Comparative Analysis of Two Pear Pests, Cacopsylla jukyungi and Cacopsylla burckhardti (Hemiptera: Psyllidae), Based on Complete Mitochondrial Genomes and Comparison to Confamilial Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Genomic DNA Extraction and DNA Barcode Sequencing
2.3. Next-Generation Sequencing
2.4. Assembly and Gap Filling
2.5. Gene Annotation
2.6. Comparative Genome Analyses
3. Results
3.1. General Mitochondrial Genome Features
3.2. Intergenic Spacer Sequences
3.3. The A+T-Rich Region
3.4. Individual Gene Divergence
4. Discussion
4.1. Potential Motif Sequences in Intergenic Spacer Sequences
4.2. The A+T-Rich Region Structure and Conserved Element
4.3. Individual Gene Divergence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ossiannilsson, F. The Psylloidea (Homoptera) of Fennoscandia and Denmark. In Fauna Entomologica Scandinavica; Brill: Leiden, The Netherlands, 1992; Volume 26, p. 346. [Google Scholar]
- Luo, X.; Li, F.; Ma, Y.; Cai, W. A revision of Chinese pear psyllids (Hemiptera: Psylloidea) associated with Pyrus ussuriensis. Zootaxa 2012, 3489, 58–80. [Google Scholar] [CrossRef]
- Kwon, Y.J. Psylloidea of Korea (Homoptera: Sternorrhyncha); Editorial Committee of Insecta Koreana: Seoul, Korea, 1983; p. 181. [Google Scholar]
- Li, F. Psyllidomorpha of China (Insecta: Hemiptera); Science Press: Beijing, China, 2011; p. 1976. [Google Scholar]
- Park, H.C.; Lee, C.E. A new species of Psylla from Korea (Homoptera: Psylloidea). Nat. Life 1982, 12, 19–21. [Google Scholar]
- Cho, G.; Burckhardt, D.; Inoue, H.; Luo, X.; Lee, S. Systematics of the east Palaearctic pear psyllids (Hemiptera: Psylloidea) with particular focus on the Japanese and Korean fauna. Zootaxa 2017, 4362, 75–98. [Google Scholar] [CrossRef]
- Foerster, A. Uebersicht der Gattungen und Arten in der Familie der Psylloden. Verhandlungen des Naturhistorischen. Ver. Preuss. Rheinl. 1848, 5, 65–98. [Google Scholar]
- KREI. Agricultural Outlook Korea, 1085, 4–5. 2022. Available online: https://aglook.krei.re.kr/main/uObserveMonth/OVR0000000013?queryType=2022&queryType2=7503 (accessed on 1 May 2022).
- Kim, D.S.; Yang, C.Y.; Jeon, H.Y. An empirical model for the prediction of the onset of upward-movement of overwintered Cacopsylla pyricola (Homoptera: Psyllidae) in pear orchards. Korean J. Agric. For. Meteorol. 2007, 9, 228–233. [Google Scholar] [CrossRef]
- Park, J.S.; Park, J.W.; Kang, A.R.; Lee, S.H.; Yang, K.-Y.; Kim, W.S.; Kim, I. Analysis of occurrence pattern of the pear psylla, Cacopsylla pyricola, in the pear exporting complex. J. Agri. Sci. Technol. 2014, 48, 1–8. [Google Scholar] [CrossRef]
- An, J.H.; Yiem, M.S.; Kim, D.S. Effects of photoperiod and temperature on formation and fecundity of two seasonal forms of Psylla pyricola (Homoptera: Psyllidae). Korean J. Appl. Entomol. 1996, 35, 205–208. [Google Scholar]
- Kim, D.S.; Jeon, H.Y.; Yiem, M.S.; Cho, M.R.; Kim, S.B. Ecological studies on the pear psylla. In Annual Report of NHRI; No. 31235–51850–56–2; RDA: Suwon, Korea, 1995; pp. 736–742. [Google Scholar]
- Burts, E.C.; van den Baan, H.E.; Croft, B.A. Pyrethroid resistance in pear psylla, Psylla pyricola Forster (Homoptera: Psyllidae), and synergism of pyrethroids with piperonyl butoxide. Can. Entomol. 1989, 121, 219–223. [Google Scholar] [CrossRef]
- Lee, D.C.; Lee, H.J.; Jung, S.T.; Han, K.P.; Han, H.Y. Special Treatise on Fruit Crops and Horticulture; Hyangmunsa: Seoul, Korea, 1983. [Google Scholar]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, I.; Cameron, S.L. How well do multispecies coalescent methods perform with mitochondrial genomic data? A case study of butterflies and moths (Insecta: Lepidoptera). Syst. Entomol. 2020, 45, 857–873. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, K.H.; Park, J.S.; Jeong, J.S.; Jeong, N.R.; Lee, W.; Kim, I. Complete mitochondrial genomes of Metcalfa pruinosa and Salurnis marginella (Hemiptera: Flatidae): Genomic comparison and phylogenetic inference in Fulgoroidea. Curr. Issues Mol. Biol. 2021, 43, 1391–1418. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Park, J.S.; Kim, H.; Kim, S.-R.; Kim, S.-W.; Kim, K.-Y.; Kwak, W.; Kim, I. Phylogeographic relationships among Bombyx mandarina (Lepidoptera: Bombycidae) populations and their relationships to B. mori inferred from mitochondrial genomes. Biology 2022, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.K.; Mandadi, N.; Sridhar, J.; Mandal, V.; Ghosh, A.; Kardile, H.B.; Naga, K.C.; Shah, M.A.; Rawat, S.; Venkateswarlu, V.; et al. Draft genome sequencing of the foxglove aphid (Aulacorthum solani Kaltenbach), a vector of potato viruses, provides insights on virulence genes. J. Asia-Pac. Entomol. 2021, 24, 93–102. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, S.-S.; Choi, S.-W.; Kim, I. Saturnia jonasii Butler, 1877 on Jejudo Island, a new saturnid moth of South Korea with DNA data and morphology (Lepidoptera: Saturniidae). Zootaxa 2015, 3946, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Cho, Y.; Wang, A.R.; Kim, S.-S.; Choi, S.-W.; Kim, I. Population genetic characterization of the black-veined white, Aporia crataegi (Lepidoptera: Pieridae), using novel microsatellite markers and mitochondrial DNA gene sequences. Conserv. Genet. 2020, 21, 359–371. [Google Scholar] [CrossRef]
- Lee, K.H.; Jeong, J.S.; Park, J.S.; Kim, M.J.; Jeong, N.R.; Jeong, S.Y.; Lee, G.S.; Lee, W.; Kim, I. Tracing the invasion and expansion characteristics of the flatid planthopper, Metcalfa pruinosa (Hemiptera: Flatidae), in Korea using mitochondrial DNA sequences. Insects 2021, 12, 4. [Google Scholar] [CrossRef]
- Jeong, N.R.; Kim, M.J.; Kim, S.-S.; Choi, S.-W.; Kim, I. Morphological, ecological, and molecular divergence of Conogethes pinicolalis from C. punctiferalis (Lepidoptera: Crambidae). Insects 2021, 12, 455. [Google Scholar]
- Jeong, N.R.; Kim, M.J.; Park, J.S.; Jeong, S.Y.; Kim, I. Complete mitochondrial genomes of Conogethes punctiferalis and C. pinicolalis (Lepidoptera: Crambidae): Genomic comparison and phylogenetic inference in Pyraloidea. J. Asia Pac. Entomol. 2021, 35, 1179–1186. [Google Scholar] [CrossRef]
- Wang, Y.; Cen, Y.; He, Y.; Wu, Y.; Huang, S.; Lu, J. The first complete mitochondrial genome sequence of Cacopsylla citrisuga (Yang & Li), a new insect vector of Huanglongbing in Yunnan Province, China. Mitochondrial DNA B Resour. 2021, 6, 575–577. [Google Scholar]
- Song, X.; He, Y.; Wang, X.; Gu, X. The complete mitochondrial genome of Cyamophila willieti (Wu) (Hemiptera: Psyllidae). Mitochondrial DNA B Resour. 2019, 4, 3758–3759. [Google Scholar] [CrossRef]
- Jo, E.; Cho, G. The complete mitochondrial genome of Cacopsylla burckhardti (Hemiptera, Psylloidea, Psyllidae). Biodivers. Data J. 2022, 10, e85094. [Google Scholar] [CrossRef]
- Que, S.; Yu, L.; Xin, T.; Zou, Z.; Hu, L.; Xia, B. Complete mitochondrial genome of Cacopsylla coccinea (Hemiptera: Psyllidae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 2015, 27, 3169–3170. [Google Scholar] [CrossRef]
- Percy, D.M.; Crampton-Platt, A.; Sveinsson, S.; Lemmon, A.R.; Lem-mon, E.M.; Ouvrard, D.; Burckhardt, D. Resolving the psyllid tree of life: Phylogenomic analyses of the superfamily Psylloidea (Hemiptera). Syst. Entomol. 2018, 43, 762–776. [Google Scholar] [CrossRef]
- Shea, K.; Thrall, P.H.; Burdon, J.J. An integrated approach to management in epidemiology and pest control. Ecol. Lett. 2000, 3, 150–158. [Google Scholar] [CrossRef]
- Kang, A.R.; Baek, J.Y.; Lee, S.H.; Cho, Y.S.; Kim, W.S.; Han, Y.S.; Kim, I. Geographic homogeneity and high gene flow of the pear psylla, Cacopsylla pyricola (Hemiptera: Psyllidae), detected by mitochondrial COI gene and nuclear ribosomal internal transcribed spacer 2. Anim. Cells. Syst. 2012, 16, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Park, J.W.; Park, J.S.; Kang, A.R.; Na, I.S.; Cha, G.H.; Oh, H.J.; Lee, S.H.; Yang, K.Y.; Kim, W.S.; Kim, I. Establishment of pest forecasting management system for the improvement of pass ratio of Korean exporting pears. Int. J. Indust. Entomol. 2012, 25, 163–169. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk?/projects/fastqc/ (accessed on 6 June 2022).
- Jiang, H.; Lei, R.; Ding, S.-W.; Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef]
- Allam, A.; Kalnis, P.; Solovyev, V. Karect: Accurate correction of substitution, insertion and deletion errors for next-generation sequencing data. Bioinformatics 2015, 31, 3421–3428. [Google Scholar] [CrossRef]
- Hahn, C.; Bachmann, L.; Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res. 2013, 41, e129. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- De Pristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Donath, A.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Cameron, S.L. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 2014, 39, 400–411. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis ver. 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP* Phylogenetic Analysis Using Parsimony (*and Other Method) Version 4.0 Beta; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [Green Version]
- Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar]
- Kim, M.I.; Baek, J.Y.; Kim, M.J.; Jeong, H.C.; Kim, K.-G.; Bae, C.H.; Han, Y.S.; Jin, B.R.; Kim, I. Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol. Cells 2009, 29, 347–363. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, M.J.; Jeong, J.S.; Kim, I. Complete mitochondrial genome of Saturnia jonasii (Lepidoptera: Saturniidae): Genomic comparisons and phylogenetic inference among Bombycoidea. Genomics 2018, 110, 174–282. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, M.J.; Kim, I. The mitochondrial genome of the dung beetle, Copris tripartitus, with mitogenomic comparisons within Scarabaeidae (Coleoptera). Int. J. Biol. Macromol. 2020, 144, 874–891. [Google Scholar] [CrossRef]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta–Bioenerg. 1999, 1410, 103–123. [Google Scholar] [CrossRef]
- Cameron, S.L.; Whiting, M.F. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae) and an examination of mitochondrial gene variability within butterflies and moths. Gene 2008, 408, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Moriz, C.; Brown, W.M. Tandem duplications of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science 1986, 233, 1425–1427. [Google Scholar] [CrossRef] [PubMed]
- Moriz, C.; Brown, W.M. Tandem duplication in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. USA 1987, 84, 7183–7187. [Google Scholar] [CrossRef] [PubMed]
- Levinson, G.; Gutman, G.A. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol. Biol. Evol. 1987, 4, 203–221. [Google Scholar]
- Wang, Y.; Chen, J.; Jiang, L.Y.; Qiao, G.X. Hemipteran mitochondrial genomes: Features, structures and implications for phylogeny. Int. J. Mol. Sci. 2015, 16, 12382–12404. [Google Scholar] [CrossRef]
- Li, K.; Liang, A.-P. Hemiptera mitochondrial control region: New sights into the structural organization, phylogenetic utility, and roles of tandem repetitions of the noncoding segment. Int. J. Mol. Sci. 2018, 19, 1292. [Google Scholar] [CrossRef] [PubMed]
- Fauron, C.M.; Wolstenholme, D.R. Intraspecific diversity of nucleotide sequences within the adenine+ thymine-rich region of mitochondrial DNA molecules of Drosophila mauritiana, Drosophila melanogaster and Drosophila simulans. Nucleic Acids Res. 1980, 8, 5391–5410. [Google Scholar] [CrossRef] [Green Version]
- Clary, D.O.; Wolstenholme, D.R. Drosophila mitochondrial DNA: Conserved sequences in the A + T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J. Mol. Evol. 1987, 25, 116–125. [Google Scholar] [CrossRef]
- Saito, S.; Tamura, K.; Aotsuka, T. Replication origin of mitochondrial DNA in insects. Genetics 2005, 171, 1695–1705. [Google Scholar] [CrossRef]
- Liao, F.; Wang, L.; Wu, S.; Li, Y.-P.; Zhao, L.; Huang, G.-M.; Niu, C.-J.; Liu, Y.-Q.; Li, M.-G. The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Int. J. Biol. Sci. 2010, 6, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y.; Kim, M.J.; Park, J.S.; Jeong, N.R.; Kim, S.-S.; Oh, K.-C.; Kim, I. Population genetic characterization of the endangered silver skipper, Leptalina unicolor (Lepidoptera: Hesperiidae), using novel microsatellite markers and mitochondrial DNA gene sequences. J. Asia-Pac. Entomol. 2020, 23, 781–890. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, M.J.; Park, J.S.; Lee, K.H.; Jo, Y.H.; Takahashi, J.; Choi, Y.S.; Kim, I. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 2021, 24, 135–147. [Google Scholar] [CrossRef]
- Choi, D.S.; Park, J.S.; Kim, M.J.; Jeong, S.Y.; Jeong, J.S.; Park, J.; Kim, I. Geographic variation in the spotted-wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), based on mitochondrial DNA sequences. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2018, 29, 312–322. [Google Scholar] [CrossRef]
- Wang, A.R.; Kim, M.J.; Cho, Y.B.; Wan, X.; Kim, I. Geographic genetic contour of a ground beetle, Scarites aterrimus (Coleoptera: Carabidae) on the basis of mitochondrial DNA Sequence. Int. J. Indust. Entomol. 2011, 22, 65–74. [Google Scholar] [CrossRef]
- Lee, J.Y.; Wang, A.R.; Choi, Y.S.; Thapa, R.; Kwon, H.W.; Kim, I. Mitochondrial DNA variations in Korean Apis cerana (Hymenoptera: Apidae) and development of another potential marker. Apidologie 2016, 47, 123–134. [Google Scholar] [CrossRef]
- Arca, M.; Mougel, F.; Guillemaud, T.; Dupas, S.; Rome, Q.; Perrard, A.; Muller, F.; Fossoud, A.; Capdevielle-Dulac, C.; Torres-Leguizamon, M.; et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol. Invas. 2015, 17, 2357–2371. [Google Scholar] [CrossRef]
- Park, C.-G.; Min, S.; Lee, G.-S.; Kim, S.; Lee, Y.; Lee, S.; Hong, K.-J.; Wilson, S.W.; Akimoto, S.-I.; Lee, W. Genetic variability of the invasive species Metcalfa pruinose (Hemiptera: Flatidae) in the Republic of Korea. J. Econ. Entomol. 2016, 109, 1897–1906. [Google Scholar] [CrossRef]
- Takeuchi, T.; Takahashi, R.; Kiyoshi, T.; Nakamura, M.; Minoshima, Y.N.; Takahashi, J. The origin and genetic diversity of the yellow-legged hornet, Vespa velutina introduced in Japan. Insect Soc. 2017, 64, 313–320. [Google Scholar] [CrossRef]
Gene | * D | ** AC | Cacopsylla jukyungi | Cacopsylla burckhardti | ||||
---|---|---|---|---|---|---|---|---|
Nucleotide Position (Size) | Anticodon Position | Start/Stop Codon | Nucleotide Position (Size) | Anticodon Position | Start/Stop Codon | |||
trnI | F | GAT | 1–66 (66) | 33–35 | 1–66 (66) | 33–35 | ||
trnQ | R | TTG | 71–136 (66) | 106–108 | 71–136 (66) | 106–108 | ||
trnM | F | CAT | 142–207 (66) | 174–176 | 142–206 (65) | 174–176 | ||
ND2 | F | 208–1179 (972) | ATA/TAA | 207–1178 (972) | ATA/TAA | |||
trnW | F | TCA | 1202–1264 (63) | 1232–1234 | 1177–1239 (63) | 1208–1210 | ||
trnC | R | GCA | 1266–1326 (61) | 1295–1297 | 1242–1302 (61) | 1271–1273 | ||
trnY | R | GTA | 1328–1389 (62) | 1358–1360 | 1303–1364 (62) | 1333–1335 | ||
COI | F | 1390–2922 (1533) | ATG/TAA | 1366–2898 (1533) | ATG/TAA | |||
trnL2 | F | TAA | 2922–2989 (68) | 2953–2955 | 2898–2961 (64) | 2928–2930 | ||
COII | F | 2990–3653 (664) | ATA/T | 2962–3625 (664) | ATA/T | |||
trnK | F | CTT | 3654–3723 (70) | 3685–3687 | 3626–3695 (70) | 3657–3659 | ||
trnD | F | GTC | 3729–3794 (66) | 3763–3765 | 3694–3754 (61) | 3724–3726 | ||
ATP8 | F | 3795–3947 (153) | ATC/TAA | 3755–3907 (153) | ATT/TAA | |||
ATP6 | F | 3941–4615 (675) | ATG/TAA | 3901–4575 (675) | ATG/TAA | |||
COIII | F | 4615–5394 (780) | ATG/TAG | 4575–5352 (778) | ATG/T | |||
trnG | F | TCC | 5400–5457 (58) | 5430–5432 | 5353–5414 (62) | 5387–5389 | ||
ND3 | F | 5458–5808 (351) | ATA/TAA | 5415–5765 (351) | ATT/TAA | |||
trnA | F | TGC | 5811–5870 (60) | 5839–5841 | 5767–5827 (61) | 5795–5797 | ||
trnR | F | TCG | 5872–5932 (61) | 5903–5905 | 5831–5891 (61) | 5862–5864 | ||
trnN | F | GTT | 5932–5998 (67) | 5962–5964 | 5891–5955 (65) | 5921–5923 | ||
trnS1 | F | GCT | 5999–6052 (54) | 6017–6019 | 5956–6009 (54) | 5974–5976 | ||
trnE | F | TTC | 6053–6114 (62) | 6085–6087 | 6010–6069 (60) | 6040–6042 | ||
trnF | R | GAA | 6103–6165 (63) | 6133–6135 | 6058–6120 (63) | 6088–6090 | ||
ND5 | R | 6166–7786 (1621) | ATT/T | 6121–7741 (1621) | ATT/T | |||
trnH | R | GTG | 7786–7842 (57) | 7812–7814 | 7739–7800 (62) | 7767–7769 | ||
ND4 | R | 7845–9087 (1243) | ATG/T | 7801–9049 (1249) | ATG/T | |||
ND4L | R | 9081–9362 (282) | ATT/TAG | 9043–9324 (282) | ATT/TAG | |||
trnT | F | TGT | 9370–9428 (59) | 9400–9402 | 9332–9392 (61) | 9364–9366 | ||
trnP | R | TGG | 9429–9490 (62) | 9458–9460 | 9393–9454 (62) | 9422–9424 | ||
ND6 | F | 9493–9978 (486) | ATT/TAA | 9457–9942 (486) | ATA/TAA | |||
CytB | F | 9972–11,117 (1146) | ATA/TAG | 9936–11,078 (1143) | ATA/TAA | |||
trnS2 | F | TGA | 11116–11,177 (62) | 11,146–11,148 | 11,079–11,142 (64) | 11,109–11,111 | ||
ND1 | R | 11,205–12,119 (915) | ATA/TAG | 11,170–12,084 (915) | ATA/TAA | |||
trnL1 | R | TAG | 12,120–12,182 (63) | 12,151–12,153 | 12,085–12,147 (63) | 12,116–12,118 | ||
lrRNA | R | 12,183–13,339 (1157) | 12,148–13,297 (1150) | |||||
trnV | R | TAC | 13340–13402 (63) | 13,371–13,373 | 13,298–13,359 (62) | 13,328–13,330 | ||
srRNA | R | 13,403–14,156 (754) | 13,361–14,137 (777) | |||||
A+T-rich region | 14,157–15,438 (1282) | 14,138–14,799 (662) |
Taxon | Size (bp) | A/T Content (%) | PCG | srRNA | lrRNA | tRNA | A+T-Rich Region | GenBank Accession No. | References | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. Codons a | AT (%) | Size (bp) | AT (%) | Size (bp) | AT (%) | Size (bp) | AT (%) | Size (bp) | AT (%) | |||||
Psyllidae | ||||||||||||||
Acizzinae | ||||||||||||||
Acizzia uncatoides | 14,957 | 72.75 | 3596 | 70.68 | 747 | 77.24 | 1145 | 75.9 | 1404 | 75.78 | 789 | 85.17 | MG989217 | [29] |
Aphalaroidinae | ||||||||||||||
Freysuila caesalpiniae | 15,327 | 75.62 | 3598 | 74.77 | 746 | 77.21 | 1146 | 77.31 | 1387 | 76.35 | 947 | 83.95 | MG989225 | [29] |
Russelliana solanicola | 16,047 | 72.23 | 3597 | 70.93 | 747 | 75.64 | 1147 | 76.20 | 1372 | 75.73 | 1430 | 79.16 | MG989236 | [29] |
Ciriacreminae | ||||||||||||||
Heteropsylla sp. | 15,284 | 77.06 | 3597 | 75.32 | 748 | 79.68 | 1151 | 79.15 | 1401 | 77.66 | 355 | 91.83 | MG989226 | [29] |
Psyllinae | ||||||||||||||
Arytainilla spartiophila | 14,790 | 75.73 | 3595 | 74.58 | 744 | 77.55 | 1146 | 77.84 | 1373 | 76.33 | 696 | 86.78 | MG989220 | [29] |
Cacopsylla jukyungi | 15,438 | 73.69 | 3598 | 72.10 | 754 | 77.06 | 1157 | 76.40 | 1380 | 75.29 | 1282 | 82.20 | ON553958 | This study |
Cacopsylla burckhardti | 14,799 | 73.69 | 3597 | 72.20 | 777 | 77.48 | 1150 | 76.09 | 1376 | 76.38 | 662 | 82.93 | ON411626 | This study |
Cacopsylla burckhardti | 14,798 | 73.69 | 3612 | 72.18 | 776 | 77.45 | 1150 | 76.17 | 1377 | 76.33 | 662 | 83.08 | OK574466 | [27] |
Cacopsylla citrisuga | 14,906 | 72.65 | 3608 | 71.03 | 780 | 77.56 | 1156 | 75.61 | 1379 | 75.34 | 739 | 83.76 | MT990978 | [25] |
Cacopsylla coccinea | 14,832 | 72.04 | 3601 | 70.44 | 773 | 78.01 | 1154 | 76.43 | 1383 | 74.69 | 695 | 79.28 | KP245955 | [28] |
Cacopsylla pyri | 14,886 | 73.85 | 3597 | 72.34 | 755 | 77.35 | 1155 | 77.75 | 1385 | 76.75 | 660 | 82.42 | MG989222 | [29] |
Cyamophila willieti | 15,809 | 73.84 | 3597 | 72.09 | 744 | 77.28 | 1177 | 76.13 | 1387 | 74.84 | 844 | 80.69 | MN364946 | [28] |
Psylla alni | 14,971 | 73.66 | 3598 | 72.04 | 711 | 76.93 | 1145 | 77.73 | 1367 | 75.49 | 891 | 82.72 | MG989235 | [29] |
Average | 15,142 | 73.88 | 3599 | 72.36 | 754 | 77.42 | 1152 | 76.82 | 1382 | 75.92 | 819 | 83.38 |
Species | Codon (No/%) | ||||
---|---|---|---|---|---|
TTA (L) | ATT (I) | TTT (F) | ATA (M) | Total | |
Acizzinae | |||||
Acizzia uncatoides | 258/7.17 | 293/8.11 | 276/7.64 | 224/6.20 | 1051/29.10 |
Aphalaroidinae | |||||
Freysuila caesalpiniae | 328/9.12 | 384/10.67 | 280/7.78 | 256/7.12 | 1248/34.69 |
Russelliana solanicola | 287/7.98 | 312/8.67 | 244/6.78 | 223/6.20 | 1066/29.64 |
Ciriacreminae | |||||
Heteropsylla sp. | 392/10.90 | 368/10.23 | 316/8.79 | 240/6.67 | 1316/36.59 |
Psyllinae | |||||
Arytainilla spartiophila | 316/8.79 | 354/9.85 | 337/9.37 | 204/5.67 | 1211/33.69 |
Cacopsylla jukyungi (this study) | 316/8.78 | 329/9.14 | 292/8.12 | 194/5.39 | 1131/31.43 |
Cacopsylla burckhardti (this study) | 315/8.76 | 325/9.04 | 299/8.31 | 212/5.89 | 1151/32.00 |
Cacopsylla burckhardti | 315/8.72 | 324/8.97 | 300/8.31 | 213/5.90 | 1152/31.89 |
Cacopsylla citrisuga | 321/8.90 | 297/8.23 | 296/8.20 | 188/5.21 | 1120/30.54 |
Cacopsylla coccinea | 271/7.53 | 287/7.97 | 281/7.80 | 202/5.61 | 1041/28.91 |
Cacopsylla pyri | 311/8.65 | 326/9.06 | 295/8.20 | 208/5.78 | 1140/31.69 |
Cyamophila willieti | 284/7.90 | 337/9.37 | 281/7.81 | 202/5.62 | 1104/30.69 |
Psylla alni | 307/8.53 | 339/9.42 | 287/7.98 | 192/5.34 | 1125/31.27 |
Average | 309/8.59 | 329/9.13 | 291/8.08 | 212/5.89 | 1143/31.70 |
Region | A | B | C | D | E | F | G | H | I | J | K | L | M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
trnI-trnQ | (I)4 | (I)4 | (I)4 | (I)4 | (I)4 | (I)2 | (I)4 | (I)871 | (I)4 | (O)3 | (O)3 | (O)3 | |
trnQ-trnM | (I)5 | (I)5 | (I)12 | (I)5 | (I)5 | (I)5 | (I)3 | (I)4 | (I)1 | (I)4 | (O)1 | (I)2 | (O)1 |
trnM-ND2 | (I)5 | (I)1 | (I)1 | (I)1 | (O)1 | (I)1 | (I)1 | (I)1 | |||||
ND2-trnW | (I)22 | (O)2 | (I)36 | (I)22 | (I)46 | (O)3 | (O)1 | (I)2 | (O)3 | (I)7 | |||
trnW-trnC | (I)1 | (I)2 | (O)2 | (I)2 | (I)3 | (I)1 | (I)4 | (I)2 | (I)1 | (I)6 | (I)1 | (I)2 | |
trnC-trnY | (I)1 | (I)2 | (I)1 | (I)5 | (I)1 | ||||||||
trnY-COI | (I)1 | (I)4 | (I)1 | (I)1 | (I)4 | (I)2 | (I)4 | (I)9 | (I)2 | (I)15 | |||
COI-trnL2 | (O)1 | (O)1 | (O)1 | (O)1 | (I)3 | (O)2 | (O)6 | (I)3 | (O)6 | (I)5 | (O)2 | ||
trnL2-COII | (O)1 | (I)1 | (I)1 | (I)1 | (O)1 | (I)1 | (I)1 | (I)1 | |||||
COII-trnK | (I)1 | (O)1 | (O)1 | (O)1 | (I)1 | (O)1 | (O)1 | (O)1 | |||||
trnK-trnD | (I)5 | (O)2 | (O)2 | (I)17 | (I)3 | (I)5 | (O)2 | (I)2 | (O)2 | (O)2 | (O)2 | ||
trnD-ATP8 | (I)9 | (I)9 | (I)1 | (I)1 | (I)1 | (O)1 | (I)1 | (O)7 | (I)1 | ||||
ATP8-ATP6 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 |
ATP6-COIII | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 |
COIII-trnG | (I)5 | (O)1 | (I)2 | (O)1 | (O)1 | (I)1 | (I)1 | (O)1 | (I)2 | (O)1 | |||
trnG-ND3 | (O)3 | (I)1 | (I)1 | (I)1 | (I)2 | (I)1 | (I)1 | (I)1 | |||||
ND3-trnA | (I)2 | (I)1 | (I)1 | (O)1 | (I)3 | (O)3 | (I)2 | (O)1 | (O)3 | (I)1 | (O)3 | ||
trnA-trnR | (I)1 | (I)3 | (I)3 | (I)1 | (I)1 | (I)1 | (I)1 | (I)1 | (I)1 | (I)6 | |||
trnR-trnN | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | (I)4 | (O)1 | |||
trnN-trnS1 | (O)2 | (O)2 | (O)2 | ||||||||||
trnS1-trnE | (O)5 | (I)1 | (I)2 | (I)2 | (O)5 | (I)1 | (I)6 | (I)3 | (I)3 | ||||
trnE-trnF | (O)12 | (O)12 | (O)12 | (O)12 | (O)12 | (O)12 | (O)12 | (I)1 | (O)12 | (O)12 | (O)13 | (I)1 | |
trnF-ND5 | (I)1 | (I)2 | (O)1 | (O)1 | (O)1 | (O)1 | (O)1 | ||||||
ND5-trnH | (O)1 | (O)3 | (O)3 | (O)1 | (O)1 | (O)1 | (I)1 | (O)1 | (O)1 | (I)8 | |||
trnH-ND4 | (I)2 | (O)5 | (O)4 | (O)4 | (O)4 | (I)1 | (O)4 | ||||||
ND4-ND4L | (O)7 | (O)7 | (O)49 | (O)49 | (O)49 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 |
ND4L-trnT | (I)7 | (I)7 | (I)1 | (I)1 | (I)28 | (I)1 | (I)2 | (I)1 | |||||
trnT-trnP | (O)1 | (O)1 | |||||||||||
trnP-ND6 | (I)2 | (I)2 | (I)2 | (I)2 | (I)2 | (I)3 | (I)3 | (I)3 | (I)2 | (I)1 | (I)3 | (I)2 | (I)4 |
ND6-CytB | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 | (O)7 |
CytB-trnS2 | (O)2 | (O)2 | (O)2 | (I)3 | (O)3 | (O)3 | (O)1 | (O)2 | (O)2 | (O)3 | |||
trnS2-ND1 | (I)27 | (I)27 | (I)27 | (I)26 | (I)28 | (I)28 | (I)23 | (I)27 | (I)26 | (I)36 | (I)273 | (I)33 | (I)469 |
ND1-trnL1 | (O)1 | (O)1 | (O)1 | (I)1 | (O)1 | (O)1 | (O)1 | ||||||
trnL1-lrRNA | |||||||||||||
lrRNA-trnV | (O)3 | (I)5 | (I)6 | (O)21 | (I)3 | (I)2 | (I)1 | (I)6 | |||||
trnV-srRNA | (I)1 | (I)1 | (I)1 | (I)1 | (O)1 | (O)1 | (O)1 | (O)2 | (I)2 | (O)2 | |||
srRNA-A+T-rich region | (O)1 | (O)1 | (O)24 | (I)12 | (I)20 | (I)11 | (I)14 | (I)12 | |||||
A+T-rich region-trnI | (I)11 | (I)6 | (I)11 | (I)2 | (I)23 | (I)16 | |||||||
Total nucleotides | (O)39 | (O)43 | (O)90 | (O)85 | (O)116 | (O)41 | (O)57 | (O)40 | (O)66 | (O)45 | (O)60 | (O)48 | (O)41 |
(I)84 | (I)53 | (I)54 | (I)110 | (I)107 | (I)112 | (I)70 | (I)69 | (I)904 | (I)94 | (I)334 | (I)96 | (I)539 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, A.R.; Kim, M.J.; Park, J.S.; Seo, H.-J.; Song, J.-H.; Won, K.-H.; Choi, E.D.; Kim, I. Comparative Analysis of Two Pear Pests, Cacopsylla jukyungi and Cacopsylla burckhardti (Hemiptera: Psyllidae), Based on Complete Mitochondrial Genomes and Comparison to Confamilial Species. Agronomy 2022, 12, 2037. https://doi.org/10.3390/agronomy12092037
Kang AR, Kim MJ, Park JS, Seo H-J, Song J-H, Won K-H, Choi ED, Kim I. Comparative Analysis of Two Pear Pests, Cacopsylla jukyungi and Cacopsylla burckhardti (Hemiptera: Psyllidae), Based on Complete Mitochondrial Genomes and Comparison to Confamilial Species. Agronomy. 2022; 12(9):2037. https://doi.org/10.3390/agronomy12092037
Chicago/Turabian StyleKang, Ah Rang, Min Jee Kim, Jeong Sun Park, Ho-Jin Seo, Jang-Hoon Song, Kyung-Ho Won, Eu Ddeum Choi, and Iksoo Kim. 2022. "Comparative Analysis of Two Pear Pests, Cacopsylla jukyungi and Cacopsylla burckhardti (Hemiptera: Psyllidae), Based on Complete Mitochondrial Genomes and Comparison to Confamilial Species" Agronomy 12, no. 9: 2037. https://doi.org/10.3390/agronomy12092037
APA StyleKang, A. R., Kim, M. J., Park, J. S., Seo, H. -J., Song, J. -H., Won, K. -H., Choi, E. D., & Kim, I. (2022). Comparative Analysis of Two Pear Pests, Cacopsylla jukyungi and Cacopsylla burckhardti (Hemiptera: Psyllidae), Based on Complete Mitochondrial Genomes and Comparison to Confamilial Species. Agronomy, 12(9), 2037. https://doi.org/10.3390/agronomy12092037