Extraction of Mountain Grasslands in Yunnan, China, from Sentinel-2 Data during the Optimal Phenological Period Using Feature Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Sentinel-2 Data
2.2.2. Sample Point Data
2.2.3. DEM Data
2.2.4. Other Data
2.3. Methods
- (1)
- We analyzed the normalized difference vegetation index (NDVI) time-series data to find the optimum image acquisition time for grassland extraction.
- (2)
- The spectral bands in the growing season and senescent season were compared, the average vegetation indices were calculated, and commonly used texture features were selected. Elevation, slope, hillshade, and aspect were obtained from the SRTM data.
- (3)
- Feature optimization was performed using RFE; 21 features were selected, and the importance scores were obtained from the RF algorithm. The classification accuracy of different feature combinations was compared by adding features with high importance scores.
- (4)
- The overall accuracy of the different classifiers for the optimum feature combination was compared. The optimum results were used in the RF algorithm to extract grasslands in different years.
2.3.1. Selection of Optimal Phenological Period
2.3.2. Feature Extraction
- (1)
- Spectral features
- (2)
- Topographic features
- (3)
- Textural features
2.3.3. Feature Selection
2.3.4. Classification Algorithm
2.3.5. Result Correction and Prediction Assessment
3. Results
3.1. Selection of Optimal Phenological Period
3.2. Feature Comparison
3.3. Feature Selection
3.4. Results and Accuracy Assessment
3.4.1. Comparison of the Classification Results
3.4.2. Analysis of Grassland Extraction Results
4. Discussion
4.1. Grassland Classification Using Google Earth Engine (GEE)
4.2. Selection of Optimal Phenological Period
4.3. Feature Optimization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Y.; Li, M.; Ma, J.; Cheng, J.; Liu, Y.; Jia, H.; Li, N.; Wu, H.; Sun, Z.; Fan, Y.; et al. Changes in the relationship between species richness and belowground biomass among grassland types and along environmental gradients in Xinjiang, Northwest China. J. Arid Land 2019, 11, 855–865. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, S.; Shen, H.; Xiao, J.; Li, S.; Gao, X.; Wu, S. Degradation significantly decreased the ecosystem multifunctionality of three alpine grasslands: Evidences from a large-scale survey on the Qinghai-Tibetan Plateau. J. Mt. Sci.-Engl. 2021, 18, 357–366. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene Classification With Recurrent Attention of VHR Remote Sensing Images. IEEE T Geosci. Remote 2019, 57, 1155–1167. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agr. Forest Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Schönbach, P.; Wan, H.; Gierus, M.; Bai, Y.; Müller, K.; Lin, L.; Susenbeth, A.; Taube, F. Grassland responses to grazing: Effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil 2011, 340, 103–115. [Google Scholar] [CrossRef]
- Kuang, Q.; Yuan, Q.; Han, J.; Leng, R.; Wang, Y.; Zhu, K.; Lin, S.; Ren, P. A remote sensing monitoring method for alpine grasslands desertification in the eastern Qinghai-Tibetan Plateau. J. Mt. Sci.-Engl. 2020, 17, 1423–1437. [Google Scholar] [CrossRef]
- Xiong, B.Q.; Zhao, L.Y.; Zhang, J.; Li, Y.Q.; Chen, H.B.; Li, F.R. Relationship between the Soil and Standing Vegetation Changes during Grassland Desertification Process. Ecol. Environ. Sci. 2017, 26, 400–407. [Google Scholar]
- Guo, Z.; Liu, H.; Zheng, Z.; Chen, X.; Liang, Y. Accurate Extraction of Mountain Grassland From Remote Sensing Image Using a Capsule Network. IEEE Geosci. Remote Sens. 2021, 18, 964–968. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sens. 2021, 13, 2565. [Google Scholar] [CrossRef]
- Wu, N.; Shi, R.; Zhuo, W.; Zhang, C.; Zhou, B.; Xia, Z.; Tao, Z.; Gao, W.; Tian, B. A Classification of Tidal Flat Wetland Vegetation Combining Phenological Features with Google Earth Engine. Remote Sens. 2021, 13, 443. [Google Scholar] [CrossRef]
- Vrieling, A.; Meroni, M.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Zurita-Milla, R.; Oosterbeek, K.; O’Connor, B.; Paganini, M. Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sens. Environ. 2018, 215, 517–529. [Google Scholar] [CrossRef]
- Royimani, L.; Mutanga, O.; Odindi, J.; Sibanda, M.; Chamane, S. Determining the onset of autumn grass senescence in subtropical sour-veld grasslands using remote sensing proxies and the breakpoint approach. Ecol. Inform. 2022, 69, 101651. [Google Scholar] [CrossRef]
- MohanRajan, S.N.; Loganathan, A.; Manoharan, P. Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environ. Sci. Pollut. R 2020, 27, 29900–29926. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Wang, X.; Zhang, Z.; Nawaz, Z. Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform. Remote Sens. 2021, 13, 5064. [Google Scholar] [CrossRef]
- Huang, H.; Lan, Y.; Yang, A.; Zhang, Y.; Wen, S.; Deng, J. Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery. Int. J. Remote Sens. 2020, 41, 3446–3479. [Google Scholar] [CrossRef]
- Badreldin, N.; Prieto, B.; Fisher, R. Mapping Grasslands in Mixed Grassland Ecoregion of Saskatchewan Using Big Remote Sensing Data and Machine Learning. Remote Sens. 2021, 13, 4972. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, G.; Palni, S.; Chandra, N.; Rawat, J.S.; Singh, A.P. Application of remote sensing in alpine grasslands cover mapping of western Himalaya, Uttarakhand, India. Environ. Monit. Assess. 2021, 193, 166. [Google Scholar] [CrossRef]
- Meng, B.; Yang, Z.; Yu, H.; Qin, Y.; Sun, Y.; Zhang, J.; Chen, J.; Wang, Z.; Zhang, W.; Li, M.; et al. Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sens. 2021, 13, 2483. [Google Scholar] [CrossRef]
- Yang, H.Y.; Du, J.M.; Ruan, P.Y.; Zhu, X.M.; Liu, H.; Wang, Y. Vegetation Classification of Desert Steppe Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest. Trans. Chin. Soc. Agric. Mach. 2021, 52, 186–194. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Demarchi, L.; Kania, A.; Ciężkowski, W.; Piórkowski, H.; Oświecimska-Piasko, Z.; Chormański, J. Recursive Feature Elimination and Random Forest Classification of Natura 2000 Grasslands in Lowland River Valleys of Poland Based on Airborne Hyperspectral and LiDAR Data Fusion. Remote Sens. 2020, 12, 1842. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Galvagno, M.; Bayle, A.; Choler, P.; Bassignana, M.; Piccot, A.; Poggio, L.; Oddi, L.; Gascoin, S.; et al. On the distribution and productivity of mountain grasslands in the Gran Paradiso National Park, NW Italy: A remote sensing approach. Int. J. Appl. Earth Obs. 2022, 108, 102718. [Google Scholar] [CrossRef]
- Ahlstrom, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Liu, B.; You, G.; Li, R.; Shen, W.; Yue, Y.; Lin, N. Spectral characteristics of alpine grassland and their changes responding to grassland degradation on the Tibetan Plateau. Environ. Earth Sci. 2015, 74, 2115–2123. [Google Scholar] [CrossRef]
- Li, J.; Wen, G.; Li, D. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 837–841. [Google Scholar] [CrossRef]
- Yuan, Y.; Wen, Q.; Zhao, X.; Liu, S.; Zhu, K.; Hu, B. Identifying Grassland Distribution in a Mountainous Region in Southwest China Using Multi-Source Remote Sensing Images. Remote Sens. 2022, 14, 1472. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Muhati, G.L.; Olago, D.; Olaka, L. Land use and land cover changes in a sub-humid Montane forest in an arid setting: A case study of the Marsabit forest reserve in northern Kenya. Glob. Ecol. Conserv. 2018, 16, e512. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rotich, B.; Ojwang, D. Trends and drivers of forest cover change in the Cherangany hills forest ecosystem, western Kenya. Glob. Ecol. Conserv. 2021, 30, e1755. [Google Scholar] [CrossRef]
- Tao, Y.; Fan, F.; Duan, X.; He, H.; He, Q. Trends of Extreme Temperature under Different Climate Backgrounds in Yunnan Province. Meteorol. Sci. Technol. 2013, 35, 652–660. [Google Scholar] [CrossRef]
- Shen, H.H.; Zhu, Y.K.; Zhao, X.; Geng, X.Q.; Gao, S.Q. Analysis of current grassland resources in China. Chin. Sci. Bull. 2016, 61, 139–154. [Google Scholar] [CrossRef]
- Chang, W.T.; Wang, H.; Ning, X.G.; Zhang, H.C. Extraction of Zhalong Wetlands Information based on Images of Sentinel-2 Red-edge Bands and Sentinel-1 Radar Bands. Wetl. Sci. 2020, 18, 10–19. [Google Scholar] [CrossRef]
- Wang, N.; Quesada, B.; Xia, L.; Butterbach Bahl, K.; Goodale, C.L.; Kiese, R. Effects of climate warming on carbon fluxes in grasslands—A global meta-analysis. Glob. Chang. Biol. 2019, 25, 1839–1851. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring Vegetation Systems in the Great Plains with Erts. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from light quality of the forest floor. ECOLOGY 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Qi, J.G.; Chehbouni, A.R.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Conners, R.W.; Harlow, C.A. A Theoretical Comparison of Texture Algorithms. IEEE T. Pattern Anal. 1980, PAMI-2, 204–222. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51. [Google Scholar] [CrossRef]
- Meingast, K.M.; Falkowski, M.J.; Kane, E.S.; Potvin, L.R.; Benscoter, B.W.; Smith, A.M.S.; Bourgeau-Chavez, L.L.; Miller, M.E. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems. Remote Sens. Environ. 2014, 152, 536–546. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Bauer, E.; Kohavi, R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach. Learn. 1999, 36, 105–139. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e971. [Google Scholar] [CrossRef]
- de Sousa, C.; Fatoyinbo, L.; Neigh, C.; Boucka, F.; Angoue, V.; Larsen, T.; Koukoulas, S. Cloud-computing and machine learning in support of country-level land cover and ecosystem extent mapping in Liberia and Gabon. PLoS ONE 2020, 15, e227438. [Google Scholar] [CrossRef] [PubMed]
- Rapinel, S.; Mony, C.; Lecoq, L.; Clément, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens. Environ. 2019, 223, 115–129. [Google Scholar] [CrossRef]
- Xu, D.; Chen, B.; Shen, B.; Wang, X.; Yan, Y.; Xu, L.; Xin, X. The Classification of Grassland Types Based on Object-Based Image Analysis with Multisource Data. Rangel. Ecol. Manag. 2019, 72, 318–326. [Google Scholar] [CrossRef]
- Buck, O.; Millán, V.E.G.; Klink, A.; Pakzad, K. Using information layers for mapping grassland habitat distribution at local to regional scales. Int. J. Appl. Earth Obs. 2015, 37, 83–89. [Google Scholar] [CrossRef]
Vegetation Index | Calculation Formula |
---|---|
Normalized Difference Vegetation Index (NDVI) | [38] |
Enhanced Vegetation Index (EVI) | [39] |
Difference Vegetation Index (DVI) | [40] |
Ratio Vegetation Index (RVI) | [41] |
Modified Soil-Adjusted Vegetation Index (MSAVI) | [42] |
Normalized Difference Water Index (NDWI) | [43] |
Feature Category | Initial Features | Quantity | Optimal Fearures | Quantity |
---|---|---|---|---|
Spectral bands | Redc, Red Edage2, SWIR1, Blue | 4 | Redc, Red Edage2, SWIR1, Blue | 4 |
Spectral indices | NDVIc, DVIc, RVIc, MSAVIc, EVIc, NDWI_kw | 6 | NDVIc, DVIc, RVIc, MSAVIc, cEVIc, NDWI_kw | 6 |
Textural features | Inertia, Sent, Dent, Idm, Diss, Contrast, Asm, Imcorr2, Dvar, Prom, Svag, Shade, Svar, Var, Corr, Ent, Imcorr1 | 15 | Inertia, Sent, Dent, Idm, Diss, Contrast, Asm, Imcorr2 | 8 |
Topographic features | Slope, Elevation, Hillshade, Aspect | 4 | Slope, Elevation, Aspect | 3 |
Total | 29 | 21 |
Classification | RF | Cart | SVM | MDC | ||||
---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | |
Building | 0.886 | 0.869 | 0.818 | 0.837 | 0.909 | 0.869 | 0.773 | 0.829 |
Cropland | 0.750 | 0.847 | 0.625 | 0.851 | 0.547 | 0.814 | 0.578 | 0.711 |
Forest | 0.820 | 0.880 | 0.800 | 0.880 | 0.837 | 0.853 | 0.864 | 0.879 |
Water | 0.961 | 0.986 | 0.973 | 0.845 | 0.961 | 0.973 | 0.951 | 0.962 |
Grassland | 0.967 | 0.894 | 0.861 | 0.873 | 0.823 | 0.846 | 0.851 | 0.818 |
OA | 0.912 | 0.894 | 0.891 | 0.866 | ||||
Kappa | 0.887 | 0.855 | 0.852 | 0.817 |
Name/Number of Features | Spectral Indices (6) | Textural Features (8) | Spectral Bands (4) | Topographic Features (3) | Spectral Indices + Textural Features (14) | Spectral Indices + Textural Features + Spectral Bands (18) | Spectral Indices + Textural Features + Spectral Bands + Topographic Features (21) |
---|---|---|---|---|---|---|---|
Grassland_PA | 0.800 | 0.692 | 0.808 | 0.792 | 0.865 | 0.956 | 0.967 |
Grassland_UA | 0.703 | 0.559 | 0.719 | 0.664 | 0.721 | 0.815 | 0.894 |
OA | 0.743 | 0.574 | 0.758 | 0.635 | 0.785 | 0.870 | 0.912 |
KC | 0.653 | 0.404 | 0.707 | 0.496 | 0.704 | 0.827 | 0.887 |
Classification | 2019 | 2020 | 2021 | |||
---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | |
Building | 0.886 | 0.869 | 0.864 | 0.884 | 0.977 | 0.935 |
Cropland | 0.750 | 0.847 | 0.828 | 0.815 | 0.825 | 0.761 |
Forest | 0.820 | 0.88 | 0.835 | 0.878 | 0.832 | 0.857 |
Grassland | 0.967 | 0.894 | 0.964 | 0.884 | 0.944 | 0.877 |
Water | 0.961 | 0.986 | 0.947 | 0.986 | 0.908 | 0.987 |
OA | 0.912 | 0.910 | 0.901 | |||
Kappa | 0.887 | 0.881 | 0.863 | |||
Grassland area | 71,723.9 | 62,807.9 | 51,002.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Liu, W.; Zhou, J.; Wang, Z.; Zhang, S.; Liao, S. Extraction of Mountain Grasslands in Yunnan, China, from Sentinel-2 Data during the Optimal Phenological Period Using Feature Optimization. Agronomy 2022, 12, 1948. https://doi.org/10.3390/agronomy12081948
Cheng X, Liu W, Zhou J, Wang Z, Zhang S, Liao S. Extraction of Mountain Grasslands in Yunnan, China, from Sentinel-2 Data during the Optimal Phenological Period Using Feature Optimization. Agronomy. 2022; 12(8):1948. https://doi.org/10.3390/agronomy12081948
Chicago/Turabian StyleCheng, Xinmeng, Wendou Liu, Junhong Zhou, Zizhi Wang, Shuqiao Zhang, and Shengxi Liao. 2022. "Extraction of Mountain Grasslands in Yunnan, China, from Sentinel-2 Data during the Optimal Phenological Period Using Feature Optimization" Agronomy 12, no. 8: 1948. https://doi.org/10.3390/agronomy12081948
APA StyleCheng, X., Liu, W., Zhou, J., Wang, Z., Zhang, S., & Liao, S. (2022). Extraction of Mountain Grasslands in Yunnan, China, from Sentinel-2 Data during the Optimal Phenological Period Using Feature Optimization. Agronomy, 12(8), 1948. https://doi.org/10.3390/agronomy12081948