Dry-Aggregate Stability and Soil Nutrients Responses to Reapplication of Biochar and Organic/Inorganic Fertilizers in Urban Vegetable Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Set-Up and Treatments
2.3. Treatment Description
2.4. Soil Sampling and Analysis
2.4.1. Soil Chemical Analysis
2.4.2. Aggregate Fractionation
2.5. Statistical Analysis
3. Results
3.1. Treatment Effect on Soil Chemical Properties
3.2. Treatment Effect on Dry-Aggregate Stability and MWD
3.3. Treatment Effect on Concentrations of TC and TN in Aggregate Hierarchies
3.4. Contribution of Soil Aggregates to TC and TN Contents of the Soil
4. Discussion
4.1. Treatment Effect on Soil Chemical Properties
4.2. Treatment Effect on Dry-Aggregate Stability and MWD
4.3. Treatment Effect on Concentrations of TC and TN in Aggregate Hierarchies
4.4. Contribution of Soil Aggregates to TC and TN Contents of the Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Esrey, S.A.; Andersson, I.; Hillers, A.; Sawyer, R. Closing the Loop: Ecological Sanitation for Food Security; Swedish International Development Cooperation Agency (SIDA) First ed.; Sawyer, R., Ed.; SARAR Transformación SC: Tepoztlán, Mexico, 2001. [Google Scholar]
- Bryld, E. Potentials, problems, and policy implications for urban agriculture in developing countries. Agric. Hum. Values 2003, 20, 79–86. [Google Scholar] [CrossRef]
- Van Tuijl, E.; Hospers, G.J.; Van Den Berg, L. Opportunities and challenges of urban agriculture for sustainable city development. Eur. Spat. Res. Policy 2018, 25, 5–22. [Google Scholar] [CrossRef]
- Šimanský, V.; Tobiášová, E. Organic matter and chemical properties in Haplic Luvisol as affected by tillage and fertilizers intensity. Acta Fytotech. Zootech. 2012, 15, 52–56. [Google Scholar]
- Akoto-Danso, E.K.; Manka’abusi, D.; Steiner, C.; Werner, S.; Haering, V.; Lompo, D.J.; Nyarko, G.; Marschner, B.; Drechsel, P.; Buerkert, A. Nutrient flows and balances in intensively managed vegetable production of two West African cities. J. Plant Nutr. Soil Sci. 2019, 182, 229–243. [Google Scholar] [CrossRef]
- Häring, V.; Manka’abusi, D.; Akoto-Danso, E.K.; Werner, S.; Atiah, K.; Steiner, C.; Lompo, D.J.; Adiku, S.; Buerkert, A.; Marschner, B. Effects of biochar, waste water irrigation and fertilization on soil properties in West African urban agriculture. Sci. Rep. 2017, 7, 10738. [Google Scholar] [CrossRef] [Green Version]
- Manka’abusi, D.; Steiner, C.; Akoto-Danso, E.K.; Lompo, D.J.; Haering, V.; Werner, S.; Marschner, B.; Buerkert, A. Biochar application and wastewater irrigation in urban vegetable production of Ouagadougou, Burkina Faso. Nutr. Cycl. Agroecosyst. 2019, 115, 263–279. [Google Scholar] [CrossRef]
- Kiba, D.I.; Zongo, N.A.; Lompo, F.; Jansa, J.; Compaore, E.; Sedogo, P.M.; Frossard, E. The diversity of fertilization practices affects soil and crop quality in urban vegetable sites of Burkina Faso. Eur. J. Agron. 2012, 38, 12–21. [Google Scholar] [CrossRef]
- Sangare, D.; Sawadogo, B.; Ouedraogo, D.M.; Hijikata, N.; Yacouba, H.; Bonzi, M.; Coulibaly, L. Ecological sanitation products reuse for agriculture in Sahel: Effects on soil properties. SOIL Discuss. 2015, 2, 291–322. [Google Scholar]
- Clark, M.; Hastings, M.G.; Ryals, R. Soil carbon and nitrogen dynamics in two agricultural soils amended with manure-derived biochar. J. Environ. Qual. 2019, 48, 727–734. [Google Scholar] [CrossRef]
- Anthonio, C.K.; Huang, J.; Han, T.; Qaswar, M.; Liu, K.; Du, J.; Daba, N.A.; Ali, S.; Matelele, L.A.; Liu, S.; et al. Fertilizer combination effects on aggregate stability and distribution of aluminum and iron oxides. J. Plant Nutr. Soil Sci. 2022, 185, 251–263. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Juriga, M.; Aydın, E.; Horák, J.; Šimanský, V. Relationships between soil chemical properties and soil structure in soil after initial application and reapplication of biochar and its combination with N fertilization. Commun. Soil Sci. Plant Anal. 2022, 53, 114–128. [Google Scholar] [CrossRef]
- Simansky, V.; Horak, J.; Juriga, M.; Srank, D. Soil structure and soil organic matter in water-stable aggregates under different application rates of biochar. Vietnam. J. Earth Sci. 2018, 40, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Du, Z.L.; Zhao, J.K.; Wang, Y.D.; Zhang, Q.Z. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J. Soils Sediments 2017, 17, 581–589. [Google Scholar] [CrossRef]
- Šimanský, V.; Bajčan, D. Stability of soil aggregates and their ability of carbon sequestration. Soil Water Res. 2014, 9, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Igaz, D.; Horák, J.; Šurda, P.; Kolenčík, M.; Buchkina, N.P.; Uzarowicz, L.; Juriga, M.; Šrank, D.; Pauková, Ž. Response of soil organic carbon and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech. 2018, 66, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Horák, J.; Šimanský, V.; Igaz, D. Biochar and biochar with N fertilizer impact on soil physical properties in a silty loam Haplic Luvisol. J. Ecol. Eng. 2019, 20, 31–38. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V. Effect of biochar on soil structure—Review. Acta Fytotech. Zootech. 2018, 21, 11–19. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V. Effects of biochar and its reapplication on soil pH and sorption properties of silt loam Haplic Luvisol. Acta Hortic. Regiotect. 2019, 22, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Šrank, D.; Šimanský, V.; Juriga, M. Nutrient supply in texturally different soils after addition of biochar and their combinations with mineral and organic fertilizers. Agrochémia 2020, 1, 28–34. [Google Scholar]
- Igaz, D.; Šimanský, V.; Horák, J.; Kondrlová, E.; Domanová, J.; Rodný, M.; Buchkina, N.P. Can a single dose of biochar affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech. 2018, 66, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juriga, M.; Aydın, E.; Horák, J.; Chlpík, J.; Rizhiya, E.Y.; Buchkina, N.P.; Balashov, E.V.; Šimanský, V. The importance of initial application and reapplication of biochar in the context of soil structure improvement. J. Hydrol. Hydromech. 2021, 69, 87–97. [Google Scholar] [CrossRef]
- Esray, S.A. Towards a recycling society: Ecological sanitation-closing the loop to food security. Water Sci. Technol. 2001, 43, 177–187. [Google Scholar] [CrossRef]
- Hannan, C.; Andersson, I. Gender Perspectives on Ecological Sanitation; Ecosanres: Stockholm, Sweden, 2002. [Google Scholar]
- Sharda, K.C.; Shinjo, H. Effects of human urine and Ecosan manure on plant growth and soil properties in Central Nepal. Sanit. Value Chain. 2020, 4, 19–37. [Google Scholar]
- Shrestha, D.; Srivastava, A.; Shakya, S.M.; Khadka, J.; Acharya, B.S. Use of compost supplemented human urine in sweet pepper (Capsicum annuum L.) production. Sci. Hortic. 2013, 153, 8–12. [Google Scholar] [CrossRef]
- Singh, P.K.; Deshbhratar, P.B.; Ramteke, D.S. Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agric. Water Manag. 2012, 103, 100–104. [Google Scholar] [CrossRef]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.K.; Kumar, N.; Singh, G.S. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric. Ecosyst. Environ. 2016, 216, 356–373. [Google Scholar] [CrossRef]
- Steiner, C.; Bellwood-Howard, I.; Häring, V.; Tonkudor, K.; Addai, F.; Atiah, K.; Abubakari, A.H.; Kranjac-Berisavljevic, G.; Marschner, B.; Buerkert, A. Participatory trials of on-farm biochar production and use in Tamale, Ghana. Agron. Sustain. Dev. 2018, 38, 12. [Google Scholar] [CrossRef] [Green Version]
- Manka’abusi, D.; Zongo, N.; Lompo, D.J.P.; Steiner, C.; Nacro, H.B.; Marschner, B.; Buerkert, A. Soil properties and agronomic effects of repeated biochar amendment and organic or inorganic fertilization in an urban hor-ticultural system of Burkina Faso. Department of Soil Science/Soil Ecology, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany, 2022; manuscript in preparation.
- Krivoshein, P.K.; Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. FTIR Photoacoustic and ATR Spectroscopies of Soils with Aggregate Size Fractionation by Dry Sieving. ACS Omega 2022, 7, 2177–2197. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Rees, F.; Simonnot, M.O.; Morel, J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2014, 65, 149–161. [Google Scholar] [CrossRef]
- Penas, E.J.; Lindgren, D.T. G90-945 A Gardener’s Guide for Soil and Nutrient Management in Growing Vegetables; Historical Materials from University of Nebraska-Lincoln Extension: Lincoln, NE, USA, 1990; p. 1017. [Google Scholar]
- Laboski, C.A.; Peters, J.B.; Bundy, L.G. Nutrient Application Guidelines for Field, Vegetable, and Fruit Crops in Wisconsin; Division of Cooperative Extension of the University of Wisconsin-Extension: Madison, WI, USA, 2006. [Google Scholar]
- Warncke, D.D.; Christenson, D.R.; Jacobs, L.W.; Vitosh, M.L.; Zandstra, B.H. Fertilizer Recommendations for Vegetable Crops in Michigan; Extension Bulletin E-Cooperative Extension Service, Michigan State University: East Lansing, MI, USA, 1992. [Google Scholar]
- Naeem, A.; Akhtar, M.; Ahmad, W. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm. Sci. World J. 2013, 2013, 680257. [Google Scholar] [CrossRef]
- Zhang, A.; He, L.; Zhao, H.; Wu, Z.; Guo, Z.; Li, S. Effect of organic acids on inorganic P transformation in soil with different P sources. Chin. J. Appl. Environ. Biol. 2009, 15, 474–478. [Google Scholar]
- Apori, S.O.; Byalebeka, J. Contribution of corncob biochar to the chemical properties of a Ferralsol in Uganda. Arab. J. Geosci. 2021, 14, 1290. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Marsden, K.A.; Gertler, C.; Rousk, J.; DeLuca, T.H.; Jones, D.L. Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agric. Ecosyst. Environ. 2012, 158, 192–199. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Z.; Dijkstra, F.A.; Liu, X.R.; Wang, Y.D.; Huang, J.; Lu, N. Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PLoS ONE. 2014, 9, e102062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R. Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef] [Green Version]
- Amoakwah, E.; Arthur, E.; Frimpong, K.A.; Islam, K.R. Biochar amendment influences tropical soil carbon and nitrogen lability. J. Soil Sci. Plant Nutr. 2021, 21, 3567–3579. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef]
- Naeem, M.A.; Khalid, M.; Aon, M.; Abbas, G.; Amjad, M.; Murtaza, B.; Khan, W.U.; Ahmad, N. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. J. Plant Nutr. 2018, 41, 112–122. [Google Scholar] [CrossRef]
- Bornø, M.L.; Müller-Stöver, D.S.; Liu, F. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Sci. Total Environ. 2018, 627, 963–974. [Google Scholar] [CrossRef]
- Joseph, S.; Kammann, C.I.; Shepherd, J.G.; Conte, P.; Schmidt, H.P.; Hagemann, N.; Rich, A.M.; Marjo, C.E.; Allen, J.; Munroe, P.; et al. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ. 2018, 618, 1210–1223. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P., Jr.; Rondon, M.; Cravo, M.D.; Greenwood, J.; Nehls, T.; Steiner, C.; Glaser, B. Slash-and-char-a feasible alternative for soil fertility management in the central Amazon. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 4–21 August 2002; pp. 1–12. [Google Scholar]
- Khademalrasoul, A.; Naveed, M.; Heckrath, G.; Kumari, K.G.; de Jonge, L.W.; Elsgaard, L.; Vogel, H.J.; Iversen, B.V. Biochar effects on soil aggregate properties under no-till maize. Soil Sci. 2014, 179, 273–283. [Google Scholar] [CrossRef]
- Van Trinh, M.; Tesfai, M.; Borrell, A.; Nagothu, U.S.; Bui, T.P.; Quynh, V.D. Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields. Paddy Water Environ. 2017, 15, 317–330. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V.; Horák, J.; Kondrlová, E.; Igaz, D.; Polláková, N.; Buchkina, N.; Balashov, E. The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. J. Ecol. Eng. 2018, 19, 153–161. [Google Scholar] [CrossRef]
- Gamage, D.V.; Mapa, R.B.; Dharmakeerthi, R.S.; Biswas, A. Effect of rice-husk biochar on selected soil properties in tropical Alfisols. Soil Res. 2016, 54, 302–310. [Google Scholar] [CrossRef]
- Czimczik, C.I.; Masiello, C.A. Controls on black carbon storage in soils. Glob. Biogeochem. Cycles 2007, 21, GB3005. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Šimanský, V.; Horák, J.; Kováčik, P.; Bajčan, D. Carbon sequestration in water-stable aggregates under biochar and biochar with nitrogen fertilization. Bulgrian J. Agric. Res. 2017, 23, 429–435. [Google Scholar]
- Zhang, M.; Cheng, G.; Feng, H.; Sun, B.; Zhao, Y.; Chen, H.; Chen, J.; Dyck, M.; Wang, X.; Zhang, J.; et al. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. Res. 2017, 24, 10108–10120. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Cross, A.; Zwart, K.; Shackley, S.; Ruysschaert, G. The role of biochar in agricultural soils. In Biochar in European Soils and Agriculture; Routledge: London, UK, 2016; pp. 95–120. [Google Scholar]
- Yu, L.; Yu, M.; Lu, X.; Tang, C.; Liu, X.; Brookes, P.C.; Xu, J. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Sci. Total Environ. 2018, 640, 1221–1230. [Google Scholar] [CrossRef]
- Sanford, J.R.; Larson, R.A. Assessing nitrogen cycling in corncob biochar amended soil columns for application in agricultural treatment systems. Agronomy 2020, 10, 979. [Google Scholar] [CrossRef]
- Krause, A.; Rotter, V.S. Recycling improves soil fertility management in smallholdings in Tanzania. Agriculture 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.; Karak, T.; Singh, S.; Singh, A.K.; Khare, P. Benefits of biochar over other organic amendments: Responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Ind. Crops Prod. 2019, 131, 96–105. [Google Scholar] [CrossRef]
- Joseph, U.E.; Toluwase, A.O.; Kehinde, E.O.; Omasan, E.E.; Tolulope, A.Y.; George, O.O.; Zhao, C.; Hongyan, W. Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil. Arch. Agron. Soil Sci. 2020, 66, 1–12. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef] [Green Version]
Treatment | Fertilizer Nutrient | Fertilizer Quantity a (kg ha−1) | Fertilizer Nutrient Concentration (g kg−1) |
---|---|---|---|
ECOSAN | C | 981.20–1373.00 | 6.10 |
N | 150.00 | 0.93 | |
P | 114.20–159.80 | 0.71 | |
K | 426.30–596.50 | 2.66 | |
Ca | 416.60–583.00 | 2.60 | |
Mg | 247.70–346.60 | 1.55 | |
NPK | N | 150.00 | 140.00 |
P | 47.30 | 58.08 | |
K | 103.30 | 50.21 | |
Urea | N | 49.90 | 46.70 |
Cattle manure | C | 1408.30–1439.50 | 11.73 |
N | 100.00 | 0.83 | |
P | 53.30–54.40 | 0.45 | |
K | 136.10–139.10 | 1.13 | |
Ca | 67.50–69.00 | 0.57 | |
Corncob biochar | Mg | 15.40–15.70 | 0.13 |
C | 13,600.00 | 680.00 |
Treatment | pH in CaCl2 | TC (%) | TN (%) | C/N | P (mg kg−1) | Ca2+ | K+ | Mg2+ | Na+ |
---|---|---|---|---|---|---|---|---|---|
(mmolc kg−1) | |||||||||
ECOSAN | 7.43 a | 1.17 a | 0.08 b | 14.10 b | 142.89 a | 259.98 a | 14.96 a | 52.15 a | 6.92 a |
NPK | 5.53 d | 0.68 c | 0.08 b | 9.05 d | 139.37 a | 44.12 b | 1.10 b | 7.62 b | 1.97 c |
CCB | 6.67 b | 0.88 b | 0.05 c | 16.78 a | 34.48 c | 46.13 b | 1.00 b | 7.26 b | 3.46 b |
UCF + CCB | 6.34 c | 1.35 a | 0.12 a | 11.67 c | 112.72 b | 58.89 b | 0.73 b | 12.91 b | 3.26 b |
SED | 0.11 | 0.09 | 0.01 | 1.04 | 7.13 | 9.38 | 1.55 | 3.58 | 0.43 |
LSD0.05 | 0.25 | 0.20 | 0.01 | 2.35 | 16.13 | 21.22 | 3.50 | 8.10 | 0.97 |
Treatment | Lma | Mma | Sma | Mia | Lma | Mma | Sma | Mia |
---|---|---|---|---|---|---|---|---|
Soil aggregate contribution to TC content (%) | Soil aggregate contribution to TN content (%) | |||||||
ECOSAN | 53.97 | 14.11 | 9.44 | 22.47 | 53.32 | 15.46 | 10.89 | 20.33 |
NPK | 64.62 | 13.78 | 7.28 | 14.31 | 64.83 | 13.33 | 7.40 | 14.44 |
CCB | 62.01 | 18.73 | 8.15 | 11.11 | 59.26 | 16.47 | 8.91 | 15.36 |
UCF + CCB | 72.12 | 11.81 | 6.26 | 9.81 | 72.17 | 10.06 | 6.26 | 11.51 |
Grand mean * | 62.73 ± 17.09 ** | 14.56 ± 3.37 | 7.90 ± 1.71 | 14.97 ± 5.89 | 62.54 ± 1.39 | 13.29 ± 0.08 | 8.10 ± 0.12 | 14.97 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okebalama, C.B.; Marschner, B. Dry-Aggregate Stability and Soil Nutrients Responses to Reapplication of Biochar and Organic/Inorganic Fertilizers in Urban Vegetable Production. Agronomy 2022, 12, 1782. https://doi.org/10.3390/agronomy12081782
Okebalama CB, Marschner B. Dry-Aggregate Stability and Soil Nutrients Responses to Reapplication of Biochar and Organic/Inorganic Fertilizers in Urban Vegetable Production. Agronomy. 2022; 12(8):1782. https://doi.org/10.3390/agronomy12081782
Chicago/Turabian StyleOkebalama, Chinyere Blessing, and Bernd Marschner. 2022. "Dry-Aggregate Stability and Soil Nutrients Responses to Reapplication of Biochar and Organic/Inorganic Fertilizers in Urban Vegetable Production" Agronomy 12, no. 8: 1782. https://doi.org/10.3390/agronomy12081782
APA StyleOkebalama, C. B., & Marschner, B. (2022). Dry-Aggregate Stability and Soil Nutrients Responses to Reapplication of Biochar and Organic/Inorganic Fertilizers in Urban Vegetable Production. Agronomy, 12(8), 1782. https://doi.org/10.3390/agronomy12081782