricultural Organization Statistical Database.Statistics Division. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 1 May 2022).
- Fan, X.; Kang, M.S.; Chen, H.; Zhang, Y.; Tan, J.; Xu, C. Yield Stability of Maize Hybrids Evaluated in Multi-Environment Trials in Yunnan, China. Agron. J. 2007, 99, 220. [Google Scholar] [CrossRef]
- Signor, C.E.; Dousse, S.; Lorgeou, J.; Denis, J.B.; Bonhomme, R.; Carolo, P.; Charcosset, A. Interpretation of Genotype × Environment Interactions for Early Maize Hybrids over 12 Years. Crop Sci. 2001, 41, 663–669. [Google Scholar] [CrossRef]
- Price, J.S.; Bever, J.D.; Clay, K. Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytol. 2004, 162, 729–743. [Google Scholar] [CrossRef]
- Egea-Gilabert, C.; Pagnotta, M.A.; Tripodi, P. Genotype × Environment Interactions in Crop Breeding. Agronomy 2021, 11, 1644. [Google Scholar] [CrossRef]
- Alizadeh, K.; Mohammadi, R.; Shariati, A.; Eskandari, M. Comparative analysis of statistical models for evaluating genotype × environment interaction in rainfed safflower. Agric. Res. 2017, 6, 455–465. [Google Scholar] [CrossRef]
- Gauch, H.G.; Piepho, H.; Annicchiarico, P. Statistical Analysis of Yield Trials by AMMI and GGE: Further Considerations. Crop Sci. 2008, 48, 866. [Google Scholar] [CrossRef]
- Omoigui, L.O.; Kamara, A.Y.; Ajeigbe, H.A.; Akinwale, R.O.; Timko, M.P.; Oyekunle, M.; Bello, L.L. Performance of cowpea varieties under Striga gesnerioides (Willd.) Vatke infestation using biplot analysis. Euphytica 2017, 213, 244. [Google Scholar] [CrossRef] [Green Version]
- Rubiales, D.; Emeran, A.A.; Flores, F. Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments. Agronomy 2020, 10, 1295. [Google Scholar] [CrossRef]
- Papastylianou, P.; Vlachostergios, D.N.; Dordas, C.; Tigka, E.; Papakaloudis, P.; Kargiotidou, A.; Pratsinakis, E.; Koskosidis, A.; Pankou, C.; Kousta, A.; et al. Genotype X Environment Interaction Analysis of Faba Bean (Vicia faba L.) for Biomass and Seed Yield across Different Environments. Sustainability 2021, 13, 2586. [Google Scholar] [CrossRef]
- Pande, S.; Sharma, M.; Gaur, P.M.; Basandrai, A.K.; Kaur, L.; Hooda, K.S.; Basandrai, D.; Kiran Babu, T.; Jain, S.K.; Rathore, A. Biplot analysis of genotype × environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Australas. Plant Path. 2013, 42, 561–571. [Google Scholar] [CrossRef]
- Iqbal, J.; Shabbir, G.; Shah, K.N.; ul-Hassan, F.; Qayyum, A. Deciphering of Genotype × Environment Interaction to Identify Stable Heat-Tolerant Mung Bean Genotypes by GGE Biplot Analysis. J. Soil Sci. Plant Nut. 2021, 21, 2551–2561. [Google Scholar] [CrossRef]
- Samyuktha, S.M.; Malarvizhi, D.; Karthikeyan, A.; Dhasarathan, M.; Hemavathy, A.T.; Vanniarajan, C.; Sheela, V.; Hepziba, S.J.; Pandiyan, M.; Senthil, N. Delineation of Genotype × Environment Interaction for Identification of Stable Genotypes to Grain Yield in Mungbean. Front. Agron. 2020, 2, 577911. [Google Scholar] [CrossRef]
- Sozen, O.; Karadavut, U.; Ozcelik, H.; Bozoglu, H.; Akcura, M. Genotype x environment interaction of some dry bean (Phaseolus vulgaris L.) genotypes. Legume Res. 2017, 41, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Fernández, T.; Carrillo-Perdomo, E.; Flores, F.; Rubiales, D. Identification and multi-environment validation of resistance to pea weevil (Bruchus pisorum) in Pisum germplasm. J. Pest Sci. 2018, 91, 505–514. [Google Scholar] [CrossRef]
- Acikgoz, E.; Ustun, A.; Gul, I.; Anlarsal, E.; Tekeli, A.S.; Nizam, I.; Avcioglu, R.; Geren, H.; Cakmakci, S.; Aydinoglu, B.; et al. Genotype x environment interaction and stability analysis for dry matter and seed yield in field pea (Pisum sativum L.). Span. J. Agric. Res. 2009, 7, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Karimizadeh, R.; Mohammadi, M.; Sabaghni, N.; Mahmoodi, A.; Roustami, B.; Sayyedi, F.; Akbari, F. GGE Biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition. Not. Sci. Biol. 2013, 5, 256. [Google Scholar] [CrossRef] [Green Version]
- Annicchiarico, P.; Iannucci, A. Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crop. Res. 2008, 108, 133–142. [Google Scholar] [CrossRef]
- Parihar, A.K.; Hazra, K.K.; Lamichaney, A.; Dixit, G.P.; Singh, D.; Singh, A.K.; Singh, N.P. Characterizing plant trait(s) for improved heat tolerance in field pea (Pisum sativum L.) under subtropical climate. Int. J. Biometeorol. 2022, 66, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, H.; Ebadi, A.; Yousefi, A. Biplot Analysis of Genotype by Environment Interaction for Barley Yield in Iran. Agron. J. 2006, 98, 388–393. [Google Scholar] [CrossRef]
- Tran, C.T.; Becker, H.C.; Horneburg, B. Agronomic performance of normal-leafed and semi-leafless pea (Pisum sativum L.) genotypes. Crop Sci. 2022, 1–13. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Oyatomi, O.; Babalola, O.O.; Abberton, M. GGE Biplot Analysis of Genotype × Environment Interaction and Yield Stability in Bambara Groundnut. Agronomy 2021, 11, 1839. [Google Scholar] [CrossRef]
- Rakshit, S.; Ganapathy, K.N.; Gomashe, S.S.; Rathore, A.; Ghorade, R.B.; Kumar, M.V.N.; Ganesmurthy, K.; Jain, S.K.; Kamtar, M.Y.; Sachan, J.S.; et al. GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica 2012, 185, 465–479. [Google Scholar] [CrossRef]
- Quarrie, S. Dissecting a wheat QTL for yield present in a range of environments: From the QTL to candidate genes. J. Exp. Bot. 2006, 57, 2627–2637. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Rafii, M.Y.; Ramlee, S.I.; Jusoh, M.; Al Mamun, M. AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trails (METs). Sci. Rep. 2021, 11, 22791. [Google Scholar] [CrossRef]
- Reckling, M.; Ahrends, H.; Chen, T.; Eugster, W.; Hadasch, S.; Knapp, S.; Laidig, F.; Linstädter, A.; Macholdt, J.; Piepho, H.; et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 2021, 41, 27. [Google Scholar] [CrossRef]
- Shi, J.; Li, R.; Qiu, D.; Jiang, C.; Long, Y.; Morgan, C.; Bancroft, I.; Zhao, J.; Meng, J. Unraveling the complex trait of crop yield with quantitative trait loci mapping in brassica napus. Genetics 2009, 182, 851–861. [Google Scholar] [CrossRef] [Green Version]
- Mogiso, M. Adaptation and Performance on Yield and Yield Components of Field Pea (Pisum sativum L.) Varieties at Adiyo District, Southwestern Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 42–46. [Google Scholar]
- Singh, S.K.; Singh, V.P.; Srivastava, S.; Singh, A.K.; Chaubey, B.K.; Srivastava, R.K. Estimation of correlation coefficient among yield and attributing traits of field pea (Pisum sativum L.). Legume Res. 2018, 41, 20–26. [Google Scholar] [CrossRef] [Green Version]
Gen. Code | Genotypes | Original | Flower Color | Seed Color | Seed Type | Leaf Type | Plant Type |
---|---|---|---|---|---|---|---|
G1 | Longwan 10 | CRI-GAAS | White | Yellow | Round | SL | SL |
G2 | Dingwan 12 | DAAS | Purple | Dun | Dimpled | NL | LV |
G3 | Dingwan 13 | DAAS | White | Yellow | Round | NL | LV |
G4 | Tongwan 5 | HLCI-SAU | White | Yellow | Round | SL | SL |
G5 | Kewan 7 | ICR-LAAS | White | Green | Angled | NL | SD |
G6 | Chuangwan 1 | CRI-SAAS | Purple | Dun | Dimpled | NL | LV |
G7 | Kewan 9 | ICR-LAAS | White | Green | Wrinkled | NL | SD |
G8 | Tanwan 1 | TAAS | White | Green | Round | SL | SD |
G9 | Chengwan 2 | CRI-SAAS | White | Brown | Ellipse | NL | LV |
G10 | Zhongwan 6 | IAS-CAAS | White | Green | Dimpled | NL | SD |
G11 | Yunwan 68 | FCRI-YAAS | White | Green | Round | NL | SD |
G12 | Zhongqin 3 | ICS-CAAS | White | Green | Dimpled | NL | SD |
G13 | Zhongqin 2 | ICS-CAAS | White | Green | Dimpled | NL | SD |
G14 | Longwan 11 | CRI-GAAS | White | Green | Angled | NL | SD |
Location Code | E1 | E2 | E3 | E4 | E5 | E6 | E7 |
---|---|---|---|---|---|---|---|
Latitude (N) | 36°43′ | 43°59′ | 41°16′ | 35°34′ | 39°45′ | 39°17′ | 31°54′ |
Longitude (E) | 103°38′ | 89°34′ | 123°10′ | 104°37′ | 118°17′ | 116°43′ | 102°13′ |
Altitude (m) | 2173 | 799 | 27 | 1905 | 26 | 20 | 2629 |
AP (mm) | 319 | 201 | 717 | 383 | 590 | 514 | 667 |
Season of growth | March–July | March–July | March–July | March–July | February–June | February–June | April–August |
TPPGS (mm) | 170 | 108.5 | 375.6 | 203.7 | 164.8 | 138.3 | 497.1 |
TPPGS/AP (%) | 53.3 | 54.0 | 52.4 | 53.2 | 27.9 | 26.9 | 74.5 |
AAT (°C) | 5.9 | 5.5 | 9.0 | 7.1 | 12.0 | 11.9 | 8.6 |
MMATSP (°C) | 9.0 | 2.0 | 2.0 | 6.0 | 7.0 | 7.0 | 5.0 |
MMITSP (°C) | −4.0 | −11.0 | −9.0 | −7.0 | −6.0 | −4.0 | −9.0 |
MMATSU (°C) | 26.0 | 23.0 | 25.0 | 22.0 | 27.0 | 28.0 | 20.0 |
MMITSU (°C) | 12.0 | 12.0 | 13.0 | 9.0 | 14.0 | 15.0 | 7.0 |
Soil types | Castanozems | Castanozems | Brown earths | YCLS | Brown earths | Brown earths | YCLS |
ACZC | NASR | NASR | HHHP | NASR | HHHP | HHHP | HLC |
conditions | Irrigated | Irrigated | Rain-fed | Rain-fed | Rain-fed | Irrigated | Rain-fed |
Previous crop | Wheat | Wheat | Maize | Oat | Maize | Maize | Barley |
SV | DF | MS | SS | F-Value | Total (%) SS | G × E (%) SS |
---|---|---|---|---|---|---|
Genotype (G) | 13 | 8,245,378 ** | 1,071,899,14 | 56.359 | 14.7 | |
Location (L) | 6 | 45,018,490 ** | 2,701,109,40 | 307.709 | 37.1 | |
Year (Y) | 1 | 20,370,895 ** | 20,370,895 | 139.238 | 2.8 | |
G × L | 78 | 1,686,145 ** | 1,315,193,10 | 11.525 | 18.1 | 39.7 |
G × Y | 13 | 757,776 ** | 9,851,088 | 5.180 | 1.4 | 3.0 |
G × L × Y | 84 | 22,566,88 ** | 1,895,617,92 | 15.425 | 26.0 | 57.3 |
G × E (G × L, G × Y, G × L × Y) | 175 | 1,891,041 | 3,309,322,13 | 12.93 | 45.5 | |
Error | 392 | 146,302 | 573,503,84 | |||
Sum | 587 | 13,389,34 | 7,859,543,23 |
Gen. Code | E1 | E2 | E3 | E4 | E5 | E6 | E7 | Gen. Mean | Check (%) |
---|---|---|---|---|---|---|---|---|---|
G1 | 4980 a | 4158 a | 4047 a | 3274 abc | 2949 ef | 1911 c | 1835 a | 3308 a | 44.1 |
G2 | 4402 ab | 3508 ab | 3210 bc | 3227 a | 2427 f | 2089 ab | 1199 abcd | 2866 b | 24.9 |
G3 | 4250 ab | 3380 abc | 3185 bc | 3069 ab | 2601 def | 1857 abc | 1479 ab | 2832 b | 23.4 |
G4 | 4317 ab | 3416 abc | 3030 bc | 2532 abc | 2729 d | 1702 abc | 1244 abc | 2710 bc | 18.1 |
G5 | 3518 abc | 2761 bcd | 3596 ab | 3032 ab | 3353 b | 1545 bc | 1253 abcd | 2723 bc | 18.6 |
G6 | 3307 abc | 3577 ab | 2889 bc | 2796 abc | 2703 de | 1645 bc | 1296 abcd | 2602 cd | 13.4 |
G7 | 3222 abc | 3077 abc | 2988 bc | 3209 ab | 2763 d | 1357 cd | 949 cd | 2509 cde | 9.3 |
G8 | 2169 abc | 2737 bcd | 2951 bc | 2763 abc | 3324 a | 2239 a | 1123 bcd | 2472 cde | 7.7 |
G9 | 3037 abc | 2948 bc | 3199 bc | 2389 abc | 2306 g | 1402 cd | 1237 abcd | 2360 ef | 2.8 |
G10 | 1833 bc | 2652 cde | 2880 bc | 2502 abc | 3066 c | 2199 a | 932 cd | 2295 ef | - |
G11 | 3864 ab | 3045 abc | 2143 d | 2081 bc | 2312 g | 980 de | 1251 abcd | 2239 f | −2.4 |
G12 | 1230 abc | 1975 ef | 2542 cd | 2379 abc | 2660 de | 1505 bc | 922 cd | 1888 g | −17.8 |
G13 | 1148 c | 1763 f | 2668 cd | 2466 abc | 3020 c | 1606 bc | 1006 cd | 1954 g | −14.9 |
G14 | 1531 bc | 2071 def | 1262 e | 1656 c | 2952 c | 910 e | 953 d | 1619 h | −29.4 |
Env. Mean | 3058 | 2933 | 2899 | 2670 | 2798 | 1639 | 1191 | 2455 | |
SD | 1542 | 960 | 1181 | 983 | 379 | 532 | 360 | 1157 |
Gen. Code | DM | PH | SPP | SPD | BP | HSW | GWP | GYP |
---|---|---|---|---|---|---|---|---|
G1 | 86.1 | 66.8 | 32.4 | 3.6 | 1.1 | 22.5 | 6.8 | 3.27 |
G2 | 91.4 | 102.2 | 29.2 | 3.3 | 1.2 | 22.0 | 5.5 | 2.84 |
G3 | 91.4 | 102.5 | 25.9 | 3.7 | 1.2 | 24.1 | 5.9 | 2.80 |
G4 | 83.0 | 66.6 | 27.9 | 3.7 | 1.3 | 21.3 | 5.7 | 2.68 |
G5 | 82.3 | 64.2 | 27.8 | 4.3 | 1.3 | 21.5 | 5.8 | 2.70 |
G6 | 86.7 | 90.4 | 27.3 | 3.6 | 1.4 | 21.0 | 6.2 | 2.58 |
G7 | 84.4 | 66.1 | 25.7 | 3.7 | 1.3 | 20.2 | 5.3 | 2.48 |
G8 | 80.6 | 49.7 | 24.4 | 3.3 | 1.2 | 23.4 | 5.6 | 2.55 |
G9 | 88.6 | 81.9 | 24.6 | 3.5 | 1.5 | 21.0 | 5.0 | 2.34 |
G10 | 80.7 | 42.0 | 21.2 | 3.8 | 1.4 | 23.8 | 4.8 | 2.27 |
G11 | 86.1 | 65.6 | 21.6 | 4.1 | 1.2 | 22.9 | 4.7 | 2.22 |
G12 | 83.0 | 41.3 | 17.4 | 4.0 | 1.2 | 23.9 | 3.9 | 1.87 |
G13 | 81.7 | 41.7 | 17.7 | 3.7 | 1.2 | 24.3 | 4.1 | 1.93 |
G14 | 85.7 | 64.3 | 18.0 | 4.2 | 1.1 | 19.8 | 2.9 | 1.60 |
Range | 79–93 | 37–110 | 8.4–49.0 | 2.3–5.2 | 1.0–1.6 | 19.5–24.8 | 1.8–9.5 | 0.90–4.93 |
Mean | 85.1 | 67.5 | 24.4 | 3.8 | 1.3 | 22.3 | 5.2 | 2.44 |
SEM | 3.6 | 20.4 | 9.1 | 0.6 | 3.7 | 1.5 | 1.9 | 0.92 |
SD | 13.43 | 417.25 | 83.40 | 0.39 | 0.02 | 2.30 | 3.69 | 0.84 |
DM | PH | SPP | GWP | SPD | BP | HSW | GYP | |
---|---|---|---|---|---|---|---|---|
DM | 1 | 0.864 ** | 0.166 | 0.089 | −0.119 | −0.019 | −0.153 | 0.128 |
PH | 1 | 0.238 * | 0.172 | −0.152 | 0.049 | −0.301 ** | 0.177 | |
SPP | 1 | 0.932 ** | −0.006 | 0.033 | −0.136 | 0.981 ** | ||
GWP | 1 | 0.014 | 0.067 | 0.024 | 0.956 ** | |||
SPD | 1 | 0.071 | −0.066 | −0.006 | ||||
BP | 1 | −0.118 | 0.01 | |||||
HSW | 1 | 0.009 | ||||||
GYP | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yang, J.; He, Y.; Zong, X.; Min, G.; Lian, R.; Liu, Z.; Xiang, C.; Li, L.; Xing, B.; et al. Performance of Different Varieties of Spring Field Pea (Pisum sativum L.) under Irrigated and Rainfed Environments in North China. Agronomy 2022, 12, 1498. https://doi.org/10.3390/agronomy12071498
Yang X, Yang J, He Y, Zong X, Min G, Lian R, Liu Z, Xiang C, Li L, Xing B, et al. Performance of Different Varieties of Spring Field Pea (Pisum sativum L.) under Irrigated and Rainfed Environments in North China. Agronomy. 2022; 12(7):1498. https://doi.org/10.3390/agronomy12071498
Chicago/Turabian StyleYang, Xiaoming, Jingyi Yang, Yuhua He, Xuxiao Zong, Gengmei Min, Rongfang Lian, Zhenxing Liu, Chao Xiang, Ling Li, Baolong Xing, and et al. 2022. "Performance of Different Varieties of Spring Field Pea (Pisum sativum L.) under Irrigated and Rainfed Environments in North China" Agronomy 12, no. 7: 1498. https://doi.org/10.3390/agronomy12071498
APA StyleYang, X., Yang, J., He, Y., Zong, X., Min, G., Lian, R., Liu, Z., Xiang, C., Li, L., Xing, B., Zhang, L., & Gou, Z. (2022). Performance of Different Varieties of Spring Field Pea (Pisum sativum L.) under Irrigated and Rainfed Environments in North China. Agronomy, 12(7), 1498. https://doi.org/10.3390/agronomy12071498