Hydromulching Enhances the Growth of Artichoke (Cynara cardunculus var. scolymus) Plants Subjected to Drought Stress through Hormonal Regulation of Source–Sink Relationships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Plant-Growth- and Water-Related Parameters
2.3. Leaf Gas Exchange
2.4. Chlorophyll Concentrations
2.5. Leaf Mineral Content
2.6. Sugar Content
2.7. Sucrolytic Activities
2.8. Hormone Extraction and Analysis
2.9. Statistical Analyses
3. Results
3.1. Growth- and Water-Related Parameters
3.2. Leaf Gas Exchange Measurements
3.3. Chlorophyll Content
3.4. Leaf Mineral Content
3.5. Sugar Concentrations
3.6. Sucrolytic Activity
3.7. Hormone Profile
3.8. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal Drought Variability in the Mediterranean over the Last 900 Years. J. Geophys. Res. 2016, 121, 2060–2074. [Google Scholar] [CrossRef] [PubMed]
- Dubrovský, M.; Hayes, M.; Duce, P.; Trnka, M.; Svoboda, M.; Zara, P. Multi-GCM Projections of Future Drought and Climate Variability Indicators for the Mediterranean Region. Reg. Environ. Chang. 2014, 14, 1907–1919. [Google Scholar] [CrossRef]
- Allahdadi, M.; Bahreininejad, B. Effects of Water Stress on Growth Parameters and Forage Quality of Globe Artichoke (Cynara Cardunculus Var. Scolymus L.). Iran. Agric. Res. 2019, 38, 101–110. [Google Scholar] [CrossRef]
- Nouraei, S.; Rahimmalek, M.; Saeidi, G. Variation in Polyphenolic Composition, Antioxidants and Physiological Characteristics of Globe Artichoke (Cynara cardunculus Var. Scolymus hayek L.) as Affected by Drought Stress. Sci. Hortic. 2018, 233, 378–385. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as Water-Saving Technique in Dryland Agriculture: Review Article. Bull. Natl. Res. Cent. 2019, 43, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xiong, Y.; Huang, G.; Xu, X.; Huang, Q. Effects of Water Stress on Processing Tomatoes Yield, Quality and Water Use Efficiency with Plastic Mulched Drip Irrigation in Sandy Soil of the Hetao Irrigation District. Agric. Water Manag. 2017, 179, 205–214. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent Advances in Mulching Materials and Methods for Modifying Soil Environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Claramunt, J.; Mas, M.T.; Pardo, G.; Cirujeda, A.; Verdú, A.M.C. Mechanical Characterization of Blends Containing Recycled Paper Pulp and Other Lignocellulosic Materials to Develop Hydromulches for Weed Control. Biosyst. Eng. 2020, 191, 35–47. [Google Scholar] [CrossRef]
- Verdú, A.M.C.; Mas, M.T.; Josa, R.; Ginovart, M. The Effect of a Prototype Hydromulch on Soil Water Evaporation under Controlled Laboratory Conditions. J. Hydrol. Hydromech. 2020, 68, 404–410. [Google Scholar] [CrossRef]
- López-Marín, J.; Romero, M.; Gálvez, A.; del Amor, F.M.; Piñero, M.C.; Brotons-Martínez, J.M. The Use of Hydromulching as an Alternative to Plastic Films in an Artichoke (Cynara cardunculus cv. Symphony) Crop: A Study of the Economic Viability. Sustainability 2021, 13, 5313. [Google Scholar] [CrossRef]
- Romero-Muñoz, M.; Albacete, A.; Gálvez, A.; Piñero, M.C.; del Amor, F.M.; López-Marín, J. The Use of Ecological Hydromulching Improves Growth in Escarole (Cichorium endivia L.) Plants Subjected to Drought Stress by Fine-Tuning Cytokinins and Abscisic Acid Balance. Agronomy 2022, 12, 459. [Google Scholar] [CrossRef]
- Rodrigues, J.; Inzé, D.; Nelissen, H.; Saibo, N.J.M. Source-Sink Regulation in Crops under Water Deficit. Trends Plant Sci. 2019, 24, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Brandon, R.; Etxeberria, E. Metabolic Contributors to Drought-Enhanced Accumulation of Sugars and Acids in Oranges. J. Am. Soc. Hortic. Sci. 2001, 126, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Alfocea, F.; Albacete, A.; Ghanem, M.E.; Dodd, I.C. Hormonal Regulation of Sourcesink Relations to Maintain Crop Productivity under Salinity: A Case Study of Root-to-Shoot Signalling in Tomato. Funct. Plant Biol. 2010, 37, 592–603. [Google Scholar] [CrossRef]
- Roitsch, T.; Balibrea, M.E.; Hofmann, M.; Proels, R.; Sinha, A.K. Extracellular Invertase: Key Metabolic Enzyme and PR Protein. J. Exp. Bot. 2003, 54, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Albacete, A.; Martínez-Andújar, C.; Pérez-Alfocea, F. Hormonal and Metabolic Regulation of Source-Sink Relations under Salinity and Drought: From Plant Survival to Crop Yield Stability. Biotechnol. Adv. 2014, 32, 12–30. [Google Scholar] [CrossRef]
- Balibrea, M.E.; Dell’amico, J.; Bolarín, M.C.; Pérez-Alfocea, F. Carbon Partitioning and Sucrose Metabolism in Tomato Plants Growing under Salinity. Physiol. Plant. 2000, 110, 503–511. [Google Scholar] [CrossRef]
- Chazen, O.; Hartung, W.; Neumann, P.M. The Different Effects of PEG 6000 and NaCI on Leaf Development Are Associated with Differential Inhibition of Root Water Transport. Plant Cell Environ. 1995, 18, 727–735. [Google Scholar] [CrossRef]
- Ruan, Y.-L. Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Takei-Hoshi, R.; Yoshikawa, I.; Nishida, K.; Kobayashi, M.; Kusano, M.; Lu, Y.; Ariizumi, T.; Ezura, H.; Otagaki, S.; et al. Functional Disruption of Cell Wall Invertase Inhibitor by Genome Editing Increases Sugar Content of Tomato Fruit without Decrease Fruit Weight. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Albacete, A.; Martínez-Andújar, C.; Martínez-Pérez, A.; Thompson, A.J.; Dodd, I.C.; Pérez-Alfocea, F. Unravelling Rootstock×scion Interactions to Improve Food Security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roitsch, T.; Ehneß, R. Regulation of Source/Sink Relations by Cytokinins. Plant Growth Regul. 2000, 32, 359–367. [Google Scholar] [CrossRef]
- Yu, S.-M.; Lo, S.-F.; David Ho, T.-H. Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Trouverie, J.; The, C.; Venot, Â.; Rocher, J.-P.; Sotta, B.; Prioul, J.-L. The Role of Abscisic Acid in the Response of a Specific Vacuolar Invertase to Water Stress in the Adult Maize Leaf. J. Exp. Bot. 2003, 54, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- Saradadevi, R.; Palta, J.A.; Siddique, K.H.M. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat. Front. Plant Sci. 2017, 8, 1251. [Google Scholar] [CrossRef]
- Albacete, A.; Cantero-Navarro, E.; Großkinsky, D.K.; Arias, C.L.; Balibrea, M.E.; Bru, R.; Fragner, L.; Ghanem, M.E.; de La Cruz González, M.; Hernández, J.A.; et al. Ectopic Overexpression of the Cell Wall Invertase Gene CIN1 Leads to Dehydration Avoidance in Tomato. J. Exp. Bot. 2015, 66, 863–878. [Google Scholar] [CrossRef]
- Albacete, A.; Cantero-Navarro, E.; Balibrea, M.E.; Großkinsky, D.K.; de La Cruz González, M.; Martínez-Andújar, C.; Smigocki, A.C.; Roitsch, T.; Pérez-Alfocea, F. Hormonal and Metabolic Regulation of Tomato Fruit Sink Activity and Yield under Salinity. J. Exp. Bot. 2014, 65, 6081–6095. [Google Scholar] [CrossRef] [Green Version]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon. Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Balibrea, M.E.; Cuartero, J.; Bolarín, M.C.; Pérez-Alfocea, F. Sucrolytic Activities during Fruit Development of Lycopersicon Genotypes Differing in Tolerance to Salinity. Physiol. Plant. 2003, 118, 38–46. [Google Scholar] [CrossRef]
- Großkinsky, D.K.; Albacete, A.; Jammer, A.; Krbez, P.; van der Graaff, E.; Pfeifhofer, H.; Roitsch, T. A Rapid Phytohormone and Phytoalexin Screening Method for Physiological Phenotyping. Mol. Plant. 2014, 7, 1053–1056. [Google Scholar] [CrossRef] [Green Version]
- Garchery, C.; Gest, N.; Do, P.T.; Alhagdow, M.; Baldet, P.; Menard, G.; Rothan, C.; Massot, C.; Gautier, H.; Aarrouf, J.; et al. A Diminution in Ascorbate Oxidase Activity Affects Carbon Allocation and Improves Yield in Tomato under Water Deficit. Plant Cell Environ. 2013, 36, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Nikinmaa, E.; Hölttä, T.; Hari, P.; Kolari, P.; Mäkelä, A.; Sevanto, S.; Vesala, T. Assimilate Transport in Phloem Sets Conditions for Leaf Gas Exchange. Plant Cell Environ. 2013, 36, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liang, K.; Yin, D.-M.; Ni, D.-A.; Zhang, Z.-G.; Ruan, Y.-L. Ectopic Expression of a Tobacco Vacuolar Invertase Inhibitor in Guard Cells Confers Drought Tolerance in Arabidopsis. J. Enzyme Inhib. Med. Chem. 2016, 31, 1381–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, C.Y.; Pence, H.E.; Hasegawa, P.M.; Mickelbart, M.V. Regulation of Transpiration to Improve Crop Water Use. Crit. Rev. Plant Sci. 2009, 28, 410–431. [Google Scholar] [CrossRef]
- Mulet, J.M.; Campos, F.; Yenush, L. Ion Homeostasis in Plant Stress and Development. Front. Plant Sci. 2020, 11, 10–12. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Zhang, D.; Zou, D.; Wang, J.; Zheng, H.; Jia, Y.; Qu, Z.; Sun, B.; Zhao, H. Photosynthetic Carbon Fixation and Sucrose Metabolism Supplemented by Weighted Gene Co-Expression Network Analysis in Response to Water Stress in Rice With Overlapping Growth Stages. Front. Plant Sci. 2022, 13, 864605. [Google Scholar] [CrossRef]
- Luo, H.H.; Zhang, Y.L.; Zhang, W.F. Effects of Water Stress and Rewatering on Photosynthesis, Root Activity, and Yield of Cotton with Drip Irrigation under Mulch. Photosynthetica 2016, 54, 65–73. [Google Scholar] [CrossRef]
- Balibrea, M.E.; Parra, M.; Bolarín, M.C.; Pérez-Alfocea, F. Cytoplasmic Sucrolytic Activity Controls Tomato Fruit Growth under Salinity. Funct. Plant Biol. 1999, 26, 561–568. [Google Scholar] [CrossRef]
- García-Tejero, I.; Jiménez-Bocanegra, J.A.; Martínez, G.; Romero, R.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L. Positive Impact of Regulated Deficit Irrigation on Yield and Fruit Quality in a Commercial Citrus Orchard (Citrus sinensis (L.) Osbeck, Cv. Salustiano). Agric. Water Manag. 2010, 97, 614–622. [Google Scholar] [CrossRef]
- Liu, F.; Jensen, C.R.; Andersen, M.N. Drought Stress Effect on Carbohydrate Concentration in Soybean Leaves and Pods during Early Reproductive Development: Its Implication in Altering Pod Set. Field Crops Res. 2004, 86, 1–13. [Google Scholar] [CrossRef]
- Luo, A.; Zhou, C.; Chen, J. The Associated with Carbon Conversion Rate and Source–Sink Enzyme Activity in Tomato Fruit Subjected to Water Stress and Potassium Application. Front. Plant Sci. 2021, 12, 681145. [Google Scholar] [CrossRef] [PubMed]
- Gulati, A.; Asthir, B.; Bains, N.S. Controlling Water Deficit by Osmolytes and Enzymes: Enhancement of Carbohydrate Mobilization to Overcome Osmotic Stress in Wheat Subjected to Water Deficit Conditions. Afr. J. Biotechnol. 2014, 13, 2072–2083. [Google Scholar] [CrossRef] [Green Version]
- Kawatra, M.; Kamaljit, K.; Kaur, G. Effect of Osmo Priming on Sucrose Metabolism in Spring Maize, during the Period of Grain Filling, under Limited Irrigation Conditions. Physiol. Mol. Biol. Plants 2019, 25, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Kakumanu, A.; Ambavaram, M.M.; Klumas, C.; Krishnan, A.; Batlang, U.; Myers, E.; Grene, R.; Pereira, A. Effects of Drought on Gene Expression in Maize Reproductive and Leaf Meristem Tissue Revealed by RNA-Seq 1[W][OA]. Plant Physiol. 2012, 160, 846–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-H.; Offler, C.E.; Ruan, Y.-L. Regulation of Fruit and Seed Response to Heat and Drought by Sugars as Nutrients and Signals. Front. Plant Sci. 2013, 4, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, S.R.; Abu-Zaitoon, Y.; Uddin, M.M.; Bennett, K.; Nonhebel, H.M. Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development. Plants 2014, 3, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Balibrea Lara, M.; Gonzalez Garcia, M.-C.; Fatima, T.; Ehneß, R.; Kyun Lee, T.; Proels, R.; Tanner, W.; Roitsch, T. Extracellular Invertase Is an Essential Component of Cytokinin-Mediated Delay of Senescence W. Plant Cell. 2004, 16, 1276–1287. [Google Scholar] [CrossRef] [Green Version]
- Hai, N.N.; Chuong, N.N.; Tu, N.H.; Kisiala, A.; Hoang, X.L.; Thao, N.P. Role and Regulation of Cytokinins in Plant Response to Drought Stress. Plants 2020, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Lubovská, Z.; Dobrá, J.; Štorchová, H.; Wilhelmová, N.; Vanková, R. Cytokinin Oxidase/Dehydrogenase Overexpression Modifies Antioxidant Defense against Heat, Drought and Their Combination in Nicotiana tabacum Plants. J. Plant Physiol. 2014, 171, 1625–1633. [Google Scholar] [CrossRef]
- Vojta, P.; Kokáš, F.; Husičková, A.; Grúz, J.; Bergougnoux, V.; Marchetti, C.F.; Jiskrová, E.; Ježilová, E.; Mik, V.; Ikeda, Y.; et al. Whole Transcriptome Analysis of Transgenic Barley with Altered Cytokinin Homeostasis and Increased Tolerance to Drought Stress. New Biotechnol. 2016, 33, 676–691. [Google Scholar] [CrossRef]
- Li, W.; Herrera-Estrella, L.; Tran, L.S.P. The Yin-Yang of Cytokinin Homeostasis and Drought Acclimation/Adaptation. Trends Plant Sci. 2016, 21, 548–550. [Google Scholar] [CrossRef]
- Liu, J.; Moore, S.; Chen, C.; Lindsey, K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene; in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. Mol. Plant 2017, 10, 1480–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, R.; Watanabe, Y.; Fujita, Y.; Le, D.T.; Kojima, M.; Werner, T.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kakimoto, T.; et al. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis. Plant Cell. 2011, 23, 2169–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Ni, D.-A.; Ruan, Y.-L. Posttranslational Elevation of Cell Wall Invertase Activity by Silencing Its Inhibitor in Tomato Delays Leaf Senescence and Increases Seed Weight and Fruit Hexose Level W OA. Plant Cell. 2009, 21, 2072–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.J.; Wang, X.L.; Shang, Q.M. Salicylic Acid Regulates Sugar Metabolism That Confers Tolerance to Salinity Stress in Cucumber Seedlings. Sci. Hortic. 2011, 129, 629–636. [Google Scholar] [CrossRef]
- Arfan, M.; Athar, H.R.; Ashraf, M. Does Exogenous Application of Salicylic Acid through the Rooting Medium Modulate Growth and Photosynthetic Capacity in Two Differently Adapted Spring Wheat Cultivars under Salt Stress? J. Plant Physiol. 2007, 164, 685–694. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Guneri Bagci, E.; Cicek, N. Salicylic Acid Induced Changes on Some Physiological Parameters Symptomatic for Oxidative Stress and Mineral Nutrition in Maize (Zea mays L.) Grown under Salinity. J. Plant Physiol. 2007, 164, 728–736. [Google Scholar] [CrossRef]
- Ehness, R.; Ecker, M.; Godt, D.E.; Roitsch, T. Glucose and Stress Independently Regulate Source and Sink Metabolism and Defense Mechanisms via Signal Transduction Pathways Involving Protein Phosphorylation. Plant Cell. 1997, 9, 1825–1841. [Google Scholar] [CrossRef] [Green Version]
- LeClere, S.; Schmelz, E.A.; Chourey, P.S. Cell Wall Invertase-Deficient Miniature1 Kernels Have Altered Phytohormone Levels. Phytochemistry 2008, 69, 692–699. [Google Scholar] [CrossRef]
- Peleg, Z.; Blumwald, E. Hormone Balance and Abiotic Stress Tolerance in Crop Plants. Curr. Opin. Plant Biol. 2011, 14, 290–295. [Google Scholar] [CrossRef]
- Wilkinson, S.; Kudoyarova, G.R.; Veselov, D.S.; Arkhipova, T.N.; Davies, W.J. Plant Hormone Interactions: Innovative Targets for Crop Breeding and Management. J. Exp. Bot. 2012, 63, 3499–3509. [Google Scholar] [CrossRef] [PubMed]
Irrigation Regime | Mulch | Ψs (MPa) | RWC (%) | Leaf Number | Plant Height (cm) | Plant Diameter (cm) | Edible Part FW (g) |
---|---|---|---|---|---|---|---|
Control | BS | −1.57 ± 0.05 Aa | 87.25 ± 0.55 Aa | 47.40 ± 4.34 Ac | 95.20 ± 1.89 Ab | 212.60 ± 3.54 Ab | 57.55 ± 2.42 Ab |
PE | −1.59 ± 0.07 Aa | 91.00 ± 2.59 Aa | 74.40 ± 7.42 Ab | 116.80 ± 3.37 Aa | 251.00 ± 6.89 Aa | 73.48 ± 5.93 Aa | |
MS | −1.40 ± 0.09 Aa | 87.52 ± 0.44 Aa | 85.00 ± 1.93 Aab | 122.20 ± 2.63 Aa | 267.80 ± 3.60 Aa | 67.91 ± 1.89 Aab | |
RH | −1.57 ± 0.05 Aa | 88.15 ± 1.47 Aa | 69.00 ± 3.35 Abc | 115.80 ± 1.76 Aa | 251.80 ± 6.47 Aa | 66.29 ± 2.69 Aab | |
WS | −1.39 ± 0.09 Aa | 87.35 ± 2.19 Aa | 87.75 ± 4.13 Aa | 124.75 ± 4.21 Aa | 258.00 ± 5.18 Aa | 66.34 ± 3.47 Aab | |
Water stress | BS | −1.76 ± 0.08 Aa | 85.17 ± 1.07 Aa | 42.20 ± 2.60 Ab | 73.40 ± 1.93 Ab | 212.00 ± 8.56 Ab | 47.95± 7.84 Ab |
PE | −1.60 ± 0.03 Aa | 85.26 ± 0.60 Aa | 69.20 ± 1.96 Ba | 126.40 ± 3.37 Aa | 251.60 ± 4.37 Aa | 59.57± 2.51 Aab | |
MS | −1.77 ± 0.04 Ba | 82.91 ± 0.66 Aa | 69.00 ± 4.43 Ba | 125.60 ± 2.93 Aa | 254.40 ± 4.63 Aa | 59.22± 0.52 Bab | |
RH | −1.70 ± 0.04 Aa | 84.12 ± 0.86 Aa | 59.40 ± 3.57 Ba | 118.20 ± 2.75 Aa | 250.80 ± 5.62 Aa | 60.24± 1.80 Aab | |
WS | −1.67 ± 0.12 Aa | 84.10 ± 0.63 Aa | 70.67 ± 2.35 Aa | 117.33 ± 3.30 Ba | 271.17 ± 4.50 Aa | 63.67± 3.91 Aa |
Irrigation Regime | Mulch | Chlorophyll a (mg 100 mL−1 g−1 FW) | Chlorophyll b (mg 100 mL−1 g−1 FW) | Total Chlorophylls (mg 100 mL−1 g−1 FW) |
---|---|---|---|---|
Control | BS | 2.18 ± 0.05 Aa | 1.26 ± 0.11 Aa | 3.43 ± 0.24 Aa |
PE | 2.20 ± 0.03 Aa | 1.59 ± 0.05 Aa | 3.79 ± 0.03 Aa | |
MS | 2.23 ± 0.20 Aa | 1.62 ± 0.22 Aa | 3.85 ± 0.27 Aa | |
RH | 2.23 ± 0.04 Aa | 1.73 ± 0.18 Aa | 3.96 ± 0.19 Aa | |
WS | 2.24 ± 0.10 Aa | 1.40 ± 0.09 Aa | 3.64 ± 0.11 Aa | |
Stress | BS | 2.08 ± 0.04 Aa | 1.06 ± 0.11 Aa | 3.14 ± 0.14 Aa |
PE | 2.10 ± 0.03 Aa | 1.14 ± 0.05 Ba | 3.25 ± 0.07 Ba | |
MS | 1.97 ± 0.17 Aa | 1.15 ± 0.22 Aa | 3.12 ± 0.39 Aa | |
RH | 2.00 ± 0.05 Aa | 0.88 ± 0.02 Ba | 2.88 ± 0.05 Ba | |
WS | 2.16 ± 0.01 Aa | 1.20 ± 0.09 Aa | 3.36 ± 0.10 Aa |
Irrigation Regime | Mulch | N (mg g−1 DW) | P5+ (mg g−1 DW) | K+ (mg g−1 DW) | Mg2+ (mg g−1 DW) | Ca2+ (mg g−1 DW) | SO42− (mg g−1 DW) | |
---|---|---|---|---|---|---|---|---|
Control | BS | 22.73 Aa | 1.51 Ab | 23.29 Aa | 1.68 Aa | 31.26 Aa | 3.84 Aa | |
PE | 21.98 Aa | 1.75 Abc | 28.03 Aa | 1.44 Aa | 30.48 Aa | 7.11 Aa | ||
MS | 22.82 Aa | 2.72 Aa | 30.57 Aa | 1.45 Aa | 25.47 Aa | 5.51 Aa | ||
RH | 22.91 Aa | 1.87 Abc | 26.84 Aa | 1.35 Aa | 30.12 Ba | 6.46 Aa | ||
WS | 22.04 Aa | 1.65 Ac | 24.63 Aa | 1.44 Aa | 28.16 Ba | 6.83 Aa | ||
Stress | BS | 22.69 Aa | 1.66 Ba | 21.78 Aa | 1.11 Ba | 27.30 Ab | 0.73 Bd | |
PE | 24.01 Aa | 1.57 Aa | 22.13 Aa | 1.53 Aa | 36.74 Aab | 2.02 Bcd | ||
MS | 23.78 Aa | 1.26 Ba | 27.36 Aa | 1.27 Aa | 29.71 Aab | 6.34 Aa | ||
RH | 23.03 Aa | 1.46 Ba | 20.90 Aa | 1.62 Aa | 38.76 Aa | 4.66 Ab | ||
WS | 23.28 Aa | 1.50 Aa | 24.78 Aa | 1.32 Aa | 38.47 Aa | 2.89 Bc | ||
Irrigation regime | Mulch | Cu2+ (mg kg−1 DW) | Mn2+ (mg kg−1 DW) | Zn2+ (mg kg−1 DW) | B3+ (mg kg−1 DW) | Na+ (mg g−1 DW) | ||
Control | BS | 2.26 Aa | 56.36 Aa | 16.40 Aa | 60.99 Aa | 7.99 Aa | ||
PE | 1.90 Aa | 49.69 Aa | 15.79 Aa | 61.41 Ba | 8.84 Aa | |||
MS | 2.05 Aa | 46.10 Aa | 16.31 Aa | 67.30 Aa | 7.96 Ba | |||
RH | 1.80 Aa | 48.77 Ba | 13.46 Aa | 66.17 Aa | 8.65 Aa | |||
WS | 2.35 Aa | 47.23 Aa | 23.73 Aa | 60.36 Ba | 9.14± Aa | |||
Water stress | BS | 1.22 Bbc | 56.44 Aa | 11.94 Aab | 73.59 Aa | 10.87 Aa | ||
PE | 2.86 Aa | 61.90 Aa | 13.44 Aa | 90.34 Aa | 8.05 Aa | |||
MS | 1.55 Ab | 51.40 Aa | 8.62 Bb | 78.38 Aa | 9.96 Aa | |||
RH | 0.81 Bc | 66.59 Aa | 9.33 Ab | 77.95 Aa | 6.40 Ba | |||
WS | 3.15 Aa | 61.05 Aa | 10.68 Aab | 98.85 Aa | 8.10 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Muñoz, M.; Gálvez, A.; Martínez-Melgarejo, P.A.; Piñero, M.C.; del Amor, F.M.; Albacete, A.; López-Marín, J. Hydromulching Enhances the Growth of Artichoke (Cynara cardunculus var. scolymus) Plants Subjected to Drought Stress through Hormonal Regulation of Source–Sink Relationships. Agronomy 2022, 12, 1713. https://doi.org/10.3390/agronomy12071713
Romero-Muñoz M, Gálvez A, Martínez-Melgarejo PA, Piñero MC, del Amor FM, Albacete A, López-Marín J. Hydromulching Enhances the Growth of Artichoke (Cynara cardunculus var. scolymus) Plants Subjected to Drought Stress through Hormonal Regulation of Source–Sink Relationships. Agronomy. 2022; 12(7):1713. https://doi.org/10.3390/agronomy12071713
Chicago/Turabian StyleRomero-Muñoz, Miriam, Amparo Gálvez, Purificación A. Martínez-Melgarejo, María Carmen Piñero, Francisco M. del Amor, Alfonso Albacete, and Josefa López-Marín. 2022. "Hydromulching Enhances the Growth of Artichoke (Cynara cardunculus var. scolymus) Plants Subjected to Drought Stress through Hormonal Regulation of Source–Sink Relationships" Agronomy 12, no. 7: 1713. https://doi.org/10.3390/agronomy12071713
APA StyleRomero-Muñoz, M., Gálvez, A., Martínez-Melgarejo, P. A., Piñero, M. C., del Amor, F. M., Albacete, A., & López-Marín, J. (2022). Hydromulching Enhances the Growth of Artichoke (Cynara cardunculus var. scolymus) Plants Subjected to Drought Stress through Hormonal Regulation of Source–Sink Relationships. Agronomy, 12(7), 1713. https://doi.org/10.3390/agronomy12071713