Integrated Crop-Nitrogen Management Improves Tomato Yield and Root Architecture and Minimizes Soil Residual N
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatments
2.3. Fertilization and Crop Management
2.4. Sample Collection and Measurement
2.5. Data Analysis
3. Results and Analysis
3.1. Tomato Yield, Quality, and N Uptake under Different Management Strategies
3.2. Tomato Root Architecture under Two Strategies
3.3. Soil Nitrate-N Residue after Harvest
3.4. Relationship between Plant Root Architecture and N Utilization
4. Discussion
4.1. Effects of Different Management Strategies on Root N Absorption of Tomato
4.2. Synergistically Improve N Absorption and Utilization Ratio, Yield, and Quality of Tomato
4.3. Correlation between Root Architecture and Nutrient Absorption and Utilization Efficiency in Tomato
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Xia, X.J.; Hu, Z.J.; Fan, P.X.; Shi, K.; Zhou, Y.H.; Yu, J.Q. Technological development and production of protected vegetable in China during ‘The Thirteenth Five-year Plan and future prospect. China Veg. 2021, 10, 20–34. [Google Scholar]
- Lin, G. Current situation of cultivation techniques of facility vegetables and problems in production also its sustainable development strategies. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 52–69. [Google Scholar]
- Song, W.T. A complete mechanization solution for greenhouse vegetable production. J. Chin. Agric. Mech. 2018, 39, 26–29. [Google Scholar]
- Qian, X.Y.; Shen, G.X.; Guo, C.X.; Gu, H.R.; Wang, Z.Q. Salt redistribution and nutrient loss after soil salt washing in plastic shed vegetable field in East China. J. Soils Sediments 2021, 22, 12–20. [Google Scholar] [CrossRef]
- Chen, L.D.; Qi, X.; Zhang, X.Y.; Li, Q.; Zhang, Y.Y. Effect of agricultural land use changes on soil nutrient use efficiency in an agricultural area, Beijing, China. Chin. Acad. Sci. 2011, 21, 392–402. [Google Scholar] [CrossRef]
- Karoline, D.H.; Joost, S.; Micheline, V.; Tomas, V.D.S.; Joris, D.N.; Stefaan, D.N.; Georges, H. Can optimum yield and quality of vegetables be reconciled with low residual soil mineral nitrogen at harvest? Sci. Hortic. 2018, 233, 78–89. [Google Scholar]
- Qi, D.L.; Hu, T.T.; Song, X.; Zhang, M. Effect of nitrogen supply method on root growth and grain yield of maize under alternate partial root zone irrigation. Sci. Rep. 2019, 9, 81–91. [Google Scholar] [CrossRef]
- Qi, D.L.; Hu, T.T.; Niu, X.L. Responses of root growth and distribution of maize to nitrogen application patterns under partial root-zone irrigation. Int. J. Plant Prod. 2017, 11, 209–224. [Google Scholar]
- Li, Z.T.; Yang, J.G.; Zou, G.Y.; Huang, J.; Wang, J.Q. Current Situation Analysis of light and simplified production in greenhouse vegetable gardens in Beijing. China Veg. 2019, 8, 68–75. [Google Scholar]
- Yang, J.G.; Zhang, P.F.; Ni, X.H.; Xiao, Q.; Cao, B.; Zou, G.Y.; Liu, B.C. Effects of controlled release fertilizer on soil nitrate leaching, N2O emission and fruit yield and quality in greenhouse tomato production system. J. Agro-Environ. Sci. 2014, 33, 1849–1857. [Google Scholar]
- Gao, X.B.; Guo, C.; Li, F.M.; Li, M.; He, J. High Soybean Yield and Drought Adaptation Being Associated with Canopy Architecture, Water Uptake, and Root Traits. Agronomy 2020, 10, 608. [Google Scholar] [CrossRef]
- Cahill, J.F.; McNickle, G.G.; Haag, J.J.; Lamb, E.G.; Nyanumba, S.M.; StClair, C.C. Plants integrate information about nutrients and neighbors. Science 2010, 328, 1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, J.J.; Mangold, J.M.; Sheley, R.L.; Svejcar, T. Root plasticity of native and invasive great basin species in response to soil nitrogen heterogeneity. Plant Ecol. 2009, 202, 211–220. [Google Scholar] [CrossRef]
- Angela, H.; Graziella, B.; Claude, D.; Francisco, M.; Martin, C. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar]
- Wani, S.P.; Anantha, K.H.; Garg, K.K. Soil properties, crop yield, and economics under integrated crop management practices in Karnataka, southern India. World Dev. 2017, 93, 43–61. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agro-Chemistrical Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhao, M.J.; Liu, B.; Zou, C.Q.; Sun, Y.X.; Wu, G.; Zhang, Q.; Jin, G.Q.; Jin, Z.H.; Chadwick, D.; et al. Integrated systematic approach increase greenhouse tomato yield and reduce environmental losses. J. Environ. Manag. 2020, 266, 110569. [Google Scholar] [CrossRef]
- Kropp, I.; Nejadhashemi, P.A.; Kalyanmoy, D.; Mohammad, A.; Proteek, C.R.; Umesh, A.; Gerrit, H. A multi-objective approach to water and nutrient efficiency for sustainable agricultural intensification. Agric. Syst. 2019, 173, 289–302. [Google Scholar] [CrossRef]
- Carlos, C.; Lianne, M.D.; Robert, I.H.; Chantal, H.; Line, N.; Donald, L.S. A sampling method for measurement of large root systems with scanner-based image analysis. Agron. J. 2000, 92, 621–627. [Google Scholar]
- Vamerali, T.; Saccomani, M.; Bona, S.; Mosca, G.; Guarise, M.; Ganis, A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil 2003, 255, 157–167. [Google Scholar] [CrossRef]
- Mi, G.H.; Chen, F.J.; Wu, Q.P.; Lai, N.W.; Yuan, L.X.; Zhang, F.S. Ideal root configuration for efficient nitrogen absorption in maize. Sci. China Life Sci. 2010, 40, 1112–1116. [Google Scholar]
- Calado, A.M.; Martins Portas, C.A.; Oliveira, M.R.G. Tomato root distribution under drip irrigation. J. Am. Soc. Hortic. Sci. 1996, 121, 644–648. [Google Scholar]
- Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Muñoz-Carpena, R.; Icerman, J. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 23–34. [Google Scholar] [CrossRef]
- Tian, Q.Y.; Chen, F.J.; Liu, J.X.; Zhang, F.S.; Mi, G.H. Inhibition of maize root growth by high nitrate supply is correlated to reduced IAA levels in roots. J. Plant Physiol. 2008, 165, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Chun, L.; Mi, G.H.; Li, J.S.; Chen, F.J.; Zhang, F.S. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil 2005, 276, 369–382. [Google Scholar] [CrossRef]
- Gaudin, A.C.M.; McClymont, S.A.; Holmes, B.M.; Lyons, E.M.; Raizada, M.N. Novel temporal, fine-scale and growth variation phenotypes in roots of adult stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ. 2011, 34, 2122–2137. [Google Scholar] [CrossRef]
- Wu, Q.; Pages, L.; Wu, J. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize. Ann. Bot. 2016, 117, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, G.; Yu, K.; Li, P.; Xiao, L.; Liu, G. A new method to optimize root order classification based on the diameter interval of fine root. Sci. Rep. 2018, 8, 2960. [Google Scholar] [CrossRef] [Green Version]
- Boschiero, B.N.; Mariano, E.; Torres-Dorante, L.O.; Sattolo, T.M.S.; Otto, R.; Garcia, P.L.; Dias, C.T.S.; Trivelin, P.C.O. Nitrogen fertilizer effects on sugarcane growth, nutritional status, and productivity in tropical acid soils. Nutr. Cycl. Agroecosyst. 2020, 117, 367–382. [Google Scholar] [CrossRef]
- Han, X.; Qu, M.; Li, Y.K.; Wang, Z.; Guo, W.Z.; Chen, F. Effects of different fertilization levels on tomato growth, nitrogen uptake, yield and quality in greenhouse. Soils Fertil. Sci. China 2021, 2, 162–169. [Google Scholar]
- Xing, J.J.; Xing, Y.Y.; Wang, X.K.; Wang, Y.F.; Li, X.X.; Nie, J.B. Effects of different fertilizers application on soil nitrate, growth and yield of tomato growing in solar greenhouse in Northern Shaanxi Province. J. Irrig. Drain. 2018, 37, 29–35. [Google Scholar]
- Qu, Z.M.; Qi, X.C.; Shi, R.G.; Zhao, Y.J.; Hu, Z.P.; Chen, Q.; Li, C.L. Reduced N fertilizer application with optimal blend of controlled-release urea and urea improves tomato yield and quality in greenhouse production system. J. Soil Sci. Plant Nutr. 2020, 20, 1741–1750. [Google Scholar] [CrossRef]
- Yang, J.G.; Liao, S.Q.; Li, Y.M.; Cao, B.; Sun, Y.X.; Liu, B.C. Reducing nitrogen pollution while improving tomato production by controlled-release urea application. Soil Sci. Plant Nutr. 2018, 64, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Zou, G.Y.; Yang, J.G.; Sun, Y.X. Light Reduction and High Efficiency Cultivation of Facility Vegetable; China Agriculture Press: Beijing, China, 2019; pp. 164–173. [Google Scholar]
- Song, W.T.; Li, C.X.; Sun, X.G.; Wang, Z.P.; Zhao, S.M. Effects of ridge direction on growth and yield of tomato in solar greenhouse with diffuse film. Trans. Chin. Soc. Agric. Eng. 2017, 33, 242–248. [Google Scholar]
- Cui, Z.L.; Dou, Z.X.; Ying, H.; Zhang, F.S. Producing more with less: Reducing environmental impacts through an integrated soil-crop system management approach. Front. Agric. Sci. Eng. 2020, 7, 14–20. [Google Scholar] [CrossRef] [Green Version]
Fertilizers | Nutrient Contents |
---|---|
Urea ammonium nitrate solution (UAN) | N 32% |
Ammonium polyphosphate (APP) | N 11%, P2O5 37% |
Potassium solution | K2O 30% |
High N type water-soluble fertilizer | N:P2O5:K2O = 30–10–10% |
High potassium type water-soluble fertilizer | N:P2O5:K2O = 15–5–30% |
Controlled release urea (CU) | N 43% |
Carbon-based N compound fertilizer (BU) | BU: N:P2O5:K2O = 14–14–14% |
Conventional compound fertilizer (CF) | CF: N:P2O5:K2O = 17–17–17% |
Calcium superphosphate | P2O5 12% |
Potassium sulfate | K2O 50% |
N fertilizer inhibitor | Nitrification inhibitor dicyandiamide (DCD) and urease inhibitor N-butyl thiophosphoryl triamine (NBPT) |
Treatments | Total N Content of Plant (%) | Total N Content of Fruit (%) | N Uptake (kg ha−1) | PFP N (kg kg−1) | Yield (t ha−1) | |
---|---|---|---|---|---|---|
Traditional management (TM) | CK | 1.58 ± 0.13 a | 1.97 ± 0.29 a | 124 ± 4.90 a | 373 ± 40.91 a | 74.6 ± 8.18 bc |
BU | 1.69 ± 0.20 a | 2.03 ± 0.12 a | 127 ± 19.08 a | 260 ± 46.19 b | 78.0 ± 13.86 ab | |
CU | 1.67 ± 0.10 a | 1.86 ± 0.20 a | 115 ± 12.10 a | 223 ± 25.11 b | 66.9 ± 7.53 c | |
CF | 1.81 ± 0.26 a | 2.16 ± 0.19 a | 138 ± 8.25 a | 278 ± 35.30 b | 83.5 ± 10.59 a | |
Integrated management (ICNM) | CK | 1.86 ± 0.23 a | 2.16 ± 0.22 a | 155 ± 26.48 a | 433 ± 79.70 a | 86.6 ± 7.34 b |
BU | 1.72 ± 0.20 a | 2.14 ± 0.12 a | 180 ± 36.31 a | 320 ± 28.96 a | 96.0 ± 8.69 ab | |
CU | 1.92 ± 0.19 a | 2.19 ± 0.13 a | 189 ± 37.78 a | 362 ± 67.62 a | 109 ± 10.78 a | |
CF | 1.72 ± 0.13 a | 2.16 ± 0.23 a | 181 ± 4.92 a | 369 ± 73.93 a | 111 ± 12.21 a | |
TM | 1.69 ± 0.13 a | 2.00 ± 0.09 a | 126 ± 10.01 b | 283 ± 35.71 b | 75.7 ± 9.71 b | |
ICNM | 1.80 ± 0.15 a | 2.16 ± 0.05 a | 176 ± 13.26 a | 371 ± 28.67 a | 100 ± 6.31 a | |
Significance levels | Management strategies (M) | ns | ns | ** | ** | ** |
Fertilizer type (F) | ns | ns | ns | ** | * | |
M × F | ns | ns | ns | ns | ns |
Treatments | Nitrate (mg kg−1) | Vitamin C (mg 100 g−1) | Soluble Sugar (%) | Titratable Acid (%) | Sugar Acid Ratio | Lycopene (mg 100 g−1) | |
---|---|---|---|---|---|---|---|
TM | CK | 234 ± 43.4 a | 10.5 ± 1.09 a | 3.52 ± 0.57 ab | 0.39 ± 0.05 a | 9.12 ± 1.43 a | 2.16 ± 0.28 b |
BU | 231 ± 32.8 a | 11.4 ± 1.04 a | 3.38 ± 0.46 b | 0.45 ± 0.03 a | 7.52 ± 1.49 a | 2.39 ± 0.27 b | |
CU | 232 ± 40.4 a | 11.0 ± 1.95 a | 4.67 ± 0.35 a | 0.47 ± 0.07 a | 10.14 ± 1.90 a | 2.41 ± 0.25 b | |
CF | 239 ± 43.4 a | 11.2 ± 1.58 a | 3.64 ± 0.30 ab | 0.39 ± 0.06 a | 9.47 ± 2.17 a | 3.26 ± 0.39 a | |
ICNM | CK | 265 ± 57.5 a | 9.68 ± 1.15 a | 3.72 ± 0.31 a | 0.51 ± 0.04 a | 7.27 ± 0.38 b | 2.46 ± 0.17 a |
BU | 228 ± 28.8 a | 10.5 ± 0.39 a | 4.00 ± 0.36 a | 0.53 ± 0.07 a | 7.53 ± 0.35 b | 2.46 ± 0.34 a | |
CU | 241 ± 13.5 a | 10.2 ± 1.06 a | 4.42 ± 0.49 a | 0.58 ± 0.08 a | 7.73 ± 1.47 ab | 2.22 ± 0.18 a | |
CF | 208 ± 24.0 a | 10.9 ± 1.26 a | 4.07 ± 0.33 a | 0.42 ± 0.04 b | 9.70 ± 1.50 a | 2.38 ± 0.34 a | |
TM | 234 ± 24.8 a | 11.0 ± 1.34 a | 3.81 ± 0.20 a | 0.43 ± 0.02 b | 8.94 ± 1.07 a | 2.56 ± 0.21 a | |
ICNM | 236 ± 16.5 a | 10.3 ± 0.32 a | 4.05 ± 0.18 a | 0.51 ± 0.04 a | 8.00 ± 1.08 a | 2.38 ± 0.15 a | |
Significance levels | M | ns | ns | ns | ** | ns | ns |
F | ns | ns | * | * | * | * | |
M × F | ns | ns | ns | ns | ns | * |
Treatments | Root Length (cm) | Root Length Density (cm cm−3) | Surface Area (cm2) | Average Diameter (mm) | Root Volume (cm3) | |
---|---|---|---|---|---|---|
TM | CK | 13,575 b | 1.70 b | 3530 a | 0.74 a | 174 a |
BU | 20,342 b | 2.14 ab | 23,922 a | 0.80 a | 98.3 a | |
CU | 29,103 a | 6.07 a | 10,425 a | 0.74 a | 233 a | |
CF | 30,144 a | 3.01 ab | 5590 a | 0.73 a | 132 a | |
ICNM | CK | 45,157 a | 5.64 a | 8905 a | 0.67 a | 227 a |
BU | 31,277 b | 3.91 b | 6686 b | 0.68 a | 202 a | |
CU | 17,888 c | 2.24 c | 3514 c | 0.62 a | 71.6 b | |
CF | 31,324 b | 3.92 b | 6921 b | 0.70 a | 188 a | |
TM | 25,849 a | 3.23 a | 5133 a | 0.75 a | 172 a | |
ICNM | 31,411 a | 3.93 a | 6506 a | 0.67 b | 159 a | |
Significance levels | M | ns | ns | ns | ** | ns |
F | * | * | ** | ns | * | |
M × F | ** | ** | ** | ns | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, Y.; Cui, D.; Li, Y.; Zou, G.; Thompson, R.; Wang, J.; Yang, J. Integrated Crop-Nitrogen Management Improves Tomato Yield and Root Architecture and Minimizes Soil Residual N. Agronomy 2022, 12, 1617. https://doi.org/10.3390/agronomy12071617
Li C, Li Y, Cui D, Li Y, Zou G, Thompson R, Wang J, Yang J. Integrated Crop-Nitrogen Management Improves Tomato Yield and Root Architecture and Minimizes Soil Residual N. Agronomy. 2022; 12(7):1617. https://doi.org/10.3390/agronomy12071617
Chicago/Turabian StyleLi, Changqing, Yahao Li, Dongyu Cui, Yanmei Li, Guoyuan Zou, Rodney Thompson, Jiqing Wang, and Jungang Yang. 2022. "Integrated Crop-Nitrogen Management Improves Tomato Yield and Root Architecture and Minimizes Soil Residual N" Agronomy 12, no. 7: 1617. https://doi.org/10.3390/agronomy12071617
APA StyleLi, C., Li, Y., Cui, D., Li, Y., Zou, G., Thompson, R., Wang, J., & Yang, J. (2022). Integrated Crop-Nitrogen Management Improves Tomato Yield and Root Architecture and Minimizes Soil Residual N. Agronomy, 12(7), 1617. https://doi.org/10.3390/agronomy12071617