Growth and Fruit Yields of Greenhouse Tomato under the Integrated Water and Fertilizer by Moistube Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Management
2.2. Experimental Design
2.3. Measurements and Computational Methods
3. Results
3.1. Photosynthetic Characteristics of Tomato Leaves in Greenhouse
3.2. Dry Matter Mass of Tomato in Greenhouse
3.3. Fruit Quality of Tomato in Greenhouse
3.4. Yield, Water Use Efficiency and Partial Fertilizer Productivity of Tomato in Greenhouse
3.5. Correlation between Pn of Tomato Leaves, Dry Matter Mass of and Yield of Tomatoes in Greenhouse
3.6. The Optimal Scheme for the Integrated Water and Fertilizer in Moistube Irrigation
3.6.1. Comprehensive Score Evaluation of Tomato Quality Based on Principal
Component Analysis (PCA)
3.6.2. Selection of Optimal Scheme for Integrated Water and Fertilizer of MI Based on Spatial Analysis
4. Discussion
4.1. Effects of Different Treatments on Tomato Growth in Greenhouse Conditions
4.2. Effects of Different Treatments on Fruit Quality of Tomato in Greenhouse Conditions
4.3. Effects of Different Treatments on Tomato Yield, WUE and PFP in Greenhouse Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Li, Y.; Liu, J.; Wang, J.; Zhang, Z.; Xiao, N. Changes of soil water and heat transport and yield of tomato (Solanum lycopersicum) in greenhouses with Micro-Sprinkler irrigation under plastic film. Agronomy 2022, 12, 664. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, C.; He, Y.; Zhou, Q.; Li, D.; Zheng, L.; Ouyang, X.; Zhang, Z. Analysis of World Tomato Production Based on FAO Data from 1980 to 2019. Hunan Agric. Sci. 2021, 104–108. [Google Scholar] [CrossRef]
- Liu, H.; Duan, A.; Li, F.; Sun, J.; Wang, Y.; Sun, C. Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in north china plain. J. Integr. Agric. 2013, 12, 520–531. [Google Scholar] [CrossRef]
- Ren, P.; Huang, F.; Li, B. Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction. Agric. Water Manag. 2022, 263, 107468. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Zhao, W.; Zheng, J.; Guo, J.; Xiang, Y.; Wu, L. Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato. Agric. Water Manag. 2022, 262, 107401. [Google Scholar] [CrossRef]
- Cecilio, F.A.; Nascimento, C.S.; Pereira, B.J.; Nascimento, C.S. Nitrogen fertilisation impacts greenhouse gas emissions, carbon footprint, and agronomic responses of beet intercropped with arugula. J. Environ. Manag. 2022, 307, 114568. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Finding the fertilization optimization to balance grain yield and soil greenhouse gas emissions under water-saving irrigation. Soil Tillage Res. 2021, 214, 105167. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, W.; Bai, Q.; Li, Y.; Wang, J.; Wang, Z.; Zhang, Z. Improvement of quality and yield of greenhouse tomato (Solanum lycopersicum L.) Plants by micro-sprinkler irrigation under plastic film. Appl. Ecol. Environ. Res. 2020, 18, 6905–6926. [Google Scholar] [CrossRef]
- Cassel Sharmasarkar, F.; Sharmasarkar, S.; Miller, S.D.; Vance, G.F.; Zhang, R. Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets. Agric. Water Manag. 2001, 46, 241–251. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, Y.; Zhang, F.; Tang, Z.; Guo, J.; Zhang, X.; Hou, X.; Wang, H.; Cheng, M.; Li, Z. Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China. Agric. Water Manag. 2022, 260, 107279. [Google Scholar] [CrossRef]
- Zhu, K.; Zhao, Y.; Ma, Y.; Zhang, Q.; Kang, Z.; Hu, X. Drip irrigation strategy for tomatoes grown in greenhouse on the basis of fuzzy Borda and K-means analysis method. Agric. Water Manag. 2022, 267, 107598. [Google Scholar] [CrossRef]
- Hu, J.; Gettel, G.; Fan, Z.; Lv, H.; Zhao, Y.; Yu, Y.; Wang, J.; Butterbach-Bahl, K.; Li, G.; Lin, S. Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production. Agric. Ecosyst. Environ. 2021, 313, 107379. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Lv, D.; Li, W.; Wang, T.; Wei, C. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation. Trans. Chin. Soc. Agric. Eng. 2020, 36, 66–75. [Google Scholar]
- Du, Y.; Cao, H.; Liu, S.; Gu, X.; Cao, Y. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, L.; Wang, X.; Zhang, S.; Cheng, M.; Feng, H.; Fan, J.; Zhang, F.; Xiang, Y. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation. Agric. Water Manag. 2021, 245, 106662. [Google Scholar] [CrossRef]
- Volpi, I.; Bosco, S.; Ragaglini, G.; Laville, P.; Bonari, E. Tomato productivity and soil greenhouse gas emissions under reduced water and N fertilizers in a Mediterranean environment. Agric. Ecosyst. Environ. 2022, 326, 107819. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, Z.; Wang, C.; Huang, M. Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation. Agric. Water Manag. 2021, 248, 106756. [Google Scholar] [CrossRef]
- Ou, Y.; Xu, P. Comparative study on water-saving irrigation techniques for urban greening. Water Sav. Irrig. 2021, 16–23. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, W.; Lu, Z.; Wang, J.; Qiu, X.; Li, Y. Effects of Moistube Irrigation on Winter Wheat’s Yield and Irrigation Water Use Efficiency. J. Irrig. Drain. 2018, 37, 8–15. [Google Scholar]
- Zhu, Y.M. Effect of Pressure Head on Soil Water and Nitrogen Migration and Greenhouse Vegetable Growth in Moistube-irrigation and Fertilization. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2021. [Google Scholar]
- Lv, W.; Niu, W.; Gu, J.; Li, Y.; Zou, X.; Zhang, R. Effects of moistube depth and density on tomato yield and quality in solar greenhouse. Chin. J. Eco-Agric. 2016, 24, 1663–1673. [Google Scholar]
- Niu, W.; Zhang, M.; Xu, J.; Zou, X.; Li, Y. Prediction Methods and Characteristics of Flow for Moistube. Trans. Chin. Soc. Agric. Mach. 2017, 48, 217–224. [Google Scholar]
- Kanda, E.K.; Senzanje, A.; Mabhaudhi, T. Soil water dynamics under Moistube irrigation. Phys. Chem. Earth Parts A/B/C 2020, 115, 102836. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, W.; Wen, C.; Li, T. Study on factors affecting corn yield based on the Cobb-Douglas production function. Agric. Water Manag. 2020, 228, 105869. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Wang, H.; Xiao, N.; Liu, J. Exploration of Water-Saving and High-Yield irrigation model for tomato under microsprinkler irrigation with plastic film in a greenhouse based on spatial analysis. J. Sens. 2022, 2022, 3452727. [Google Scholar] [CrossRef]
- Horchani, F.; Aschi-Smiti, S.; Brouquisse, R. Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia. Acta Physiol. Plant. 2010, 32, 1113–1123. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Cao, X.; Wang, J.; Zhang, M.; Duan, X.; Zhang, Z. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biol. 2019, 19, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Liu, F. Vapour pressure deficit and endogenous ABA level modulate stomatal responses of tomato plants to soil water deficit. Environ. Exp. Bot. 2022, 199, 104889. [Google Scholar] [CrossRef]
- Patel, D.P.; Das, A.; Munda, G.C.; Ghosh, P.K.; Bordoloi, J.S.; Kumar, M. Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agric. Water Manag. 2010, 97, 1269–1276. [Google Scholar] [CrossRef]
- Sainju, U.M.; Singh, B.P.; Whitehead, W.F. Comparison of the effects of cover crops and nitrogen fertilization on tomato yield, root growth, and soil properties. Sci. Hortic. 2001, 91, 201–214. [Google Scholar] [CrossRef]
- Pfaff, J.; Denton, A.K.; Usadel, B.; Pfaff, C. Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158763. [Google Scholar] [CrossRef]
- Paleari, L.; Movedi, E.; Vesely, F.M.; Invernizzi, M.; Piva, D.; Zibordi, G.; Confalonieri, R. Estimating plant nitrogen content in tomato using a smartphone. Field Crop. Res. 2022, 284, 108564. [Google Scholar] [CrossRef]
- Sun, H.; Shi, Q.; Zhang, S.; Huang, W. The response of photosystem I to fluctuating light is influenced by leaf nitrogen content in tomato. Environ. Exp. Bot. 2022, 193, 104665. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, B.; Bie, Z.; Kang, Y. Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions. Agric. Water Manag. 2012, 109, 30–35. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Niu, W. Effects of water and N-fertilizer supplies on the distribution and use efficiency of water and nitrogen of drip-irrigated tomato in greenhouse. Trans. Chin. Soc. Agric. Eng. 2020, 36, 106–115. [Google Scholar]
- Shu, L.; Liu, R.; Min, W.; Wang, Y.; Yu, H.; Zhu, P.; Zhu, J. Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation. Agric. Water Manag. 2020, 238, 106200. [Google Scholar] [CrossRef]
- Sensoy, S.; Ertek, A.; Gedik, I.; Kucukyumuk, C. Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agric. Water Manag. 2007, 88, 269–274. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Guo, P.; Qiu, R.; Chen, R.; Gu, F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agric. Water Manag. 2014, 146, 131–148. [Google Scholar] [CrossRef]
- Agbna, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Niu, W. Deficit alternate drip irrigation increased Root-Soil-Plant interaction, tomato yield, and quality. Int. J. Environ. Res. Public Health 2020, 17, 781. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, M.; Cai, Z.; Zhao, R.; Hong, T.; Yang, Z.; Zhang, Z. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato. Agric. Water Manag. 2021, 243, 106360. [Google Scholar] [CrossRef]
- Ordóñez, R.A.; Castellano, M.J.; Danalatos, G.N.; Wright, E.E.; Hatfield, J.L.; Burras, L.; Archontoulis, S.V. Insufficient and excessive N fertilizer input reduces maize root mass across soil types. Field Crop. Res. 2021, 267, 108142. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Ding, X. The combined application of biochar and high phosphate fertilizer promoted the mobilization and redistribution of cadmium in rhizosphere soil. J. Environ. Chem. Eng. 2022, 10, 107482. [Google Scholar] [CrossRef]
- Striker, G.G.; Teakle, N.L.; Colmer, T.D.; Barrett-Lennard, E.G. Growth responses of Melilotus siculus accessions to combined salinity and root-zone hypoxia are correlated with differences in tissue ion concentrations and not differences in root aeration. Environ. Exp. Bot. 2015, 109, 89–98. [Google Scholar] [CrossRef]
- Yang, X.; Geng, J.; Li, C.; Zhang, M.; Chen, B.; Tian, X.; Zheng, W.; Liu, Z.; Wang, C. Combined application of polymer coated potassium chloride and urea improved fertilizer use efficiencies, yield and leaf photosynthesis of cotton on saline soil. Field Crop. Res. 2016, 197, 63–73. [Google Scholar] [CrossRef]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren, L.; Luo, S.; Lin, H.; Zhou, H.; et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.; Huang, S.; Jin, J. Effects of potassium application on flavor compounds of cherry tomato fruits. J. Plant Nutr. 2009, 32, 1451–1468. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Yalin, D.; Schwartz, A.; Tarchitzky, J.; Shenker, M. Soil oxygen and water dynamics underlying hypoxic conditions in the root-zone of avocado irrigated with treated wastewater in clay soil. Soil Tillage Res. 2021, 212, 105039. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.; Yan, X.; Shen, H. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms. Agric. Water Manag. 2021, 245, 106579. [Google Scholar] [CrossRef]
- Shang, Z.; Cai, H.; Chen, H.; Sun, Y.; Li, L.; Zhu, Y.; Wang, X. Effect of Water-Fertilizer-Gas Coupling on Soil N2O Emission and Yield in Greenhouse Tomato. Environ. Sci. 2020, 41, 2924–2935. [Google Scholar]
- Zhu, Y.; Cai, H.; Song, L.; Wang, X.; Shang, Z.; Sun, Y. Aerated irrigation of different irrigation levels and subsurface dripper depths affects fruit yield, quality and water use efficiency of greenhouse tomato. Sustainability 2020, 12, 2703. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Hu, T.; Liu, X.; Peng, Y.; Leng, X.; Li, Y.; Yang, Q. Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions. Agric. Water Manag. 2022, 260, 107296. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, T.; Jiang, W.; Li, P.; Shi, P.; Xu, G.; Cheng, S.; Cheng, Y.; Fan, Z.; Wang, X. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Hebbar, S.S.; Ramachandrappa, B.K.; Nanjappa, H.V.; Prabhakar, M. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur. J. Agron. 2004, 21, 117–127. [Google Scholar] [CrossRef]
- Liu, J.; Hu, T.; Feng, P.; Yao, D.; Gao, F.; Hong, X. Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agric. Water Manag. 2021, 250, 106831. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, F.; Cao, W.; Ma, F.; Han, L. Effects of water and fertilizer coupling on the yield and quality of tomatoes. Trans. Chin. Soc. Agric. Eng. 2022, 38, 95–101. [Google Scholar]
- Geisseler, D.; Aegerter, B.J.; Miyao, E.M.; Turini, T.; Cahn, M.D. Nitrogen in soil and subsurface drip-irrigated processing tomato plants (Solanum lycopersicum L.) as affected by fertilization level. Sci. Hortic. 2020, 261, 108999. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Liao, S.; Zou, G.; Zhao, T.; Chen, Y.; Yang, J.; Zhang, L. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agric. Water Manag. 2017, 186, 139–146. [Google Scholar] [CrossRef]
Number | Treatments | Working Pressure m | Irrigation Amount mm | Fertilizer Amount kg/ha |
---|---|---|---|---|
1 | I1F1 | 1 | 173.66 | 100 |
2 | I1F2 | 1 | 173.66 | 200 |
3 | I1F3 | 1 | 173.66 | 300 |
4 | I2F1 | 2 | 372.70 | 100 |
5 | I2F2 | 2 | 372.70 | 200 |
6 | I2F3 | 2 | 372.70 | 300 |
7 | I3F1 | 3 | 528.31 | 100 |
8 | I3F2 | 3 | 528.31 | 200 |
9 | I3F3 | 3 | 528.31 | 300 |
Number | Days after the Transplant of Tomato Plants | Index | Instrument |
---|---|---|---|
1 | 40 | Photosynthetic rate (Pn) Stomatal conductivity (Gs) Intercellular CO2 concentration (Ci) Transpiration rate (Tr) | LI-6400 |
2 | 78 | ||
3 | 112 |
Number | Index | Methods |
---|---|---|
1 | Transverse Diameter (TD) | Vernier caliper |
2 | Vertical Diameter (VD) | Vernier caliper |
3 | Total Soluble Solids (TSS) | Hand refractometer |
4 | Total Soluble Sugar (TSU) | Anthrone method |
5 | Vitamin C (VC) | Titration method |
6 | Lycopene (LY) | Ultraviolet spectrophotometer |
Treatments | LDM g/Stock | SDM g/Stock | RDM g/Stock | FDM g/Stock | TDM g/Stock |
---|---|---|---|---|---|
I1F1 | 65.06 ± 5.69 d | 70.76 ± 8.2 d | 9.56 ± 1.36 b | 109.06 ± 25.87 d | 254.44 ± 23.15 d |
I1F2 | 72.01 ± 5.8 cd | 78.31 ± 5.78 bcd | 10.74 ± 1.25 ab | 129.57 ± 29.45 bcd | 290.63 ± 27.83 c |
I1F3 | 71.23 ± 5.65 cd | 76.64 ± 5.45 d | 9.49 ± 1.32 b | 127.69 ± 26.24 cd | 285.04 ± 28.98 c |
I2F1 | 75.79 ± 9.93 abc | 79.21 ± 11.05 bcd | 11.87 ± 1.2 a | 131.34 ± 16.37 bcd | 298.21 ± 27.41 bc |
I2F2 | 83.97 ± 9.43 a | 90.75 ± 10.86 a | 12.28 ± 1.75 a | 142.03 ± 12.28 abc | 329.03 ± 26.68 a |
I2F3 | 82.59 ± 6.22 ab | 89.27 ± 6.88 a | 12.1 ± 0.92 a | 152.65 ± 21.91 ab | 336.61 ± 21.53 a |
I3F1 | 73.54 ± 14.01 bcd | 77.03 ± 9.31 cd | 11.09 ± 1.06 ab | 126.15 ± 22.43 cd | 287.81 ± 39.10 c |
I3F2 | 83.93 ± 12.03 a | 85.83 ± 7.09 abc | 12.18 ± 1.72 a | 156.84 ± 9.59 a | 338.78 ± 18.75 a |
I3F3 | 79.74 ± 11.29 abc | 87.06 ± 11.5 ab | 11.67 ± 3.47 a | 139.72 ± 27.33 abc | 318.18 ± 23.32 ab |
F-value | |||||
I | 11.471 ** | 11.774 ** | 11.822 ** | 6.807 ** | 21.731 ** |
F | 6.012 ** | 9.535 ** | 2.927 * | 6.818 ** | 16.709 ** |
I*F | 2.110 * | 0.247 ns | 0.292 ns | 0.933 ns | 0.682 ns |
Treatments | TD mm | VD mm | TSS% | TSU% | VC mg/g | LY% |
---|---|---|---|---|---|---|
I1F1 | 50.83 ± 9.26 b | 53.13 ± 9.44 e | 5.64 ± 0.09 ab | 8.79 ± 1.42 ab | 19.21 ± 1.5 bc | 62.68 ± 6.72 ab |
I1F2 | 54.22 ± 6.14 ab | 64.51 ± 5.79 abc | 6.11 ± 0.17 a | 9.55 ± 0.95 a | 21.79 ± 1.3 a | 67.66 ± 4.33 a |
I1F3 | 54.42 ± 11.65 ab | 63.6 ± 7.98 abc | 5.98 ± 0.4 a | 9.41 ± 0.58 ab | 20.8 ± 1.1 ab | 66.03 ± 5.53 a |
I2F1 | 51.11 ± 7.04 b | 59.93 ± 9.64 cde | 5.45 ± 0.42 b | 8.29 ± 1.37 abc | 18.55 ± 2.68 c | 58.55 ± 10.86 b |
I2F2 | 60.51 ± 4.19 a | 69.98 ± 3.17 a | 6.02 ± 0.9 a | 9.37 ± 1.85 ab | 21.75 ± 3.72 a | 67.62 ± 7.98 a |
I2F3 | 58.96 ± 4.28 a | 67.89 ± 5.18 ab | 5.71 ± 0.51 ab | 9.03 ± 1.06 ab | 19.1 ± 1.76 bc | 65.17 ± 5.41 ab |
I3F1 | 50.27 ± 11.4 b | 55.01 ± 10.43 de | 4.82 ± 0.12 c | 7.13 ± 1.13 c | 16.42 ± 1.09 d | 50.33 ± 4.89 c |
I3F2 | 56.56 ± 8.45 ab | 63.66 ± 5.11 abc | 5.5 ± 0.39 b | 8.44 ± 1.43 ab | 19.01 ± 1.31 bc | 62.02 ± 6 ab |
I3F3 | 57.03 ± 6.01 ab | 62.08 ± 6.55 bcd | 5.27 ± 0.41 b | 8.18 ± 0.8 bc | 18.49 ± 0.88 c | 62 ± 3.17 ab |
F-value | ||||||
I | 6.450 ** | 15.148 ** | 18.591 ** | 8.484 ** | 13.402 ** | 13.587 ** |
F | 5.378 * | 14.355 ** | 11.128 ** | 5.359 ** | 14.326 ** | 13.776 ** |
I*F | 0.351 ns | 0.146 ns | 0.213 ns | 0.137 ns | 0.812 ns | 3.097 * |
Treatments | Yield kg/ha | Water Consumption mm | Water Use Efficiency kg/m3 | Partial Factor Productivity kg/kg |
---|---|---|---|---|
I1F1 | 94,497.07 ± 12,514.03 c | 358.33 ± 9.05 h | 26.41 ± 3.77 bc | 85.91 ± 11.38 b |
I1F2 | 111,169.27 ± 8390.25 b | 386.8 ± 18.06 g | 28.81 ± 2.74 ab | 50.53 ± 3.81 d |
I1F3 | 110,264.5 ± 17,709.89 b | 410.18 ± 18.53 f | 26.89 ± 4.17 abc | 33.41 ± 5.37 e |
I2F1 | 102,204.58 ± 14,881.37 bc | 405.77 ± 8.86 f | 25.24 ± 4.02 cd | 92.91 ± 13.53 a |
I2F2 | 131,200.94 ± 13,552.62 a | 439.79 ± 15.65 e | 29.9 ± 3.55 a | 59.64 ± 6.16 c |
I2F3 | 126,729.16 ± 13,164.28 a | 472.98 ± 10.12 d | 26.81 ± 2.86 abc | 38.4 ± 3.99 e |
I3F1 | 103,999.59 ± 12,172.08 bc | 452.01 ± 7.68 c | 23 ± 2.62 d | 94.55 ± 11.07 a |
I3F2 | 126,203.36 ± 17,928.28 a | 501.65 ± 22.35 b | 25.15 ± 3.38 cd | 57.37 ± 8.15 cd |
I3F3 | 125,340.07 ± 21,839.81 a | 525.21 ± 7.95 a | 23.88 ± 4.28 cd | 37.98 ± 6.62 e |
F-value | ||||
I | 30.295 ** | 523.818 ** | 10.638 ** | 7.922 ** |
F | 24.528 ** | 186.635 ** | 7.082 ** | 385.682 ** |
I*F | 0.541 ns | 4.734 * | 2.491 * | 0.342 ns |
Indicator Variables | Factor Loading | |
---|---|---|
PC1 (61.14%) | PC2 (35.53%) | |
TD | 0.226 | 0.959 |
VD | 0.393 | 0.888 |
TSS | 0.965 | 0.247 |
TSU | 0.952 | 0.284 |
VC | 0.930 | 0.296 |
LY | 0.872 | 0.441 |
Characteristic values | 4.797 | 1.003 |
Variance contribution rates % | 61.135 | 35.531 |
Cumulative contribution rates % | 61.135 | 96.666 |
Dependent Variable | Regression Equation | R2 | Maximum Combination of Z Values | ||
---|---|---|---|---|---|
x | y | zmax | |||
Total dry matter mass of tomato | z = 51.947 − 32.970x2 − 0.002y2 + 148.605x + 1.077y − 0.001xy | 0.995 | 2.525 | 236.344 | 346.559 |
Comprehensive score of tomato quality | z = 124.808 − 8.287x2 − 0.0016y2 + 19.417x + 0.697y + 0.021xy | 0.994 | 1.454 | 225.682 | 217.581 |
Yield of tomato | z = 18,165.595 − 8132.583x2 − 1.235y2 + 36,345.838x + 568.937y + 13.933xy | 0.975 | 2.444 | 244.083 | 132,008.216 |
Water use efficiency of tomato | z = 14.988 − 1.627x2 − 0.0003y2 + 4.627x + 0.106y − 0.001xy | 0.949 | 1.486 | 208.463 | 29.490 |
Partial fertility productivity of tomato | z = 119.368 − 3.694x2 − 0.001y2 + 20.150x − 0.573y − 0.010xy | 0.999 | 2.216 | 371.413 | 35.303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xiao, N.; Li, Y.; Li, Y.; Zhang, D.; Xu, Z.; Zhang, Z. Growth and Fruit Yields of Greenhouse Tomato under the Integrated Water and Fertilizer by Moistube Irrigation. Agronomy 2022, 12, 1630. https://doi.org/10.3390/agronomy12071630
Zhang M, Xiao N, Li Y, Li Y, Zhang D, Xu Z, Zhang Z. Growth and Fruit Yields of Greenhouse Tomato under the Integrated Water and Fertilizer by Moistube Irrigation. Agronomy. 2022; 12(7):1630. https://doi.org/10.3390/agronomy12071630
Chicago/Turabian StyleZhang, Mingzhi, Na Xiao, Yangjian Li, Yuan Li, Dong Zhang, Zhijing Xu, and Zhenxing Zhang. 2022. "Growth and Fruit Yields of Greenhouse Tomato under the Integrated Water and Fertilizer by Moistube Irrigation" Agronomy 12, no. 7: 1630. https://doi.org/10.3390/agronomy12071630
APA StyleZhang, M., Xiao, N., Li, Y., Li, Y., Zhang, D., Xu, Z., & Zhang, Z. (2022). Growth and Fruit Yields of Greenhouse Tomato under the Integrated Water and Fertilizer by Moistube Irrigation. Agronomy, 12(7), 1630. https://doi.org/10.3390/agronomy12071630