Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Overall Effects of Living Grass Mulch on Soil Physicochemical Properties of Apple Orchards in China
3.2. Effects of Different Mulch Methods on Soil Physicochemical Properties of Apple Orchards in China
3.3. Effects of Continuous Grass-Growing Years on Soil Physicochemical Properties of Apple Orchards in China
3.4. Response of Soil Physicochemical Properties to Different Influencing Factors for Apple Orchards with Living Grass Mulch in Climate Regions
3.4.1. Mulch Methods
3.4.2. Continuous Grass-Growing Years
3.4.3. Grass Varieties
3.5. Interactions among Soil Properties in Apple Orchards with Living Grass Mulch
3.6. Evaluation of Soil Quality in Apple Orchards with Living Grass Mulch
4. Discussion
4.1. Mulch Methods
4.2. Continuous Grass-Growing Years
4.3. Grass Varieties
4.4. Correlation Analysis among Soil Characteristics in Apple Orchards of Living Grass Mulch
4.5. Soil Quality Assessment of Apple Orchards with Living Grass Mulch
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Liu, Y.; Gao, M.; Wu, W.; Tanveer, S.K.; Wen, X.; Liao, Y. The effects of conservation tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the Loess Plateau, China. Soil Tillage Res. 2013, 130, 7–12. [Google Scholar] [CrossRef]
- Ma, W.L.; Abdulai, A. Linking apple farmers to markets Determinants and impacts of marketing contracts in China. China Agric. Econ. Rev. 2016, 8, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Zhu, Z.; Jia, Z.; Peng, L.; Chen, Q.; He, L.; Jiang, Y.; Ge, S. Life cycle assessment of conventional and organic apple production systems in China. J. Clean. Prod. 2018, 201, 156–168. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Production Database. Available online: http://faostat.Fao.org/faostat (accessed on 15 April 2021).
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Chen, G.; Liu, S.; Xiang, Y.; Tang, X.; Liu, H.; Yao, B.; Luo, X. Impact of living mulch on soil C:N:P stoichiometry in orchards across China: A meta-analysis examining climatic, edaphic, and biotic dependency. Pedosphere 2020, 30, 181–189. [Google Scholar] [CrossRef]
- Wei, K.; Chen, Z.H.; Zhang, X.P.; Liang, W.J.; Chen, L.J. Tillage effects on phosphorus composition and phosphatase activities in soil aggregates. Geoderma 2014, 217–218, 37–44. [Google Scholar] [CrossRef]
- Yang, J.; Duan, Y.; Zhang, R.; Liu, C.; Wang, Y.; Li, M.; Ding, Y.; Awasthi, M.K.; Li, H. Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard. Ind. Crops Prod. 2020, 149, 112344. [Google Scholar] [CrossRef]
- Wei, H.; Xiang, Y.; Liu, Y.; Zhang, J. Effects of sod cultivation on soil nutrients in orchards across China: A meta -analysis. Soil Tillage Res. 2017, 169, 16–24. [Google Scholar] [CrossRef]
- Xu, T.W.; Qin, S.J.; Du, G.D.; Lv, D.G. Post-grass management measures and research progress of orchard in China. China Fruits 2018, 4, 72–75. (In Chinese) [Google Scholar]
- He, Q. Promote the national green food orchard planting technology Food and Nutrition in China. Chin. Food Nutr. 1998, 40, 40. (In Chinese) [Google Scholar]
- Tong, X.L.; Dou, P.; Zhang, B.H.; Wen, Y.J.; Yan, L.L. Research progress of autotoxicity in continuous cropping obstacle of peach. Heilongjiang Agric. Sci. 2021, 2, 127–131. (In Chinese) [Google Scholar]
- Li, F.L.; Zheng, Y.R.; Zheng, T.; Lin, X.L.; Huang, Y.H.; Wu, Y.; Xie, N.S.; Lin, Z.M.; Cai, Z.F. Research Advances on Soil and Water Conservation Effect of Pasture-planting in Orchard. Chin. Agric. Sci. Bull. 2013, 29, 34–39. (In Chinese) [Google Scholar]
- Qian, X.; Gu, J.; Pan, H.-J.; Zhang, K.-Y.; Sun, W.; Wang, X.-J.; Gao, H. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil Biol. 2015, 70, 23–30. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Zhang, R.; Huang, Q.; Li, H. Long-term cover cropping seasonally affects soil microbial carbon metabolism in an apple orchard. Bioengineered 2019, 10, 207–217. [Google Scholar] [CrossRef] [Green Version]
- McCullum, G.C. National Sustainable Agriculture Information Service (ATTRA). J. Hunger. Environ. Nutr. 2018, 13, 587. [Google Scholar] [CrossRef]
- Sullivan, P.G.; Diver, S. Overview of Cover Crops and Green Manures; Approprlate Technology Transfer for Rural Areas, ATTRA: Butte-Silver Bow, MT, USA, 2003. [Google Scholar]
- Jannoyer, M.L.; Le Bellec, F.; Lavigne, C.; Achard, R.; Malézieux, E. Choosing cover crops to enhance ecological services in orchards: A multiple criteria and systemic approach applied to tropical areas. Procedia Environ. Sci. 2011, 9, 104–112. [Google Scholar]
- McGourty, G.; Tylicki, S.; Price, J.; Nosera, J. Performance of 18 Cover Crop Species in New High Elevation North Coast Vineyard; Practical Winery & Vineyard: San Rafael, CA, USA, 2006. [Google Scholar]
- Sanchez, J.E.; Willson, T.C.; Kizilkaya, K.; Parker, E.; Harwood, R.R. Enhancing the mineralizable nitrogen pool through substrate diversity in long term cropping systems. Soil Sci. Soc. Am. J. 2001, 65, 1442–1447. [Google Scholar] [CrossRef]
- Colugnati, G.; Cattarossi, G.; Crespan, G. Gestione del terreno in viticoltura. VigneVini 2004, 11, 53–83. [Google Scholar]
- Fourie, J.C.; Louw PJ, E.; Agenbag, G.A. Cover Crop Management in a Chardonnay99 Richter Vineyard in the Coastal Region, South Africa. 2. Effect of Different Cover Crops and Cover Crop Management Practices on Grapevine Performance. S. Afr. J. Enol. Vitic. 2006, 27, 178–186. [Google Scholar]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- McGourty, G. Cover Cropping Systems for Organically Farmed Vineyards; Practical Winery & Vineyard: San Rafael, CA, USA, 2004; pp. 1–7. [Google Scholar]
- Monteiro, A.; Lopes, C.M.; Machado, J.P.; Fernandes, N.; Araújo, A. Cover cropping in a sloping, non-irrigated vineyard: I-Effects on weed composition and dynamics. Cienc. Tec. Vitivinic. 2008, 23, 29–36. [Google Scholar]
- Morlat, R.; Jacquet, A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic. 2003, 54, 1–7. [Google Scholar]
- Smith, R.; Bettiga, L.; Cahn, M.; Baumgartner, K.; Jackson, L.E.; Bensen, T. Vineyard floor management affects soil, plant nutrition, and grape yield and quality. Calif. Agric. 2008, 62, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Yu, Y.; Tan, X.; Chen, A.; Feng, J. Biological control of insect pests in apple orchards in China. Biol. Control 2014, 68, 47–56. [Google Scholar] [CrossRef]
- Polverigiani, S.; MFranzina, D. Neri Effect of soil condition on apple root development and plant resilience in intensive orchards. Appl. Soil Ecol. 2018, 123, 787–792. [Google Scholar] [CrossRef]
- Polverigiani, S.; Kelderer, M.; Neri, D. Growth of ‘M9’ apple root in five Central Europe replanted soils. Plant Root 2014, 8, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Carsoulle, J. L’ENHERBEMENT PERMANENT DU VIGNOBLE-Influence sur la production viticole et son environnement. Phytoma-La Def. Des Veg. 1995, 478, 38–42. [Google Scholar]
- Ingels, C.A.; Scow, K.M.; Whisson, D.A.; Drenovsky, R.E. Effects of cover crops on grapevines, yield, juice composition, soil microbial ecology, and gopher activity. Am. J. Enol. Vitic. 2005, 56, 19–29. [Google Scholar]
- Salazar, P.; Domingo, M. Viticultura: Técnicas de Cultivo de la vid, Calidad de la uva y Atributos de los Vinos; Vicente, A.M., Ed.; Mundi-Prensa: Madrid, Spain, 2005. [Google Scholar]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Chang. Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, H.; Zhang, L.; Zhang, S.; Chen, Y. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crops Res. 2018, 221, 50–60. [Google Scholar] [CrossRef]
- Qin, W.; Assinck, F.B.T.; Heinen, M.; Oenema, O. Water and nitrogen use efficiencies in citrus production: A meta-analysis. Agric. Ecosyst. Environ. 2016, 222, 103–111. [Google Scholar] [CrossRef]
- Qin, W.; Hu, C.; Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahbaz, M.; Farooq, T.H.; Sahar, N.E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 2021, 750, 142299. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidemiol. 2006, 59, 7–10. [Google Scholar] [CrossRef]
- Philbrook, H.T.; Barrowman, N.; Garg, A. Imputing variance estimates do not alter the conclusions of a meta-analysis with continuous outcomes: A case study of changes in renal function after living kidney donation. J. Clin. Epidemiol. 2007, 60, 228–240. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.S.; Zhong, W.Z.; Zhang, S.; Li, X.J. Stata in Assessing Heterogeneity in Meta- Analysis. J. Evid. Based Med. 2008, 8, 231–234. (In Chinese) [Google Scholar]
- Kuayakov, Y.; Gunina, A.; Zamanian, K.; Tian, J.; Luo, Y.; Xu, X.; Yudina, A.; Aponte, H.; Alharbi, H.; Ovsepyan, L.; et al. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Front. Agric. Sci. Eng. 2020, 7, 282–288. [Google Scholar] [CrossRef]
- Angers, D.; Pesant, A.; Vigneux, J. Early cropping-induced changes in soil aggregation, organic matter, and microbial biomass. Soil Sci. Soc. Am. J. 1992, 56, 115–119. [Google Scholar] [CrossRef]
- Magdoff, F. Concept, components, and strategies of soil health in agroecosystems. J. Nematol. 2001, 33, 169. [Google Scholar] [PubMed]
- McDaniel, M.; Tiemann, L.; Grandy, A. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 370–380. [Google Scholar] [CrossRef]
- Sánchez, E.E.; Giayetto, A.; Cichon, L.; Fernandez, D.; Aruani, M.C.; Curetti, M. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant Soil 2007, 292, 193–203. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.-H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar]
- Zhao, M.; Zhou, J.; Kalbitz, K. Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China. Eur. J. Soil Biol. 2008, 44, 158–165. [Google Scholar] [CrossRef]
- Gu, C.; Liu, Y.; Mohamed, I.; Zhang, R.; Wang, X.; Nie, X.; Jiang, M.; Brooks, M.; Chen, F.; Li, Z. Dynamic changes of soil surface organic carbon under different mulching practices in citrus orchards on sloping land. PLoS ONE 2016, 11, e0168384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mia, M.J.; Monaci, E.; Murri, G.; Massetani, F.; Facchi, J.; Neri, D. Soil nitrogen and weed biodiversity: An assessment under two orchard floor management practices in NVZ (Italy). Horticulturae 2020, 6, 96. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Wu, Q.S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil Tillage Res. 2016, 155, 54–61. [Google Scholar] [CrossRef]
- Berhe, A.A.; Harte, J.; Harden, J.W.; Torn, M.S. The significance of the erosion-induced terrestrial carbon sink. BioScience 2007, 57, 337–346. [Google Scholar] [CrossRef]
- Qian, J.; Wu, J.; Huang, J. Effects of sod-cultural practices on soil nutrients and microbial diversity in the Carya cathayensis forest. Acta Ecol. Sin. 2014, 34, 6002–6010. [Google Scholar]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Parton, W.J.; Stewart, J.W.; Cole, C.V. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry 1988, 5, 109–131. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid. Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Sun, X.; Chai, Z.; Jiang, P.; Jin, J.; Jia, M.; Fang, L. Effects of soil management mode on soil physical and chemical properties of apple orchard in south part of Xinjiang. Pratacult. Sci. 2011, 28, 189–193. [Google Scholar]
- Battany, M.; Grismer, M. Rainfall runoff and erosion in Napa Valley vineyards: Effects of slope, cover and surface roughness. Hydrol. Process. 2000, 14, 1289–1304. [Google Scholar] [CrossRef]
- Klik, A.; Rosner, J.; Loiskandl, W. Effects of temporary and permanent soil cover on grape yield and soil chemical and physical properties. J. Soil Water Conserv. 1998, 53, 249–253. [Google Scholar]
- Palese, A.; Vignozzi, N.; Celano, G.; Agnelli, A.; Pagliai, M.; Xiloyannis, C. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil Tillage Res. 2014, 144, 96–109. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, Y.; Gu, Z.; Zhu, H.; Fu, S.; Yao, Q. The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils. Soil Biol. Biochem. 2015, 82, 119–126. [Google Scholar] [CrossRef]
- Du, Y.; Fang, K.-K.; Wang, Z.-K.; Li, H.-K.; Mao, P.-J.; Zhang, X.-X.; Wang, J. Carbon source utilization characteristics of soil microbial community for apple orchard with interplanting herbage. Huan Jing Ke Xue = Huanjing Kexue 2015, 36, 4260–4267. [Google Scholar]
- Zhang, Y.Y.; Liu, B.; Qiu, M.; Liu, Y.; Wu, X.; Xiao, N. Areas Suitable for Growing Apples Moved Northward and Westward in China under the Background of Climate Change: Climatic Degionalization of Apple Based on High-resolution Meteorological Grid Data. Chin. J. Agrometeorol. 2019, 40, 678–691. (In Chinese) [Google Scholar]
- Montague, T.; Kjelgren, R. Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species. Sci. Hortic. 2004, 100, 229–249. [Google Scholar] [CrossRef]
- Li, H.; Mei, L.; Gao, H. Effect of grass planting on the microclimate of apple orchard in the dryland area of Loess Plateau. Acta Agrestia Sin. 2009, 17, 615–620. [Google Scholar]
- Wen, X.X.; Yin, R.J.; Gao, M.S.; Ai, S.L. Spatiotemporal Dynamics of Soil Enzyme Activities and Microbes in Apple Orchard Soil under Different Mulching Managements. Acta A Griculturae Boreali-Occident. Sin. 2011, 20, 82–88. (In Chinese) [Google Scholar]
- Yang, X.Z.; Li, Z.; Cheng, C.G. Effect of Conservation Tillage Practices on Soil Phosphorus Nutrition in an Apple Orchard. Hortic. Plant J. 2016, 2, 331–337. [Google Scholar] [CrossRef]
- Chen, J.H.; Ma, J.J.; Li, Y.F. Effects of herbage on ecological environment and photosynthetic characteristics fruits quality of ‘Korla Fragrant Pear’. North. Hortic. 2019, 22, 49–59. (In Chinese) [Google Scholar]
- Jiao, R.A.; Liu, G.S.; Yan, S.P.; Jiao, J.; Li, C.Z. Effect of sod-culture on the microclimate of olive orchard in Bailong River Dry-hot Valley Region. Acta Agrestia Sin. 2018, 26, 770–780. (In Chinese) [Google Scholar]
- Gao, Z.H. Research Progress on the Effect of Grass Covering Cultivation on Orchard Ecology. J. Jiangsu For. Sci. Technol. 2019, 46, 44–48. (In Chinese) [Google Scholar]
- Jiao, R.A.; Zhang, S.H.; Li, Y.; Li, C.Z.; Wang, J.P.; Jiao, J. Research progress about the effect of sod-culture on the growth and development of fruit and orchard environment. J. Fruit Sci. 2017, 34, 1610–1623. (In Chinese) [Google Scholar]
- Jiang, L.L.; Gong, Q.T.; Wu, H.B.; Sheng, F.J.; Sun, R.H. Effects of different grasses cultivation on apple orchard soil microbial community. Chin. J. Appl. Ecol. 2019, 30, 3482–3490. (In Chinese) [Google Scholar]
- Zheng, W.; Gong, Q.; Zhao, Z.; Liu, J.; Zhai, B.; Wang, Z.; Li, Z. Changes in the soil bacterial community structure and enzyme activities after intercrop mulch with cover crop for eight years in an orchard. Eur. J. Soil Biol. 2018, 86, 34–41. [Google Scholar] [CrossRef]
- Li, Q.M.; Zhang, L.L.; Zhao, J.N.; Zhang, Y.J.; Liu, H.M.; Wang, H.L.; Wang, H.; Yang, D.L.; Zhang, F.; Weng, C.M. Effects of different cover crop treatments on soil microbial community composition in kiwifruit orchard. J. Agric. Resour. Environ. 2020, 37, 319–325. (In Chinese) [Google Scholar]
- Messiga, A.J.; Sharifi, M.; Munroe, S. Combinations of cover crop mixtures and bio-waste composts enhance biomass production and nutrients accumulation: A greenhouse study. Renew. Agric. Food Syst. 2016, 31, 507–515. [Google Scholar] [CrossRef]
- Suo, G.D.; Xie, Y.S.; Zhang, Y.; Luo, H. Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the Loess Plateau of China. Sci. Hortic. 2019, 246, 643–651. [Google Scholar] [CrossRef]
- Kumar, R.; Sood, S.; Sharma, S.; Kasana, R.; Pathania, V.; Singh, B.; Singh, R. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 2014, 8, 311–334. [Google Scholar]
- Wang, Y.T. Effects of self-sown grass on soil physical properties and microbial diversity of pear orchards in yellow river delta. Acta Ecol. Sin. 2015, 35, 5374–5384. (In Chinese) [Google Scholar]
- Chen, K.; Hu, G.Q.; Rao, H.M.; Xu, L.H.; Wu, H.Q. Ecological Effects of Planting vetiver zizanioides in citrus orchards on red soil slope. Acta Ecol. Sin. 1994, 14, 249–254. [Google Scholar]
- Zhang, X.X.; Zhao, L.; An, Y. Effects of grass-growing on soil physical properties, fruit tree growth and fruit quality in peach orchard. J. Shanghai Jiaotong Univ. (Agric. Sci.) 2011, 29, 58–63. (In Chinese) [Google Scholar]
- Li, H.K.; Zhang, G.J.; Zhao, Z.Y.; Li, K.R. Effects of Different Herbage on Soil Quality Characteristics of Non-Irrigated Apple Orchard in Weibei Loess Plateau. Sci. Agric. Sin. 2008, 41, 2070–2076. (In Chinese) [Google Scholar]
- Fontaine, S.; Bardoux, G.; Abbadie, L.; Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 2004, 7, 314–320. [Google Scholar] [CrossRef]
- Guenet, B.; Danger, M.; Abbadie, L.; Lacroix, G. Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology 2010, 91, 2850–2861. [Google Scholar] [CrossRef]
- Bugg, R.L.; McGourty, G.; Sarrantonio, M.; Lanini, W.T.; Bartolucci, R. Comparison of 32 Cover Crops in an Organic Vineyard on the North Coast of California. Biol. Agric. Hortic. 1996, 13, 63–81. [Google Scholar] [CrossRef]
- Carbonell Bojollo, R.M.; Márquez García, J.; Moreno García, M.; Ordóñez Fernández, R.; Repullo Ruibérriz de Torres, M.A. Carbon sequestration by grass, crucifer and legume groundcovers in olive orchards. J. Water Clim. Chang. 2018, 9, 748–763. [Google Scholar]
- Kou, J.C.; Yang, W.Q.; Han, M.Y.; Chen, A.; Li, B.; Zhang, W. Research progress on interplanting grass in orchard in China. Pratacult. Sci. 2010, 27, 154–159. (In Chinese) [Google Scholar]
- Rosa, J.D.; Mafra, L.; Medeiros, J.C.; Albuquerque, J.A.; Miquelluti, D.J.; Nohatto, M.A.; Ferreira, E.Z.; De Oliveira, O.L.P. Soil physical properties and grape yield influenced by cover crops and management systems. Rev. Bras. Ciênc. Solo 2013, 37, 1352–1360. [Google Scholar] [CrossRef]
- Deurer, M.; Grinev, D.; Young, I.; Clothier, B.; Müller, K. The impact of soil carbon management on soil macropore structure: A comparison of two apple orchard systems in New Zealand. Eur. J. Soil Sci. 2009, 60, 945–955. [Google Scholar] [CrossRef]
- Oliveira, B.S.; Ambrosini, V.G.; Trapp, T.; dos Santos, M.A.; Sete, P.B.; Lovato, P.E.; Loss, A.; Comin, J.J.; Lourenzi, C.R.; Couto, R.D.R.; et al. Nutrition, productivity and soil chemical properties in an apple orchard under weed management. Nutr. Cycl. Agroecosyst. 2016, 104, 247–258. [Google Scholar] [CrossRef]
- Franchini, J.C.; Meda, A.R.; Cassiolato, M.E.; Miyazawa, M.; Pavan, M.A. Potencial de extratos de resíduos vegetais na mobilização do calcário no solo por método biológico. Sci. Agric. 2001, 58, 357–360. [Google Scholar] [CrossRef]
- Xie, L.J.; Jiang, H.S.; Qin, L.N.; Sun, J.C. Effect of Effective Nutrients on pH Value of Soil. Shandong Agric. Sci. 2014, 46, 91–93. (In Chinese) [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. Defin. Soil Qual. A Sustain. Environ. 1994, 35, 1–21. [Google Scholar]
- Benıtez, E.; Melgar, R.; Sainz, H.; Gomez, M.; Nogales, R. Enzyme activities in the rhizosphere of pepper (Capsicum annuum, L.) grown with olive cake mulches. Soil Biol. Biochem. 2000, 32, 1829–1835. [Google Scholar] [CrossRef]
- Dick, R.P. Soil enzyme activities as indicators of soil quality. Defin. Soil Qual. A Sustain. Environ. 1994, 35, 107–124. [Google Scholar]
- Doran, J.W. Defining Soil Quality for Sustainable Environment; Soil Science Society of America: Madison, WI, USA, 1994. [Google Scholar]
- Joshi, S.; Mohapatra, B.; Mishra, J. Microbial soil enzymes: Implications in the maintenance of rhizosphere ecosystem and soil health. In Advances in Soil Microbiology: Recent Trends and Future Prospects; Springer: Singapore, 2018; pp. 179–192. [Google Scholar]
- Mori, T.; Wang, S.; Zhang, W.; Mo, J. A potential source of soil ecoenzymes: From the phyllosphere to soil via throughfall. Appl. Soil Ecol. 2019, 139, 25–28. [Google Scholar] [CrossRef]
- Yao, X.H.; Min, H.; Lü, Z.H.; Yuan, H.P. Influence of acetamiprid on soil enzymatic activities and respiration. Eur. J. Soil Biol. 2006, 42, 120–126. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Liu, X.; Lei, M. Long-Term Effect of Sludge Compost Amendment on the Temporal Pattern of Nitrogen Supply in Its Amended Soil. Waste Biomass Valorization 2020, 11, 1953–1959. [Google Scholar] [CrossRef]
- Ruppel, S.; Makswitat, E. Effect of nitrogen fertilization and irrigation on soil microbial activities and population dynamics—A field study. J. Plant Nutr. Soil Sci. 1999, 162, 75–81. [Google Scholar] [CrossRef]
- Acosta, M.V.; Tabatabai, M. Tillage and residue management effects on arylamidase activity in soils. Biol. Fertil. Soils 2001, 34, 21–24. [Google Scholar]
Climate Region | Temperate Semi-Arid | Temperate Semi-Humid | Warm Temperate Arid | Warm Temperate Semi-Arid | Warm Temperate Semi-Humid | Subtropical Humid | |
---|---|---|---|---|---|---|---|
Classification index | ≥10 °C days * (°C) | 100–170 | 100–170 | 171–217 | 171–217 | 171–217 | 218–364 |
Annual dryness ** | ≥1.6, <3.5 | ≥1.0, <1.6 | ≥3.5, <16.0 | ≥1.6, <3.5 | ≥1.0, <1.6 | <1.0 | |
Climate information | Annual temperature (°C) | −4.2–8.0 | −4.2–8.0 | 8.0–13.0 | 8.0–13.0 | 8.0–13.0 | 13.0–20.0 |
Annual precipitation (mm) | 200–400 | 400–800 | 0–200 | 200–400 | 400–800 | ≥800 | |
Soil properties | AN (mg·kg−1) | 7.0–191.0 | 12.2–114.6 | 8.1–92.3 | 41.5–93.0 | 22.7–183.7 | 56.1–245.1 |
AP (mg·kg−1) | 2.5–95.8 | 14.5–44.5 | 21–89.3 | 3.5–15.9 | 5.0–221.0 | 1.7–185.1 | |
AK (mg·kg−1) | 84.3–315.0 | 19.3–242.8 | 58.0–497.4 | 65.4–171.3 | 71.8–248.1 | 50.8–229.0 | |
SOM (g·kg−1) | 1.6–20.5 | 15.1–83.6 | 2.1–32.2 | 0.6–30.0 | 6.4–13.8 | 4.7–59.2 | |
SPH | 8.4–9.3 | 5.8–8.3 | 7.0–8.9 | 5.1–9.0 | 6.9–8.8 | 4.1–6.0 | |
SBD (g·cm−3) | 1.2–1.6 | 1.5–1.7 | 1.2–1.7 | 1.5–1.9 | 1.2–1.6 | 1.2–1.3 |
Variables | SBD | STP | SPH | SWC | SOM | SOC | TN | TP | TK | AN | AP | AK |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I2 (%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
H | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Yang, H.; Wang, W.; Wang, C.; Pang, Y.; Chen, D.; Hu, X. Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis. Agronomy 2022, 12, 1974. https://doi.org/10.3390/agronomy12081974
Tang W, Yang H, Wang W, Wang C, Pang Y, Chen D, Hu X. Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis. Agronomy. 2022; 12(8):1974. https://doi.org/10.3390/agronomy12081974
Chicago/Turabian StyleTang, Wenzheng, Haosheng Yang, Wene Wang, Chunxia Wang, Yaoyue Pang, Dianyu Chen, and Xiaotao Hu. 2022. "Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis" Agronomy 12, no. 8: 1974. https://doi.org/10.3390/agronomy12081974
APA StyleTang, W., Yang, H., Wang, W., Wang, C., Pang, Y., Chen, D., & Hu, X. (2022). Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis. Agronomy, 12(8), 1974. https://doi.org/10.3390/agronomy12081974