Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials
2.2. Light Treatments
2.3. Plant Productivity Analysis
2.3.1. Biomass Yield
2.3.2. Metabolite Yield
2.4. Energy and Photon Efficacy
2.5. Statistical Analysis
3. Results
3.1. Interaction Effects
3.2. Biomass Yield
3.3. Metabolite Concentration and Yield
3.4. Energy and Yield Efficacy Analysis Results
4. Discussion
4.1. Plant Productivity
4.1.1. 16 Hour Continuous and Intermittent Photoperiod Optimized Biomass Accumulation
4.1.2. Continuous 16 Hour Photoperiod Increased Metabolite Concentration and Yields
4.2. Extended Photoperiod Improved Efficacies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, S.; Hwang, H.; Chun, C.; Jang, Y.; Lee, H.J.; Wi, S.H.; Yeo, K.-H.; Yu, I.-h.; Kwack, Y. Evaluation of Air Temperature, Photoperiod and Light Intensity Conditions to Produce Cucumber Scions and Rootstocks in a Plant Factory with Artificial Lighting. Horticulturae 2021, 7, 102. [Google Scholar] [CrossRef]
- De Andrade, M.V.S.; de Castro, R.D.; da Silva Cunha, D.; Neto, V.G.; Carosio, M.G.A.; Ferreira, A.G.; de Souza-Neta, L.C.; Fernandez, L.G.; Ribeiro, P.R. Stevia rebaudiana (Bert.) Bertoni cultivated under different photoperiod conditions: Improving physiological and biochemical traits for industrial applications. Ind. Crops Prod. 2021, 168, 113595. [Google Scholar] [CrossRef]
- Palmer, S.; van Iersel, M.W. Increasing Growth of Lettuce and Mizuna under Sole-Source LED Lighting Using Longer Photoperiods with the Same Daily Light Integral. Agronomy 2020, 10, 1659. [Google Scholar] [CrossRef]
- Jones, M.A. Using light to improve commercial value. Hortic. Res. 2018, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Hernández, R.; Eguchi, T.; Deveci, M.; Kubota, C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci. Hortic. 2016, 213, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; He, H.; Song, W. Application of Light-emitting Diodes and the Effect of Light Quality on Horticultural Crops: A Review. HortScience 2019, 54, 1656–1661. [Google Scholar] [CrossRef] [Green Version]
- Morgan Pattison, P.; Hansen, M.; Tsao, J.Y. LED lighting efficacy: Status and directions. Comptes Rendus Phys. 2018, 19, 134–145. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Samuoliene, G.; Virsile, A.; Haimi, P.; Miliauskiene, J. Photoresponse to different lighting strategies during red leaf lettuce growth. J. Photochem. Photobiol. B 2020, 202, 111726. [Google Scholar] [CrossRef]
- American Society of Agricultural and Biological Engineers. Quantities and Units of Electromagnetic Radiation for Plants (Photosynthetic Organisms); ASABE: St. Joseph, MI, USA, 2017; p. 1. [Google Scholar]
- Shaari, A.M.; Razuan, M.S.M.; Taweekun, J.; Batcha, M.F.M.; Abdullah, K.; Sayuti, Z.; Ahmad, M.A.; Tahir, M.A.M. Energy Profiling of a Plant Factory and Energy Conservation Opportunities. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 80, 13–23. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Elkins, C.; van Iersel, M.W. Longer photoperiods with the same daily light integral increase daily electron transport through photosystem II in lettuce. Plants 2020, 9, 1172. [Google Scholar] [CrossRef]
- Geuns, J.M. Stevia and Steviol Glycosides; Euprint: Heverlee, Belgium, 2010. [Google Scholar]
- Libik-Konieczny, M.; Capecka, E.; Kąkol, E.; Dziurka, M.; Grabowska-Joachimiak, A.; Sliwinska, E.; Pistelli, L. Growth, development and steviol glycosides content in the relation to the photosynthetic activity of several Stevia rebaudiana Bertoni strains cultivated under temperate climate conditions. Sci. Hortic. 2018, 234, 10–18. [Google Scholar] [CrossRef]
- Wojewoda, A.; Wodyk, T.; Stępniowski, D.; Cholewińska, E.; Stępniowska, A. Analysis of content of steviosides as biologically active compounds in stevia (Stevia rebaudiana) and products manufactured on the basis of this plant. World Sci. News 2018, 93, 146–156. [Google Scholar]
- Saharudin, A.M.i.B.; Nazri, N.B.M.; Roslee, A.H.B.; Hawi, M.H.B.; Mar, S.O. Acceptance of Stevia as a Sugar Substitute and its Determinants among Health Educated Individuals and its Determinants. Curr. Res. Nutr. Food Sci. J. 2020, 8, 226–237. [Google Scholar] [CrossRef]
- FSANZ. Final Assessment Report: Application A540: Steviol Glycosides as Intense Sweeteners; FSANZ: Canberra, Australia; Wellington, New Zealand, 2008. [Google Scholar]
- Ciriminna, R.; Meneguzzo, F.; Pecoraino, M.; Pagliaro, M. A bioeconomy perspective for natural sweetener Stevia. Biofuels Bioprod. Biorefining 2019, 13, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Abdulameer, D.A.; Osman, M.B.; Sulaiman, Z.; Yusop, M.R.; Abdullah, S.; Azizi, P.; Muttaleb, Q.A. Assessment of Stevia rebaudiana Bertoni Genotypes via Morpho-Agronomic Traits under Two Light Conditions. Am. J. Plant Sci. 2018, 9, 1403–1413. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Muhammad Ghawas, M.; Mohamad Najib, M.; Zawayi, M. Preliminary evaluation and selection of stevia under Malaysian conditions. J. Trop. Agric. Food Sci. 2008, 36, 1–7. [Google Scholar]
- Yoneda, Y.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Effects of light intensity and photoperiod on improving steviol glycosides content in Stevia rebaudiana (Bertoni) Bertoni while conserving light energy consumption. J. Appl. Res. Med. Aromat. Plants 2017, 7, 64–73. [Google Scholar] [CrossRef]
- Ceunen, S.; Geuns, J.M. Influence of photoperiodism on the spatio-temporal accumulation of steviol glycosides in Stevia rebaudiana (Bertoni). Plant Sci. 2013, 198, 72–82. [Google Scholar] [CrossRef]
- Nakonechnaya, O.V.; Gafitskaya, I.V.; Burkovskaya, E.V.; Khrolenko, Y.A.; Grishchenko, O.V.; Zhuravlev, Y.N.; Subbotin, E.P.; Kulchin, Y.N. Effect of Light Intensity on the Morphogenesis of Stevia rebaudiana under In Vitro Conditions. Russ. J. Plant Physiol. 2019, 66, 656–663. [Google Scholar] [CrossRef]
- Rengasamy, N.; Othman, R.Y.; Che, H.S.; Harikrishna, J.A. Beyond the PAR Spectra: Impact of light quality on the germination, flowering, and metabolite content of Stevia rebaudiana (Bertoni). J. Sci. Food Agric. 2021, 102, 299–311. [Google Scholar] [CrossRef]
- Yoneda, Y.; Nakashima, H.; Miyasaka, J.; Ohdoi, K.; Shimizu, H. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry 2017, 137, 57–65. [Google Scholar] [CrossRef]
- Evans, J.M.; Vallejo, V.A.; Beaudry, R.M.; Warner, R.M. Daily Light Integral Influences Steviol Glycoside Biosynthesis and Relative Abundance of Specific Glycosides in Stevia. HortScience 2015, 50, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-l.; Li, Y.-l.; Wang, L.-c.; Guo, W.-z. Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Sci. Rep. 2021, 11, 8374. [Google Scholar] [CrossRef]
- Hardanto, A.; Sumarni, E. Biomass Growth of Red Spinach in Plant-Factory System under Three Kinds of LED Light Sources. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 12100. [Google Scholar]
- Olvera-Gonzalez, E.; Escalante-Garcia, N.; Myers, D.; Ampim, P.; Obeng, E.; Alaniz-Lumbreras, D.; Castaño, V. Pulsed LED-Lighting as an Alternative Energy Savings Technique for Vertical Farms and Plant Factories. Energies 2021, 14, 1603. [Google Scholar] [CrossRef]
- Othman, H.S.; Osman, M.; Zainuddin, Z. Genetic Variabilities of Stevia rebaudiana Bertoni Cultivated in Malaysia as Revealed by Morphological, Chemical and Molecular Characterisations. AGRIVITA J. Agric. Sci. 2018, 40, 267–283. [Google Scholar] [CrossRef] [Green Version]
- WHO; FAO. Compendium of Food Additive Specifications. Joint FAO/WHO Expert Committee on Food Additives (JECFA), 87th Meeting June 2019. FAO JECFA Monogr. 2020, 23, 62–85. [Google Scholar]
- Hwang, H.; An, S.; Lee, B.; Chun, C. Improvement of Growth and Morphology of Vegetable Seedlings with Supplemental Far-Red Enriched LED Lights in a Plant Factory. Horticulturae 2020, 6, 109. [Google Scholar] [CrossRef]
- He, R.; Zhang, Y.; Song, S.; Su, W.; Hao, Y.; Liu, H. UV-A and FR irradiation improves growth and nutritional properties of lettuce grown in an artificial light plant factory. Food Chem. 2020, 345, 128727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kacira, M. Comparison of energy use efficiency of greenhouse and indoor plant factory system. Eur. J. Hortic. Sci. 2020, 85, 310–320. [Google Scholar] [CrossRef]
- Graamans, L.; Tenpierik, M.; van den Dobbelsteen, A.; Stanghellini, C. Plant factories: Reducing energy demand at high internal heat loads through façade design. Appl. Energy 2020, 262, 114544. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Huché-Thélier, L.; Crespel, L.; Gourrierec, J.L.; Morel, P.; Sakr, S.; Leduc, N. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant Cell Environ. 2020, 43, 1259–1272. [Google Scholar] [CrossRef]
- Ceunen, S.; Werbrouck, S.; Geuns, J.M. Stimulation of steviol glycoside accumulation in Stevia rebaudiana by red LED light. J. Plant Physiol. 2012, 169, 749–752. [Google Scholar] [CrossRef]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. From physics to fixtures to food: Current and potential LED efficacy. Hortic. Res. 2020, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Leyla, B.; Mostafa, A.; Sasan, A.; Mehdi, S.; Tao, L.; Oksana, L. Effects of growth under different light spectra on the subsequent high light tolerance in rose plantsm. AoB Plants 2018, 10, ply052. [Google Scholar]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.-O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience 2015, 50, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Claypool, N.; Lieth, J. Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Sci. Hortic. 2020, 268, 109371. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, S.; Han, Y.; Yuan, H.; Gu, C.; Wang, Z. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant Physiol Biochem. 2015, 86, 174–180. [Google Scholar] [CrossRef]
- Ermakov, E.; Kochetov, A. Growth and productivity of Stevia under regulated conditions, depending on the photoperiod and light intensity. Russ. Agric. Sci. 1994, 20, 11–14. [Google Scholar]
- Ceunen, S.; Geuns, J.M. Spatio-temporal variation of the diterpene steviol in Stevia rebaudiana grown under different photoperiods. Phytochemistry 2013, 89, 32–38. [Google Scholar] [CrossRef]
- Elkins, C.; van Iersel, M.W. Longer photoperiods with the same daily light integral improve growth of Rudbeckia seedlings in a greenhouse. HortScience 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Legendre, R.; van Iersel, M.W. Supplemental Far-Red Light Stimulates Lettuce Growth: Disentangling Morphological and Physiological Effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.; Bugbee, B. Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy. Front. Plant Sci. 2021, 12, 1158. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Bugbee, B. Substituting far-red for traditionally defined photosynthetic photons results in equal canopy quantum yield for CO2 fixation and increased photon capture during long-term studies: Implications for re-defining PAR. Front. Plant Sci. 2020, 11, 1433. [Google Scholar] [CrossRef] [PubMed]
- Zaidan, L.B.; Dietrich, S.M.; Felippe, G. Effect of photoperiod on flowering and stevioside content in plants of Stevia rebaudiana Bertoni. Jpn. J. Crop Sci. 1980, 49, 569–574. [Google Scholar] [CrossRef]
- Benhmimou, A.; Ibriz, M.; Al Faïz, C.; Gaboun, F.; Shaimi, N.; Amchra, F.Z.; Lage, M. Effects of water stress on growth, yield, quality and physiological responses of two stevia (Stevia rebaudiana Bertoni) varieties in Rabat region, Morocco. Asian J. Agric. Biol. 2018, 6, 21–34. [Google Scholar]
- Muthusamy, K.; Munaim, M.S.A. Determination of Factors Affecting Extraction of Rebaudioside A & Stevioside from Stevia Leaves. Int. J. Eng. Technol. Sci. 2019, 6, 120–130. [Google Scholar]
- Kurek, J.M.; Krejpcio, Z. The functional and health-promoting properties of Stevia rebaudiana Bertoni and its glycosides with special focus on the antidiabetic potential–A review. J. Funct. Foods 2019, 61, 103465. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Energy optimisation of plant factories and greenhouses for different climatic conditions. Energy Convers. Manag. 2021, 243, 114336. [Google Scholar] [CrossRef]
- Department, M.M. Annual Report; Malaysian Meteorological Department: Petaling Jaya, Malaysia, 2019. [Google Scholar]
Parameters | Unit | 8H | 12H | 16H | 16HI | GH |
---|---|---|---|---|---|---|
UVA (380 nm) | µmol m−2 s−1 | 0 | 0 | 0 | 0 | 4.38 ± 0.9 |
Blue (450 nm) | µmol m−2 s−1 | 50.00 ± 1.0 | 33 ± 0.7 | 25 ± 0.5 | 25 ± 0.5 | 78.55 ± 1.6 |
Green (550 nm) | µmol m−2 s−1 | 12.26 ± 0.2 | 8.25 ± 0.2 | 6.25 ± 0.1 | 6.25 ± 0.1 | 119.10 ± 2.4 |
Red (630 nm) | µmol m−2 s−1 | 186.74 ± 3.7 | 123.75 ± 2.5 | 93.75 ± 1.9 | 93.75 ± 1.9 | 135.83 ± 2.7 |
Far Red (730 nm) | µmol m−2 s−1 | 0 | 0 | 0 | 0 | 91.05 ± 1.8 |
PPF 400–700 nm | µmol s−1 | 414 ± 8.2 | 231 ± 4.62 | 175 ± 3.5 | 175 ± 3.5 | N/A |
PPFD a 400–700 nm | µmol m−2 s−1 | 249 ± 5.7 | 165 ± 3.3 | 125 ± 2.5 | 125 ± 2.5 | 333.48 ± 6.7 |
PBAR a 280–800 nm | µmol m−2 s−1 | 249 ± 5.7 | 165 ± 3.3 | 125 ± 2.5 | 125 ± 2.5 | 409.10 ± 8.2 |
DLI | mol m−2 day−1 | 7.2 ± 0.1 | 7.2 ± 0.1 | 7.2 ± 0.1 | 7.2 ± 0.1 | 14.41 ± 0.3 |
Light Hours in a day | Hours (h) | 8 | 12 | 16 | 5.3H × 3 | 12 |
Planting Density | Plants/m2 | 24 | 24 | 24 | 24 | 24 |
Power | W | 316 | 175 | 129 | 129 | 0 |
Growth Room | Greenhouse | |
---|---|---|
Dark | Light | |
32.78 ± 4 W m−2 | 110.75 ± 4.9 W m−2 | 139.34 ± 70 W m−2 |
Sum of Squares | df | Mean Square | F | Significance (p < 0.05) | ||
---|---|---|---|---|---|---|
Replicate | Leaf FW | 11.163 | 2 | 5.581 | 4.284 | 0.015 |
Stem FW | 20.557 | 2 | 10.278 | 4.060 | 0.018 | |
Leaf DW | 0.423 | 2 | 0.212 | 3.926 | 0.021 | |
Partitioning | 0.004 | 2 | 0.002 | 3.407 | 0.034 | |
PCE | 2.817 | 2 | 1.408 | 3.278 | 0.039 | |
Metabolite Yield | 0.008 | 2 | 0.004 | 3.532 | 0.030 | |
EUE Biomass | 282.013 | 2 | 141.007 | 3.846 | 0.022 | |
EUE Metabolite | 5.376 | 2 | 2.688 | 3.415 | 0.034 | |
Treatment | Leaf FW | 4179.745 | 4 | 1044.936 | 801.957 | 0.000 |
Stem FW | 1522.918 | 4 | 380.729 | 150.375 | 0.000 | |
Leaf DW | 87.250 | 4 | 21.813 | 404.547 | 0.000 | |
Partitioning | 0.111 | 4 | 0.028 | 49.265 | 0.000 | |
PCE | 1875.729 | 4 | 468.932 | 1091.497 | 0.000 | |
Metabolite Yield | 4.610 | 4 | 1.153 | 1056.411 | 0.000 | |
EUE Biomass | 112,535.142 | 4 | 28,133.785 | 767.313 | 0.000 | |
EUE Metabolite | 4861.022 | 4 | 1215.255 | 1543.934 | 0.000 | |
Replicate × Treatment | Leaf FW | 1.690 | 8 | 0.211 | 0.162 | 0.995 |
Stem FW | 4.418 | 8 | 0.552 | 0.218 | 0.988 | |
Leaf DW | 0.114 | 8 | 0.014 | 0.264 | 0.977 | |
Partitioning | 0.002 | 8 | 0.000 | 0.390 | 0.926 | |
PCE | 1.439 | 8 | 0.180 | 0.419 | 0.910 | |
Metabolite Yield | 0.005 | 8 | 0.001 | 0.538 | 0.828 | |
EUE Biomass | 79.097 | 8 | 9.887 | 0.270 | 0.975 | |
EUE Metabolite | 2.387 | 8 | 0.298 | 0.379 | 0.931 | |
Error | Leaf FW | 449.529 | 345 | 1.303 | ||
Stem FW | 873.497 | 345 | 2.532 | |||
Leaf DW | 18.602 | 345 | 0.054 | |||
Partitioning | 0.194 | 345 | 0.001 | |||
PCE | 148.220 | 345 | 0.430 | |||
Metabolite Yield | 0.376 | 345 | 0.001 | |||
EUE Biomass | 12,649.543 | 345 | 36.665 | |||
EUE Metabolite | 271.555 | 345 | 0.787 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rengasamy, N.; Othman, R.Y.; Che, H.S.; Harikrishna, J.A. Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana. Agronomy 2022, 12, 1787. https://doi.org/10.3390/agronomy12081787
Rengasamy N, Othman RY, Che HS, Harikrishna JA. Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana. Agronomy. 2022; 12(8):1787. https://doi.org/10.3390/agronomy12081787
Chicago/Turabian StyleRengasamy, Narendren, Rofina Yasmin Othman, Hang Seng Che, and Jennifer Ann Harikrishna. 2022. "Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana" Agronomy 12, no. 8: 1787. https://doi.org/10.3390/agronomy12081787
APA StyleRengasamy, N., Othman, R. Y., Che, H. S., & Harikrishna, J. A. (2022). Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana. Agronomy, 12(8), 1787. https://doi.org/10.3390/agronomy12081787