Crop Yield and Nutrient Efficiency under Organic Manure Substitution Fertilizer in a Double Cropping System: A 6-Year Field Experiment on an Anthrosol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurements
2.4. Calculation and Statistical Analysis
3. Results
3.1. Crop Yield
3.2. Grain Protein Content
3.3. Nitrogen and Phosphorus Efficiency
3.4. Nitrogen and Phosphorus Budget
4. Discussion
4.1. Response of Crop Yield and Grain Protein Content to Organic Manure Substitution
4.2. Response of Nitrogen Efficiency to Organic Manure Substitution
4.3. Response of Phosphorus Efficiency to Organic Manure Substitution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Y.; Zheng, J.; Lu, H.; Wang, Y.; Luo, C.; Du, W.; Lei, T.; Zhang, R.; Xu, J.; Hu, C.; et al. Investigation and analysis of nitrogen and phosphorus input for winter wheat in Fenwei Plain. J. Triticeae Crops 2020, 40, 1382–1388. (In Chinese) [Google Scholar]
- Zhang, F.; Wang, J.; Zhang, W.; Cui, Z.; Ma, W.; Chen, X.; Jiang, R. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta. Pedol. Sin. 2008, 45, 915–924. (In Chinese) [Google Scholar]
- Zhen, L.; Cui, Z.; Chen, X.; Zhang, F.; Kou, C.; Ju, X.; Kang, C.; Wang, W.; Wang, Y.; Zhu, T. The changes of nutrient balances driven by adjusting crop structure at county level during 25 years—A case study in Huimin County, Shandong Province. Plant Nutr. Fertil. Sci. 2007, 13, 213–222. (In Chinese) [Google Scholar]
- Blanco-Canqui, H.; Schlegel, A.J. Implications of Inorganic Fertilization of Irrigated Corn on Soil Properties: Lessons Learned after 50 Years. J. Environ. Qual. 2013, 42, 861–871. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Current Status, Challenges, and Opportunities in Rice Production. In Rice Production Worldwide; Chauhan, B.S., Jabran, K., Mahajan, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–32. [Google Scholar]
- Wang, L.; Li, Q.; Coulter, J.A.; Xie, J.; Luo, Z.; Zhang, R.; Deng, X.; Li, L. Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta analysis. Agric. Water Manag. 2020, 229, 105934. [Google Scholar] [CrossRef]
- Chadwick, D.; Jia, W.; Tong, Y.; Yu, G.; Shen, Q.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–36. [Google Scholar]
- Bai, Z.H.; Ma, L.; Jin, S.Q.; Ma, W.Q.; Velthof, G.L.; Oenema, O.; Liu, L.; Chadwick, D.; Zhang, F.S. Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in China. Environ. Sci. Technol. 2016, 50, 13409–13418. [Google Scholar] [CrossRef]
- Bai, Z.; Li, X.; Lu, J.; Wang, X.; Velthof, G.L.; Chadwick, D.; Luo, J.; Ledgard, S.; Wu, Z.; Jin, S.; et al. Livestock Housing and Manure Storage Need to Be Improved in China. Environ. Sci. Technol. 2017, 51, 8212–8214. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Li, Z.; Ding, N.; Guo, L.; Meng, J.; Li, J.; Li, X.; Zheng, Y.; Wu, G.; Zen, Y.; Jiang, G. Effects of different ratios of organic manure and chemical fertilizer on growth, yield and quality of winter wheat and summer maize. Shandong Agric. Sci. 2013, 45, 71–77. (In Chinese) [Google Scholar]
- Liu, M.; Li, Z.-P.; Zhang, T.-L.; Jiang, C.-Y.; Che, Y.-P. Discrepancy in Response of Rice Yield and Soil Fertility to Long-Term Chemical Fertilization and Organic Amendments in Paddy Soils Cultivated from Infertile Upland in Subtropical China. Agric. Sci. China 2011, 10, 259–266. [Google Scholar] [CrossRef]
- Xie, Z.; Tu, S.; Shah, F.; Xu, C.; Chen, J.; Han, D.; Liu, G.; Li, H.; Muhammad, I.; Cao, W. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crop. Res. 2016, 188, 142–149. [Google Scholar] [CrossRef]
- Li, Y.; Bai, N.; Tao, Z.; Mi, X.; He, G.; Wang, Z. Rethinking application of animal manure for wheat production in China. J. Clean. Prod. 2021, 318, 128473. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Wang, X.; Ma, L. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. J. Clean. Prod. 2020, 271, 122683. [Google Scholar] [CrossRef]
- Guo, S.; Pan, J.; Zhai, L.; Khoshnevisan, B.; Wu, S.; Wang, H.; Yang, B.; Liu, H.; Lei, B. The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain. Sci. Total Environ. 2020, 720, 137558. [Google Scholar] [CrossRef]
- Chen, D.; Yuan, L.; Liu, Y.; Ji, J.; Hou, H. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur. J. Agron. 2017, 90, 34–42. [Google Scholar]
- Dai, X.; Song, D.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Sun, G.; Yuan, F.; Liu, Z.; Yao, Y.; et al. Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China. Soil Tillage Res. 2021, 205, 104753. [Google Scholar] [CrossRef]
- Yadav, R.L.; Dwivedi, B.S.; Prasad, K.; Tomar, O.K.; Shurpali, N.J.; Pandey, P.S. Yield trends, and changes in soil organic-C and available NPK in a long-term rice—Wheat system under integrated use of manures and fertilisers. Field Crop. Res. 2000, 68, 219–246. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Zhu, S.; Gao, Y.; Zheng, X.; Xu, Y. The response of agronomic characters and rice yield to organic fertilization in subtropical China: A three-level meta-analysis. Field Crop. Res. 2021, 263, 108049. [Google Scholar] [CrossRef]
- Muhammad, Q.; Huang, J.; Waqas, A.; Li, D.; Liu, S.; Zhang, L.; Cai, A.; Liu, L.; Xu, Y.; Gao, J.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Till. Res. 2020, 198, 104569. [Google Scholar]
- Khan, A.; Lu, G.; Ayaz, M.; Zhang, H.; Wang, R.; Lv, F.; Yang, X.; Sun, B.; Zhang, S. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agric. Ecosyst. Environ. 2018, 256, 1–11. [Google Scholar] [CrossRef]
- Duan, Y.; Xua, M.; Gao, S.; Yang, X.; Huang, S.; Liu, H.; Wang, B. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crops Res. 2014, 157, 47–56. [Google Scholar]
- Guo, Z.Y. Shaanxi Soil; Science Press: Beijing, China, 1992; p. 37. (In Chinese) [Google Scholar]
- Yao, T. Analysis of cultivated land change in Shaanxi province and its influencing factors. Guangdong Agric. Sci. 2013, 9, 229–232. (In Chinese) [Google Scholar]
- Lv, F.; Song, J.; Giltrap, D.; Feng, Y.; Yang, X.; Zhang, S. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci. Total Environ. 2020, 732, 139321. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Lv, F.L.; Hou, M.M.; Zhang, H.T.; Qiang Jiu, C.R.; Zhou, Y.T.; Lu, G.Y.; Zhao, B.Q.; Yang, X.Y.; Zhang, S.L. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat-summer maize rotation system in Lou soil. J. Plant Nutr. Fertil. 2018, 24, 22–32. (In Chinese) [Google Scholar]
- Bao, S.D. Analysis of Soil and Agricultural Chemistry; Chinese Agricultural Press: Beijing, China, 2005. [Google Scholar]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein-Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. 2008, 48, 177–184. [Google Scholar]
- Ahmad, A.; Khan, I.; Abrol, Y.P.; Iqbal, M. Genotypic variation of nitrogen use efficiency in Indian mustard. Environ. Pollut. 2008, 154, 462–466. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of Soil and Fertilizer Phosphorus Use. In Reconciling Changing Concepts of Soil Phosphorus Behaviour with Agronomic Information; FAO Fertilizer and Plant Nutrition Bulletin 18; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Xing, P.F.; Gao, S.C.; Ma, M.C.; Zhou, X.L.; Zhao, T.K.; Sun, J.D.; Shen, D.L. Impact of organic manure supplement chemical fertilizer partially on soil nutrition, enzyme activity and crop yield in the north China Plain. Soil Fertil. Sci. China 2016, 7, 98–104. (In Chinese) [Google Scholar]
- Yang, X.; Li, P.; Zhang, S.; Sun, B.; Chen, X. Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. J. Plant Nutr. Soil Sci. 2011, 174, 775–784. [Google Scholar]
- Lin, Z.A.; Zhao, B.Q.; Yuan, L.; Hwat, B.S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Sci. Agric. Sin. 2009, 42, 2809–2819. (In Chinese) [Google Scholar]
- Li, X.; Li, B.; Chen, L.; Liang, J.; Huang, R.; Tang, X.; Zhang, X.; Wang, C. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat—Rice rotation. Eur. J. Agron. 2022, 133, 126445. [Google Scholar] [CrossRef]
- Subehiat, S.K.; Sepehyas, S.; Rana, S.S.; Negi, S.C.; Sharma, S.K. Long-term effect of organic and inorganic fertilizers on rice (Oryza sativa L.)-wheat (Triticum aestivum L.) yield, and chemical properties of an acidic soil in the western Himalayas. Expl Agric. 2013, 49, 382–394. [Google Scholar]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Pandey, P.C.; Nanda, G.; Gupta, S. Long-term effects of inorganic fertilizer and farmyard manure application on productivity, sustainability and profitability of rice-wheat system in Mollisols. Arch. Agron. Soil Sci. 2019, 65, 139–151. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yang, X.Y.; Wiss, M.; Grip, H.; Lövdahl, L. Changes in physical properties of a loess soil in China following two long-term fertilization regimes. Geoderma 2006, 136, 579–587. [Google Scholar] [CrossRef]
- Su, Y.-Z.; Wang, F.; Suo, D.-R.; Zhang, Z.-H.; Du, M.-W. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China. Nutr. Cycl. Agroecosystems 2006, 75, 285–295. [Google Scholar] [CrossRef]
- Liu, E.K.; Yan, C.R.; Mei, X.R.; He, W.Q.; Bing, S.H.; Ding, L.P.; Liu, Q.; Liu, S.; Fan, T.L. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. CATENA 2020, 193, 104617. [Google Scholar] [CrossRef]
- Ren, J.; Liu, X.; Yang, W.; Yang, X.; Li, W.; Xia, Q.; Li, J.; Gao, Z.; Yang, Z. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. J. Environ. Manag. 2021, 299, 113650. [Google Scholar] [CrossRef]
- Yan, D.Z.; Wang, D.J.; Yang, L.Z. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biol. Fertil. Soils 2007, 44, 93–101. [Google Scholar] [CrossRef]
- Liang, W.J.; Lou, Y.L.; Li, Q.; Zhong, S.; Zhang, X.K.; Wang, J.K. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biol. Biochem. 2009, 41, 883–890. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, C.; Chen, X.; Li, Q.; Zhang, J.; Chen, F.; Yuan, L.; Mi, G. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crop. Res. 2014, 159, 1–9. [Google Scholar] [CrossRef]
- Masunga, R.H.; Uzokwe, V.N.; Mlay, P.D.; Odeh, I.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Zhou, J.M. Effect of combined application of organic and mineral fertilizers on yield, quality and nitrogen uptake of rice. Plant Nutr. Fertil. Sci. 2012, 18, 234–240. (In Chinese) [Google Scholar]
- Wang, G.L.; Zhang, J.H.; Wang, S.H.; Kou, X.M.; Xu, R.; Han, G.M.; Tang, H.J.L.; Zhu, L.Y.; Bi, J.H.; Wu, L.M. Effects of chemical fertilizer nitrogen substitution by biogas slurry on yield, quality and growth characteristics of winter wheat. J. Agric. Resour. Environ. 2018, 35, 467–475. (In Chinese) [Google Scholar]
- Qu, H.; Zhao, B.Q.; Chen, Y.H.; Liu, H.; Li, X.Y.; Zhang, F.D. Effect of long-term fertilization on wheat quality and yield in grey desert soil. Plant Nutr. Fertil. Sci. 2004, 10, 12–17. (In Chinese) [Google Scholar]
- Cox, M.C.; Qualset, C.O.; Rains, D.W. Genetic Variation for Nitrogen Assimilation and Translocation in Wheat. II. Nitrogen Assimilation in Relation to Grain Yield and Protein. Crop. Sci. 1985, 25, 435–440. [Google Scholar] [CrossRef]
- Van Sanford, D.A.; MacKown, C.T. Cultivar Differences in Nitrogen Remobilization during Grain Fill in Soft Red Winter Wheat. Crop. Sci. 1987, 27, 295–300. [Google Scholar] [CrossRef]
- Zuo, Y.; Ma, D.; Ma, Y.; Zhang, B.; Guo, T. Effects of spraying nitrogen and zinc fertilizers after flowering on grain weight and nutritional quality of winter wheat. Agric. Sci. Technol. 2013, 14, 630–634, 650. [Google Scholar]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Sci. Total Environ. 2016, 569–570, 869–879. [Google Scholar] [CrossRef]
- Xie, J.; Shi, X.; Zhang, Y.; Wan, Y.; Hu, Q.; Zhang, Y.; Wang, J.; He, X.; Evgenia, B. Improved nitrogen use efficiency, carbon sequestration and reduced environmental contamination under a gradient of manure application. Soil Tillage Res. 2022, 220, 105386. [Google Scholar] [CrossRef]
- Hou, H.; Ji, J.; Liu, X.; Lv, Z.; Lan, X.; Liu, Y. Effect of long-term combined application of organic and inorganic fertilizers on rice yield, nitrogen uptake and utilization in red soil area of China. Soils 2020, 52, 758–765. (In Chinese) [Google Scholar]
- Shi, X.R.; Ren, B.B.; Jiang, L.L.; Fan, S.X.; Cao, Y.L.; Ma, D.R. Effects of organic manure partial substitution for chemical fertilizer on the photosynthetic rate, nitrogen use efficiency and yield of rice. Chin. J. Appl. Ecol. 2021, 32, 154–162. (In Chinese) [Google Scholar]
- Li, Y.Q.; Wen, Y.C.; Lin, Z.A.; Zhao, B.Q. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility. J. Plant Nutr. Fertil. 2019, 25, 1669–1678. (In Chinese) [Google Scholar]
- Han, M.; Li, W.; Chen, J.; Li, Y. Effects of straw returning and nitrogen application rate on grain yield and nitrogen use efficiency of winter wheat. Shandong Agric. Sci. 2017, 49, 95–100, 106. (In Chinese) [Google Scholar]
- Xu, M.G.; Li, D.C.; Li, J.M.; Qin, D.Z.; Kazuyuki, Y.; Yasukazu, H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Sci. Agric. Sin. 2008, 41, 3133–3139. (In Chinese) [Google Scholar]
- Ju, X.; Gu, B. Indexes of nitrogen management. Acta. Pedol. Sin. 2017, 2, 281–296. (In Chinese) [Google Scholar]
- EU Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE)—An Indicator for the Utilization of Nitrogen in Agriculture and Food Systems; EU Nitrogen Expert Panel: Wageningen, The Netherlands, 2015. [Google Scholar]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, Y.; Nie, J.; Liao, Y.; Zhu, Q. Substituting chemical P fertilizer with organic manure: Effects on double-rice yield, phosphorus use efficiency and balance in subtropical China. Sci. Rep. 2021, 11, 8629. [Google Scholar] [CrossRef]
- Shepherd, M.A.; Withers, P.J. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: Effects on soil phosphorus status and profile distribution. Nutr. Cycl. Agroecosystems 1999, 54, 233–242. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Garg, A.K.; Kabba, B.S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics. Soil Use Manag. 2007, 23, 417–427. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Ma, Y.; Hao, X.; Li, X. Phosphorus efficiency in long-term (15 years) wheat—maize cropping systems with various soil and climate conditions. Field Crop. Res. 2008, 108, 231–237. [Google Scholar] [CrossRef]
- Pradhan, S.N.; Ghosh, A.K.; Nema, A.K.; Ram, S.; Pal, Y. Changes in soil phosphorus forms in a long-term cropping system as influenced by fertilization and tillage. Arch. Agron. Soil Sci. 2020, 67, 822–835. [Google Scholar] [CrossRef]
- Jiang, B.; Shen, J.; Sun, M.; Hu, Y.; Jiang, W.; Wang, J.; Li, Y.; Wu, J. Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere 2021, 31, 103–115. [Google Scholar] [CrossRef]
Treatments | Winter Wheat | Summer Maize | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | N | P | K | |
NPK | 165 + 0 | 65 + 0 | 75 + 0 | 180 | 0 | 0 | 345 | 65 | 75 |
25% M | 124 + 86 | 49 + 38 | 56 + 25 | 135 | 0 | 0 | 345 | 87 | 81 |
50% M | 83 + 172 | 33 + 76 | 38 + 50 | 90 | 0 | 0 | 345 | 109 | 88 |
75% M | 41 + 259 | 16 + 114 | 19 + 75 | 45 | 0 | 0 | 345 | 131 | 94 |
100% M | 0 + 345 | 0 + 153 | 0 + 100 | 0 | 0 | 0 | 345 | 153 | 100 |
Season | Treatment | NPE | NUE | PPE | PUE |
---|---|---|---|---|---|
(kg kg−1) | |||||
2014–2015 | NPK | 1.07 ± 0.07 a | 40.46 ± 2.29 b | 0.56 ± 0.02 a | 405.35 ± 8.31 a |
25% M | 0.98 ± 0.03 a | 46.38 ± 1.28 a | 0.45 ± 0.03 b | 401.54 ± 25.51 a | |
50% M | 0.94 ± 0.06 a | 45.93 ± 2.80 ab | 0.37 ± 0.04 bc | 377.51 ± 43.86 a | |
75% M | 0.97 ± 0.04 a | 48.28 ± 0.67 a | 0.37 ± 0.02 c | 340.61 ± 6.37 a | |
100% M | 0.90 ± 0.02 a | 50.31 ± 1.37 a | 0.32 ± 0.01 c | 327.07 ± 10.81 a | |
2015–2016 | NPK | 1.03 ± 0.07 ab | 44.14 ± 2.48 a | 0.45 ± 0.01 a | 530.61 ± 6.09 a |
25% M | 1.11 ± 0.02 a | 42.80 ± 2.13 a | 0.39 ± 0.02 b | 470.71 ± 3.96 b | |
50% M | 1.16 ± 0.03 a | 43.99 ± 1.91 a | 0.36 ± 0.01 c | 437.97 ± 8.87 c | |
75% M | 1.06 ± 0.08 a | 47.27 ± 2.40 a | 0.32 ± 0.00 d | 398.09 ± 8.91 d | |
100% M | 0.87 ± 0.03 b | 50.93 ± 1.90 a | 0.28 ± 0.00 e | 340.09 ± 13.79 e | |
2016–2017 | NPK | 1.11 ± 0.05 a | 39.37 ± 0.95 a | 0.53 ± 0.02 b | 433.76 ± 7.46 a |
25% M | 1.11 ± 0.07 a | 36.17 ± 2.27 a | 0.56 ± 0.03 b | 381.33 ± 18.52 a | |
50% M | 0.89 ± 0.01 b | 42.23 ± 0.90 a | 0.54 ± 0.04 b | 377.26 ± 20.85 a | |
75% M | 0.84 ± 0.03 b | 42.54 ± 2.11 a | 0.65 ± 0.03 a | 293.66 ± 23.51 b | |
100% M | 0.68 ± 0.02 c | 42.62 ± 1.66 a | 0.56 ± 0.04 b | 281.29 ± 22.29 b | |
2017–2018 | NPK | 0.92 ± 0.01 a | 42.08 ± 0.73 a | 0.72 ± 0.01 a | 284.96 ± 10.36 a |
25% M | 0.88 ± 0.05 ab | 43.21 ± 1.36 a | 0.51 ± 0.03 b | 261.11 ± 3.84 ab | |
50% M | 0.73 ± 0.04 c | 49.04 ± 2.05 a | 0.36 ± 0.01 c | 259.83 ± 11.8 ab | |
75% M | 0.80 ± 0.01 bc | 47.53 ± 0.33 a | 0.32 ± 0.02 cd | 251.55 ± 14.58 b | |
100% M | 0.79 ± 0.04 bc | 46.53 ± 3.75 a | 0.29 ± 0.00 d | 213.74 ± 7.16 c | |
2018–2019 | NPK | 0.99 ± 0.04 a | 35.74 ± 1.36 b | 0.62 ± 0.03 a | 301.14 ± 4.13 a |
25% M | 0.85 ± 0.05 b | 44.97 ± 1.29 a | 0.49 ± 0.01 b | 283.97 ± 1.95 a | |
50% M | 0.81 ± 0.01 bc | 46.24 ± 0.71 a | 0.42 ± 0.01 bc | 250.28 ± 6.56 a | |
75% M | 0.76 ± 0.06 bc | 47.01 ± 3.21 a | 0.38 ± 0.04 c | 213.04 ± 21.05 ab | |
100% M | 0.71 ± 0.01 c | 45.68 ± 1.36 a | 0.37 ± 0.02 c | 167.46 ± 5.40 b | |
2019–2020 | NPK | 0.91 ± 0.01 a | 50.80 ± 0.94 b | 0.75 ± 0.01 a | 326.83 ± 7.20 a |
25% M | 0.78 ± 0.02 b | 58.83 ± 1.71 a | 0.61 ± 0.03 b | 294.65 ± 2.94 b | |
50% M | 0.69 ± 0.04 c | 57.20 ± 2.78 a | 0.47 ± 0.01 c | 259.32 ± 3.93 c | |
75% M | 0.70 ± 0.02 bc | 58.06 ± 2.22 a | 0.43 ± 0.02 cd | 241.65 ± 4.19 d | |
100% M | 0.67 ± 0.04 c | 60.48 ± 2.93 a | 0.38 ± 0.01 d | 231.46 ± 5.24 d | |
Season | 2014–2015 | 0.97 ± 0.02 a | 46.27 ± 1.12 b | 0.23 ± 0.02 bc | 679.51 ± 28.27 ab |
2015–2016 | 1.04 ± 0.03 a | 45.83 ± 1.14 b | 0.36 ± 0.02 c | 435.49 ± 17.56 a | |
2016–2017 | 0.93 ± 0.05 ab | 40.59 ± 0.92 c | 0.57 ± 0.02 a | 353.46 ± 17.05 b | |
2017–2018 | 0.82 ± 0.02 b | 45.68 ± 1.04 b | 0.44 ± 0.04 bc | 254.24 ± 7.29 c | |
2018–2019 | 0.82 ± 0.03 b | 43.93 ± 1.30 b | 0.46 ± 0.03 bc | 243.18 ± 13.52 c | |
2019–2020 | 0.75 ± 0.03 b | 57.08 ± 1.23 a | 0.53 ± 0.04 ab | 270.78 ± 9.62 c | |
Treatment | NPK | 1.00 ± 0.02 a | 42.10 ± 1.26 b | 0.57 ± 0.04 a | 429.53 ± 37.72 a |
25% M | 0.95 ± 0.03 ab | 45.39 ± 1.75 ab | 0.47 ± 0.03 b | 407.42 ± 41.56 ab | |
50% M | 0.87 ± 0.04 bc | 47.44 ± 1.37 a | 0.39 ± 0.03 c | 371.84 ± 37.44 bc | |
75% M | 0.85 ± 0.03 cd | 48.45 ± 1.34 a | 0.38 ± 0.04 c | 345.93 ± 39.38 cd | |
100% M | 0.77 ± 0.02 d | 49.42 ± 1.59 a | 0.34 ± 0.03 c | 309.18 ± 37.26 d | |
Source | |||||
Season (S) | <0.001 | <0.001 | <0.001 | <0.001 | |
Treatment (T) | <0.001 | <0.001 | <0.001 | <0.001 | |
S × T | 0.001 | 0.279 | <0.001 | 0.063 |
Item (kg ha−1) | NPK | 25% M | 50% M | 75% M | 100% M | |
---|---|---|---|---|---|---|
N input | Manure N | 0 | 517 | 1035 | 1552 | 2070 |
Fertilizer N | 2070 | 1553 | 1035 | 518 | 0 | |
N output | 2014–2015 | 368.8 | 338.6 | 325.1 | 335.2 | 311.0 |
2015–2016 | 354.2 | 383.3 | 398.7 | 365.5 | 300.5 | |
2016–2017 | 381.8 | 384.0 | 308.1 | 288.5 | 235.4 | |
2017–2018 | 316.1 | 303.9 | 252.7 | 275.0 | 271.0 | |
2018–2019 | 341.7 | 292.8 | 280.3 | 263.3 | 244.5 | |
2019–2020 | 315.0 | 270.1 | 238.7 | 241.6 | 232.8 | |
sum | 2077.7 | 1972.6 | 1803.7 | 1769.1 | 1595.2 | |
N budget | −7.7 | 97.4 | 266.3 | 300.9 | 474.8 | |
Annual N budget | −1.3 | 16.2 | 44.4 | 50.1 | 79.1 |
Item (kg ha−1) | NPK | 25% M | 50% M | 75% M | 100% M | |
---|---|---|---|---|---|---|
P input | Manure P | 0 | 229 | 458 | 687 | 916 |
Fertilizer P | 390 | 293 | 195 | 98 | 0 | |
P output | 2014–2015 | 36.6 | 39.3 | 40.4 | 47.5 | 47.9 |
2015–2016 | 29.2 | 34.8 | 40.0 | 43.1 | 45.0 | |
2016–2017 | 34.6 | 36.3 | 34.8 | 42.0 | 35.9 | |
2017–2018 | 46.7 | 50.3 | 47.6 | 52.3 | 58.5 | |
2018–2019 | 40.5 | 46.2 | 51.8 | 58.8 | 66.9 | |
2019–2020 | 49.0 | 54.0 | 52.4 | 58.0 | 60.6 | |
sum | 236.6 | 261.0 | 267.0 | 301.8 | 314.8 | |
P budget | 153.4 | 260.4 | 385.8 | 482.4 | 600.8 | |
Annual P budget | 25.6 | 43.4 | 64.3 | 80.4 | 100.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Lv, F.; Lin, X.; Zhang, C.; Sun, B.; Yang, X.; Zhang, S. Crop Yield and Nutrient Efficiency under Organic Manure Substitution Fertilizer in a Double Cropping System: A 6-Year Field Experiment on an Anthrosol. Agronomy 2022, 12, 2047. https://doi.org/10.3390/agronomy12092047
Han Y, Lv F, Lin X, Zhang C, Sun B, Yang X, Zhang S. Crop Yield and Nutrient Efficiency under Organic Manure Substitution Fertilizer in a Double Cropping System: A 6-Year Field Experiment on an Anthrosol. Agronomy. 2022; 12(9):2047. https://doi.org/10.3390/agronomy12092047
Chicago/Turabian StyleHan, Yan, Fenglian Lv, Xiaoding Lin, Caiyun Zhang, Benhua Sun, Xueyun Yang, and Shulan Zhang. 2022. "Crop Yield and Nutrient Efficiency under Organic Manure Substitution Fertilizer in a Double Cropping System: A 6-Year Field Experiment on an Anthrosol" Agronomy 12, no. 9: 2047. https://doi.org/10.3390/agronomy12092047
APA StyleHan, Y., Lv, F., Lin, X., Zhang, C., Sun, B., Yang, X., & Zhang, S. (2022). Crop Yield and Nutrient Efficiency under Organic Manure Substitution Fertilizer in a Double Cropping System: A 6-Year Field Experiment on an Anthrosol. Agronomy, 12(9), 2047. https://doi.org/10.3390/agronomy12092047