Research on Hydraulic Properties and Energy Dissipation Mechanism of the Novel Water-Retaining Labyrinth Channel Emitters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure Design and Physical Model
2.2. Mathematical Model of the CWRLC Emitter
2.3. Meshing and Simulation Parameters Setting
2.4. Experimental Test
3. Results
3.1. Influence of Hydraulic Performance
3.2. Analysis of Flow Channel Internal Flow Characteristics
3.3. Structure Optimization of the Flow Channel
3.4. Experimental Verification of Hydraulic Performance for Drip Emitters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 Vision of Subsurface Drip Irrigation in the U.S. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Nogueira, V.H.B.; Diotto, A.V.; Thebaldi, M.S.; Colombo, A.; Silva, Y.F.; de Lima, E.M.; Resende, G.F.L. Variation in the Flow Rate of Drip Emitters in a Subsurface Irrigation System for Different Soil Types. Agric. Water Manag. 2021, 243, 106485. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, Y.; Wang, H.; Ma, X.; Mo, Y. Anti-Clogging Performance Optimization for Dentiform Labyrinth Emitters. Irrig. Sci. 2020, 38, 275–285. [Google Scholar] [CrossRef]
- De Sousa Pereira, D.J.; Lavanholi, R.; de Araujo, A.C.S.; Mouheb, N.A.; Frizzone, J.A.; Molle, B. Evaluating Sensitivity to Clogging by Solid Particles in Irrigation Emitters: Assessment of a Laboratory Protocol. J. Irrig. Drain. Eng. 2020, 146, 11. [Google Scholar] [CrossRef]
- Gyasi-Agyei, Y. Validation of Dripline Emitter Characteristics and Pump Performance Curve for Network Analysis. J. Irrig. Drain. Eng. 2019, 145, 050190014. [Google Scholar] [CrossRef]
- Solé-Torres, C.; Puig-Bargués, J.; Duran-Ros, M.; Arbat, G.; Pujol, J.; De Cartagena, J.R. Effect of Different Sand Filter Underdrain Designs on Emitter Clogging Using Reclaimed Effluents. Agric. Water Manag. 2019, 223, 105683. [Google Scholar] [CrossRef]
- Al-Muhammad, J.; Tomas, S.; Ait-Mouheb, N.; Amielh, M.; Anselmet, M. Experimental and Numerical Characterization of the Vortex Zones Along a Labyrinth Milli-Channel Used in Drip Irrigation. Int. J. Heat Fluid Flow 2019, 80, 108500. [Google Scholar] [CrossRef]
- Ait-Mouheb, N.; Schillings, J.; Al-Muhammad, J.; Bendoula, R.; Tomas, S.; Amielh, M.; Anselmet, F. Impact of Hydrodynamics on Clay Particle Deposition and Biofilm Development in a Labyrinth-Channel Dripper. Irrig. Sci. 2019, 37, 5. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, L.; Wu, P.; Cai, Y.; Zhao, X. Hydraulic Performance and Parameter Optimisation of a Microporous Ceramic Emitter Using Computational Fluid Dynamics, Artificial Neural Network and Multi-Objective Genetic Algorithm. Biosyst. Eng. 2020, 189, 11–23. [Google Scholar] [CrossRef]
- Yu, L.; Li, N.; Long, J.; Liu, X.; Yang, Q.-L. The Mechanism of Emitter Clogging Analyzed by CFD-DEM Simulation and PTV Experiment. Adv. Mech. Eng. 2018, 10, 2071943390. [Google Scholar] [CrossRef] [Green Version]
- Lequette, K.; Ait-Mouheb, N.; Wery, N. Hydrodynamic Effect on Biofouling of Milli-Labyrinth Channel and Bacterial Communities in Drip Irrigation Systems Fed with Reclaimed Wastewater. Sci. Total Environ. 2020, 738, 139778. [Google Scholar] [CrossRef] [PubMed]
- Chamba, D.; Zubelzu, S.; Juana, L. Determining Hydraulic Characteristics in Laterals and Drip Irrigation Systems. Agric. Water Manag. 2019, 226, 105791. [Google Scholar] [CrossRef]
- Yu, L.; Li, N.; Liu, X.; Yang, Q.-L.; Long, J. Influence of Flushing Pressure, Flushing Frequency and Flushing Time on the Service Life of a Labyrinth-Channel Emitter. Biosyst. Eng. 2018, 172, 154–164. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Liu, Y.; Yang, P.; Ren, S.; Wei, R.; Xu, H. Flow Characteristics in Energy Dissipation Units of Labyrinth Path in the Drip Irrigation Emitters with DPIV Technology. J. Hydrodyn. 2010, 22, 137–145. [Google Scholar] [CrossRef]
- Feng, J.; Wang, W.; Liu, H. Study on Fluid Movement Characteristics Inside the Emitter Flow Path of Drip Irrigation System Using the Yellow River Water. Sustainability 2020, 12, 1319. [Google Scholar] [CrossRef] [Green Version]
- Al-Muhammad, J.; Tomas, S.; Ait-Mouheb, N.; Amielh, M.; Anselmet, F. Micro-PIV Characterization of the Flow in a Milli-Labyrinth-Channel Used in Drip Irrigation. Exp. Fluids 2018, 59, 12. [Google Scholar] [CrossRef]
- Liu, H.; Sun, H.; Li, Y.; Feng, J.; Song, P.; Zhang, M. Visualizing Particle Movement in Flat Drip Irrigation Emitters with Digital Particle Image Velocimetry. Irrig. Drainage. 2016, 65, 390–403. [Google Scholar] [CrossRef]
- Yu, L.; Li, N.; Liu, X.; Yang, Q.-L.; Li, Z.; Long, J. Influence of Dentation Angle of Labyrinth Channel of Drip Emitters on Hydraulic and Anti-Clogging Performance. Irrig. Drain. 2019, 68, 256–267. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Ma, J. Influence of Emitter Structure On its Hydraulic Performance Based on the Vortex. Agriculture 2021, 11, 508. [Google Scholar] [CrossRef]
- Falcucci, G.; Krastev, V.K.; Biscarini, C. Multi-Component Lattice Boltzmann Simulation of the Hydrodynamics in Drip Emitters. J. Agric. Eng. 2017, 48, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Li, Y.; Liu, H.; Yang, P.L.; Sun, H.; Liu, H. Simulation of the Flow Characteristics of a Drip Irrigation Emitter with Large Eddy Methods. Math. Comput. Model. 2013, 58, 497–506. [Google Scholar] [CrossRef]
- Feng, J.; Li, Y.; Wang, W.; Xue, S. Effect of Optimization Forms of Flow Path on Emitter Hydraulic and Anti-Clogging Performance in Drip Irrigation System. Irrig. Sci. 2018, 36, 37–47. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, W.; Lu, B. Rapid Prediction of Hydraulic Performance for Emitters with Labyrinth Channels. J. Irrig. Drain. Eng. 2013, 139, 414–418. [Google Scholar] [CrossRef]
- Saccone, D.; De Marchis, M. Optimization of the Design of Labyrinth Emitter for Agriculture Irrigation Using Computational Fluid Dynamic Analysis. AIP Conf. Proc. 2018, 2040, 140013. [Google Scholar]
- Zhangzhong, L.; Yang, P.; Li, Y.; Ren, S. Effects of Flow Path Geometrical Parameters on Flow Characteristics and Hydraulic Performance of Drip Irrigation Emitters. Irrig. Drain. 2016, 65, 426–438. [Google Scholar] [CrossRef]
- Guo, L.; Bai, D.; Zhou, W.; Wang, J. Evaluation of Numerical Simulation Accuracy for Two-Ways Mixed Flow Drip Irrigation Emitter Based On CFD. Int. J. Heat Technol. 2017, 35, 384–392. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, L. Influence and Analysis of Structure Design and Optimization on the Performance of a Pit Drip Irrigation Emitter. Irrig. Drain. 2020, 69, 633–645. [Google Scholar] [CrossRef]
- Xing, S.; Wang, Z.; Zhang, J.; Liu, N.; Zhou, B. Simulation and Verification of Hydraulic Performance and Energy Dissipation Mechanism of Perforated Drip Irrigation Emitters. Water 2021, 13, 171. [Google Scholar] [CrossRef]
Trapezoid Baseline Length s (mm) | Trapezoid Height h (mm) | Radius of Circular Water-Retaining r (mm) | Angle between Hypotenuses of Adjacent Trapezoids (°) | Channel Depth d (mm) | The Number of Channel Units n |
---|---|---|---|---|---|
2.50 | 0.80 | 0.90; 0.95; 1.00 1.05; 1.10; 1.15 | 54 | 1.50 | 15 |
r (mm) | Flow Rate (L/h) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
20 KPa | 40 KPa | 60 KPa | 80 KPa | 100 KPa | 120 KPa | 140 KPa | 160 KPa | 180 KPa | 200 KPa | |
0.90 | 2.654 | 3.850 | 4.781 | 5.573 | 6.277 | 6.917 | 7.509 | 8.063 | 8.586 | 9.082 |
0.95 | 2.335 | 3.393 | 4.216 | 4.915 | 5.536 | 6.101 | 6.623 | 7.113 | 7.575 | 8.014 |
1.00 | 2.006 | 2.925 | 3.638 | 4.244 | 4.782 | 5.270 | 5.722 | 6.144 | 6.542 | 6.921 |
1.05 | 1.670 | 2.451 | 3.056 | 3.570 | 4.026 | 4.440 | 4.821 | 5.178 | 5.515 | 5.834 |
1.10 | 1.319 | 1.962 | 2.461 | 2.885 | 3.260 | 3.600 | 3.914 | 4.208 | 4.484 | 4.746 |
1.15 | 0.946 | 1.440 | 1.828 | 2.158 | 2.451 | 2.718 | 2.963 | 3.193 | 3.409 | 3.614 |
Emitters | Flow Rate (L/h) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
20 KPa | 40 KPa | 60 KPa | 80 KPa | 100 KPa | 120 KPa | 140 KPa | 160 KPa | 180 KPa | 200 KPa | |
CWRLC | 2.588 | 3.716 | 4.721 | 5.491 | 6.237 | 6.922 | 7.571 | 8.180 | 8.706 | 9.207 |
QWRLC | 3.150 | 4.428 | 5.467 | 6.245 | 7.037 | 7.688 | 8.328 | 8.906 | 9.463 | 9.950 |
SWRLC | 3.449 | 4.641 | 5.651 | 6.483 | 7.237 | 7.880 | 8.499 | 9.106 | 9.626 | 10.09 |
TLC | 2.054 | 2.826 | 3.498 | 3.992 | 4.443 | 4.860 | 5.255 | 5.615 | 5.942 | 6.230 |
Emitters (I) | Emitters (J) | Means (I) | Means (J) | Differences (I-J) | p-Value |
---|---|---|---|---|---|
CWRLC | QWRLC | 9.207 | 9.950 | −0.742 | 0.001 |
CWRLC | SWRLC | 9.207 | 10.09 | −0.882 | 0.001 |
CWRLC | TLC | 9.207 | 6.230 | 2.978 | 0.001 |
QWRLC | SWRLC | 9.950 | 10.09 | −0.140 | 0.058 |
QWRLC | TLC | 9.950 | 6.230 | 3.720 | 0.001 |
SWRLC | TLC | 10.09 | 6.23 | 3.860 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Feng, X.; Liu, Y.; Han, X.; Liu, H.; Sun, Y.; Li, H.; Xie, Y. Research on Hydraulic Properties and Energy Dissipation Mechanism of the Novel Water-Retaining Labyrinth Channel Emitters. Agronomy 2022, 12, 1708. https://doi.org/10.3390/agronomy12071708
Li Y, Feng X, Liu Y, Han X, Liu H, Sun Y, Li H, Xie Y. Research on Hydraulic Properties and Energy Dissipation Mechanism of the Novel Water-Retaining Labyrinth Channel Emitters. Agronomy. 2022; 12(7):1708. https://doi.org/10.3390/agronomy12071708
Chicago/Turabian StyleLi, Yanfei, Xianying Feng, Yandong Liu, Xingchang Han, Haiyang Liu, Yitian Sun, Hui Li, and Yining Xie. 2022. "Research on Hydraulic Properties and Energy Dissipation Mechanism of the Novel Water-Retaining Labyrinth Channel Emitters" Agronomy 12, no. 7: 1708. https://doi.org/10.3390/agronomy12071708