Effects of Elevated CO2 Levels on the Growth and Yield of Summer-Grown Cucumbers Cultivated under Different Day and Night Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design and Treatments
2.3. Growth Parameters
2.4. Statistical Analyses
3. Results
3.1. Effects of CO2 and DNF Treatments on Morphological Parameters and Dry Matter
3.2. Growth Rate and Photosynthesis
3.3. Synergistic Effects of eCO2 and DNF Treatments on Fruit Yield
3.4. Effects of eCO2 and DNF Treatments on Carbohydrate Content and C:N Ratio
4. Discussion
4.1. eCO2 and DNF Treatments Affect Photosynthesis, Growth, and Dry Matter Content
4.2. eCO2 and DNF Treatments Affects Dry Matter Partition and Fruit Yield
4.3. eCO2 and DNF Treatments Affects C Flow and C:N Ratios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hrichi, S.; Chaabane-Banaoues, R.; Bayar, S.; Flamini, G.; Oulad El Majdoub, Y.; Mangraviti, D.; Mondello, L.; El Mzoughi, R.; Babba, H.; Mighri, Z.; et al. Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora. Molecules 2020, 25, 5032. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Ayyub, C.M.; Amjad, M.; Ahmad, R. Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress. Pak. J. Agric. Sci. 2019, 56, 53–61. [Google Scholar]
- Wang, L.; Feng, Z.; Schjoerring, J.K. Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses. Agric. Ecosyst. Environ. 2013, 178, 57–63. [Google Scholar] [CrossRef]
- Hikosaka, S.; Sugiyama, N. Effects of Exogenous Plant Growth Regulators on Yield, Fruit Growth, and Concentration of Endogenous Hormones in Gynoecious Parthenocarpic Cucumber (Cucumis sativus L.). Hortic. J. 2015, 84, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Dan, K.; Imada, S. Effect of High Temperature on Viability and Growth of Radicles in Cucumber Seedlings. J. Jpn. Soc. Hortic. Sci. 2002, 71, 805–811. [Google Scholar] [CrossRef]
- Grimstad, S.O.; Frimanslund, E. Effect of different day and night temperature regimes on greenhouse cucumber young plant production, flower bud formation and early yield. Sci. Hortic. 1993, 53, 191–204. [Google Scholar] [CrossRef]
- Guo, R.; Li, X.; Christie, P.; Chen, Q.; Zhang, F. Seasonal temperatures have more influence than nitrogen fertilizer rates on cucumber yield and nitrogen uptake in a double cropping system. Environ. Pollut. 2008, 151, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [CrossRef]
- Springer, C.J.; Ward, J.K. Flowering time and elevated atmospheric CO2. New Phytol. 2007, 176, 243–255. [Google Scholar] [CrossRef]
- Carolina, S.; Iker, A.; Inmaculada, P.; Gorka, E.; Álvaro, S.; Jone, A.; Manuel, S.; Juan, J.; José, L.; Fermín, M. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J. Plant Physiol. 2015, 174, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Vanuytrecht, E.; Raes, D.; Willems, P. Considering sink strength to model crop production under elevated atmospheric CO2. Agric. For. Meteorol. 2011, 151, 1753–1762. [Google Scholar] [CrossRef]
- Likun, L.; Mengfei, W.; Sabin, S.P.; Chunxu Li Megha NParajulee Fajun, C.; Wanping, F. Effects of elevated CO2 on foliar soluble nutrients and functional components of tea, and population dynamics of tea aphid. Plant Physiol. Bio-Chem. 2019, 145, 84–94. [Google Scholar] [CrossRef]
- Willits, D.H.; Peet, M.M. Predicting yield responses to different greenhouse CO2 enrichment schemes: Cucumbers and tomatoes. Agric. For. Meteorol. 1989, 44, 275–293. [Google Scholar] [CrossRef]
- Sa´nchez-Guerrero, M.C.; Lorenzo, P.; Medrano, E.; Castilla, N.; Soriano, T.; Baille, A. Effect of variable CO2 enrich-ment on greenhouse production in mild winter climates. Agric. For. Met. 2005, 132, 244–252. [Google Scholar] [CrossRef]
- Cho, A.R.; Song, S.J.; Chung, S.W.; Kim, Y.J. CO2 Enrichment with Higher Light Level Improves Flowering Quality of Phalaenopsis Queen Beer ‘Mantefon’. Sci. Hortic. 2018, 247, 356–361. [Google Scholar] [CrossRef]
- Pérez-López, U.; Sgherri, C.; Miranda-Apodaca, J.; Micaelli, F.; Lacuesta, M.; Mena-Petite, A.; Quartacci, M.F.; Muñoz-Rueda, A. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2. Plant Physiol. Biochem. 2018, 123, 233–241. [Google Scholar] [CrossRef]
- Sui, X.; Shan, N.; Hu, L.; Zhang, C.; Yu, C.; Ren, H.; Turgeon, R.; Zhang, Z. The complex character of photosynthesis in cucumber fruit. J. Exp. Bot. 2017, 68, 1625–1637. [Google Scholar] [CrossRef] [Green Version]
- Dabu, X.; Li, S.; Cai, Z.; Ge, T.; Hai, M. The effect of potassium on photosynthetic acclimation in cucumber during CO2 enrichment. Photosynthetica 2019, 57, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Li, X.; Chu, W.; Duan, Z. High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2. Sci. Hortic. 2017, 218, 275–283. [Google Scholar] [CrossRef]
- Farfan-Vignolo, E.R.; Asard, H. Effect of elevated CO2 and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicago sativa L. Plant Physiol. Biochem. 2012, 59, 55–62. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, P.; Wei, Z.; Liu, J.; Hu, X.; Liu, F. Effects of CO2 fertilization on tomato fruit quality under reduced irrigation. Agric. Water Manag. 2019, 230, 105985. [Google Scholar] [CrossRef]
- Oh-E, I.; Saitoh, K.; Kuroda, T. Effects of High Temperature on Growth, Yield and Dry-Matter Production of Rice Grown in the Paddy Field. Plant Prod. Sci. 2007, 10, 412–422. [Google Scholar] [CrossRef]
- Overdieck, D.; Fenselau, K. Elevated CO2 concentration and temperature effects on the partitioning of chemical components along juvenile Scots pinestems (Pinus sylvestris L.). Trees 2009, 23, 771–786. [Google Scholar] [CrossRef]
- Nakano, H.; Makino, A.; Mae, T. Effects of Panicle Removal on the Photosynthetic Characteristics of the Flag Leaf of Rice Plants during the Ripening Stage. Plant Cell Physiol. 1995, 36, 653–659. [Google Scholar] [CrossRef]
- Lee, J.-S. Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species. Agric. Ecosyst. Environ. 2011, 140, 484–491. [Google Scholar] [CrossRef]
- Seneweera, S.; Makino, A.; Hirotsu, N.; Norton, R.; Suzuki, Y. New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves. Environ. Exp. Bot. 2011, 71, 128–136. [Google Scholar] [CrossRef]
- Izargi, V.; Daniel, M.; Joseba, S.; Carmen, G.; Jose María, E.; María, B. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance. Plant Sci. 2015, 241, 32–44. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, W.; Zhang, Z.; Fan, Y.; Liu, T. Effects of elevated CO2 concentration and temperature on some physiological characteristics of cotton (Gossypium hirsutum L.) leaves. Environ. Exp. Bot. 2017, 133, 108–117. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Irigoyen, J.J.; Perez, P.; Martinez-Carrasco, R.; Sanchez-Diaz, M. Response of nodulated alfalfa to water supply, temperature and elevated CO2: Productivity and water relations. Environ. Exp. Bot. 2006, 55, 130–141. [Google Scholar] [CrossRef]
- Huang, G.; Rymer, P.D.; Duan, H.; Smith, R.A.; Tissue, D.T. Elevated temperature is more effective than elevated [CO2] in exposing genotypic variation in Telopea speciosissima growth plasticity, implications for woody plant populations under climate change. Glob. Chang. Biol. 2015, 21, 3800–3813. [Google Scholar] [CrossRef]
- Klopotek, Y.; Kläring, H.-P. Accumulation and remobilisation of sugar and starch in the leaves of young tomato plants in response to temperature. Sci. Hortic. 2014, 180, 262–267. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Irigoyen, J.; Sánchez-Díaz, M.; Nogués, S. Carbon partitioning in N2 fixing Medicago sativa plants exposed to different CO2 and temperature conditions. Funct. Plant Biol. 2008, 35, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Aranjuelo, I.; Pardo, A.; Biel, C.; Savé, R.; Azcón-Bieto, J.; Nogués, S. Leaf carbon management in slow-growing plants exposed to elevated CO2. Glob. Change Biol. 2009, 15, 97–109. [Google Scholar] [CrossRef]
- Moutinho-Pereira, J.M.; Bacelar, E.; Gonçalves, B.; Ferreira, H.M.F.; Coutinho, J.; Correia, C.M. Effects of Open-Top Chambers on physiological and yield attributes of field grown grapevines. Acta Physiol. Plant. 2010, 32, 395–403. [Google Scholar] [CrossRef]
- Giri, A.; Armstrong, B.; Rajashekar, C.B. Elevated Carbon Dioxide Level Suppresses Nutritional Quality of Lettuce and Spinach. Am. J. Plant Sci. 2016, 7, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Zahara, M.; Datta, A.; Boonkorkaew, P. Effects of sucrose, carrot juice and culture media on growth and net CO2 exchange rate in Phalaenopsis hybrid ‘Pink’. Sci. Hortic. 2016, 205, 17–24. [Google Scholar] [CrossRef]
- Moore, B.D.; Cheng, S.-H.; Sims, D.; Seemann, J.R. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 1999, 22, 567–582. [Google Scholar] [CrossRef]
- Reyes, T.H.; Scartazza, A.; Lu, Y.; Yamaguchi, J.; Guglielminetti, L. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. Plant Physiol. Biochem. 2016, 105, 195–202. [Google Scholar] [CrossRef]
- Iván, J.; Pedro, M.A.; Concepción, A.; Marina, R.; Iker, A. Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response. J. Plant Physiol. 2015, 189, 65–76. [Google Scholar] [CrossRef]
- Chen, C.-T.; Setter, T.L. Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environ. Exp. Bot. 2012, 80, 27–34. [Google Scholar] [CrossRef]
- Peltonen, P.A.; Vapaavuori, E.; Julkunen-Tiitto, R. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global. Chang. Biol. 2005, 11, 1305–1324. [Google Scholar] [CrossRef]
- Peter, B.; Michael, T.; Rebecca, F.; Audrey, L.; Glenn, J.F.; Malcolm, J.H.; Sabine, T. Expression patterns of C- and N-metabolism related genes in wheat are changed during senescence under elevated CO2 in dry-land agriculture. Plant Sci. 2015, 236, 239–249. [Google Scholar] [CrossRef]
- Jefferson, R.S.; Angelica, E.P.; Weverton, P.R.; Eliemar, C.; Kevin, L.G. Photosynthetic acclimation to elevated CO2 combined with partial root zone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environ. Exp. Bot. 2017, 134, 82–95. [Google Scholar] [CrossRef]
- Royer, M.; Larbat, R.; Le Bot, J.; Adamowicz, S.; Robin, C. Is the C:N ratio a reliable indicator of C allocation to primary and defence-related metabolisms in tomato? Phytochemistry 2013, 88, 25–33. [Google Scholar] [CrossRef]
- Wubs, A.M.; Ma, Y.T.; Heuvelink, E.; Hemerik, L.; Marcelis, L.F.M. Model selection for nondestructive quantification of fruit growth in pepper. J. Am. Soc. Hortic. Sci. 2012, 137, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Rachmilevitch, S.; Asaph, B.C.; Arnold, J.B. Nitrate assimilation in plant shoots depends on photorespiration. Proc. Natl. Acad. Sci. USA 2004, 101, 11506–11510. [Google Scholar] [CrossRef] [Green Version]
CO2 Treatment | Temperature Treatment | Stem Length (cm) | Internode Length (cm) | Leaf Number | Fruit Number | Fruit Weight (g) | Branch Number | Weight of Branch (g) | Leaf Number of Branch | Total Leaf Area (cm2) |
---|---|---|---|---|---|---|---|---|---|---|
eCO2 | LT | 193.67 ± 5.69 b | 6.32 ± 0.13 b | 30.67 ± 0.58 a | 16.50 ± 2.10 a | 2071 ± 182 b | 10.7 ± 0.58 a | 45.47 ± 7.51 a | 14.67 ± 2.31 b | 11,188.01 ± 1412.00 a |
HT | 230.67 ± 5.77 a | 7.29 ± 0.24 a | 31.67 ± 0.53 a | 16.50 ± 1.70 a | 1958 ± 170 a | 9.3 ± 0.58 b | 49.67 ± 11.80 b | 14.00 ± 1.73 a | 10,919.81 ± 1370.93 b | |
a CO2 | LT | 196.33 ± 6.81 b | 6.47133 ± 0.11 b | 30.33 ± 0.58 a | 15.2 ± 1.60 a | 1867 ± 208 a | 9.0 ± 1.58 a | 36.87 ± 10.51 b | 12.00 ± 4.00 a | 10,187.84 ± 1238.68 ab |
HT | 247.67 ± 6.59 a | 7.4281 ± 0.20 a | 33.33 ± 0.58 a | 15.3 ± 1.90 a | 1662 ± 181 b | 12.3 ± 1.28 b | 48.73 ± 2.93 a | 19.67 ± 5.51 b | 16,604.81 ± 5283.47 b | |
ρ-value | ||||||||||
CO2 | n.s. | n.s. | ** | ** | ** | * | * | * | ** | |
Temperature | *** | *** | ** | ** | ** | * | * | * | ** | |
Interaction | *** | *** | ** | *** | *** | * | * | * | ** |
CO2 Treatment | Temperature Treatment | AGR | RGR | NAR | LAR | SLA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
(g d−1) | (g g−1 d−1) | (g m2 d−1) | (m2 g−1) | (m2 g−1) | |||||||
Periods | Periods | Periods | Periods | Periods | |||||||
6/16–7/1 | 7/1–7/15 | 6/16–7/1 | 7/1–7/15 | 6/16–7/1 | 7/1–7/15 | 6/16–7/1 | 7/1–7/15 | 6/16–7/1 | 7/1–7/15 | ||
eCO2 | LT | 60.958 a | 127.335 b | 0.149 a | 0.075 bc | 12.649 a | 10.332 c | 0.012 b | 0.005 b | 0.018 c | 0.013 d |
HT | 53.152 b | 145.53 a | 0.141 b | 0.088 b | 10.694 b | 11.701 b | 0.01 c | 0.006 a | 0.014 d | 0.015 c | |
a CO2 | LT | 46.412 c | 102.841 d | 0.133 c | 0.105 a | 9.113 c | 12.498 a | 0.014 a | 0.006 a | 0.022 a | 0.017 b |
HT | 44.631 c | 120.634 c | 0.131 c | 0.086 b | 8.987 d | 8.627 d | 0.014 a | 0.006 a | 0.021 b | 0.018 a | |
ρ-value | |||||||||||
CO2 | ** | *** | ** | ** | ** | *** | ** | *** | ** | *** | |
Temperature | n.s. | ** | n.s. | ** | ** | *** | n.s. | n.s. | ** | ** | |
Interaction | ** | ** | ** | ** | *** | *** | ** | ** | ** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namizaki, H.; Iwasaki, Y.; Wang, R. Effects of Elevated CO2 Levels on the Growth and Yield of Summer-Grown Cucumbers Cultivated under Different Day and Night Temperatures. Agronomy 2022, 12, 1872. https://doi.org/10.3390/agronomy12081872
Namizaki H, Iwasaki Y, Wang R. Effects of Elevated CO2 Levels on the Growth and Yield of Summer-Grown Cucumbers Cultivated under Different Day and Night Temperatures. Agronomy. 2022; 12(8):1872. https://doi.org/10.3390/agronomy12081872
Chicago/Turabian StyleNamizaki, Hiromi, Yasunaga Iwasaki, and Rui Wang. 2022. "Effects of Elevated CO2 Levels on the Growth and Yield of Summer-Grown Cucumbers Cultivated under Different Day and Night Temperatures" Agronomy 12, no. 8: 1872. https://doi.org/10.3390/agronomy12081872
APA StyleNamizaki, H., Iwasaki, Y., & Wang, R. (2022). Effects of Elevated CO2 Levels on the Growth and Yield of Summer-Grown Cucumbers Cultivated under Different Day and Night Temperatures. Agronomy, 12(8), 1872. https://doi.org/10.3390/agronomy12081872