Application of Homemade Organic Fertilizer for Improving Quality of Apple Fruit, Soil Physicochemical Characteristics, and Microbial Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Sampling and Determination of Apples
2.3. Soil Physicochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Physical Properties of the Fruit
3.2. Chemical Properties of the Fruit
3.3. Soil Physicochemical Characteristics
3.4. Diversity of the Microbial Community
3.5. Microbial Community Structures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, X.; Liu, T.; Liu, X.; Wei, Y.; Yao, X.; Ma, X.; Lu, F. 2020 China Apple Industry Development Report (Simplified Version). China Fruit Veg. 2022, 42, 6. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J. Tree Vigor, Yield, Fruit Quality, and Antioxidant Capacity of Apple (Malus × Domestica Borkh.) Influenced by Different Fertilization Regimes: Preliminary Results. Turk. J. Agric. For. 2019, 43, 48–57. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N. Influence of Mineral Fertilizer, Farmyard Manure, Natural Zeolite, and Their Mixture on Fruit Quality and Leaf Micronutrient Levels of Apple Trees. Commun. Soil Sci. Plant Anal. 2017, 48, 539–548. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Compositional Characteristics of Fruits of Several Apple (Malus Domestica Borkh.) Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 228–233. [Google Scholar] [CrossRef]
- Mi, S.; Zhang, X.; Wang, Y.; Ma, Y.; Sang, Y.; Wang, X. Effect of Different Fertilizers on the Physicochemical Properties, Chemical Element and Volatile Composition of Cucumbers. Food Chem. 2022, 367, 130667. [Google Scholar] [CrossRef]
- Wen, Y.C.; Li, H.Y.; Lin, Z.A.; Zhao, B.Q.; Sun, Z.-B.; Yuan, L.; Xu, J.K.; Li, Y.Q. Long-Term Fertilization Alters Soil Properties and Fungal Community Composition in Fluvo-Aquic Soil of the North China Plain. Sci. Rep. 2020, 10, 7198. [Google Scholar] [CrossRef]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally Friendly Fertilizers: A Review of Materials Used and Their Effects on the Environment. Sci. Total Environ. 2018, 613–614, 829–839. [Google Scholar]
- Wang, Q.; Li, R.; Cai, H.; Awasthi, M.K.; Zhang, Z.; Wang, J.J.; Ali, A.; Amanullah, M. Improving Pig Manure Composting Efficiency Employing Ca-Bentonite. Ecol. Eng. 2016, 87, 157–161. [Google Scholar] [CrossRef]
- Khorram, M.S.; Wang, Y.; Jin, X.; Fang, H.; Yu, Y. Reduced Mobility of Fomesafen through Enhanced Adsorption in Biochar-Amended Soil. Environ. Toxicol. Chem. 2015, 34, 1258–1266. [Google Scholar] [CrossRef]
- Schulz, H.; Dunst, G.; Glaser, B. Positive Effects of Composted Biochar on Plant Growth and Soil Fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- Liang, F.; Xu, L.; Ji, L.; He, Q.; Wu, L.; Yan, S. A New Approach for Biogas Slurry Disposal by Adopting CO2-Rich Biogas Slurry as the Flower Fertilizer of Spathiphyllum: Feasibility, Cost and Environmental Pollution Potential. Sci. Total Environ. 2021, 770, 145333. [Google Scholar] [CrossRef] [PubMed]
- Safaei Khorram, M.; Zhang, G.; Fatemi, A.; Kiefer, R.; Maddah, K.; Baqar, M.; Zakaria, M.P.; Li, G. Impact of Biochar and Compost Amendment on Soil Quality, Growth and Yield of a Replanted Apple Orchard in a 4-Year Field Study. J. Sci. Food Agric. 2019, 99, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, M.; Yang, Y.; Zhao, S.; Zhang, Y.; Wang, X. Effect of Composted Manure plus Chemical Fertilizer Application on Aridity Response and Productivity of Apple Trees on the Loess Plateau, China. Arid Land Res. Manag. 2017, 31, 388–403. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Ma, J.; Chapman, S.; Zou, P.; Ye, J.; Yu, Q.; Sun, W.; Lin, H.; Jiang, L. Soil Microbial Activity and Community Composition as Influenced by Application of Pig Biogas Slurry in Paddy Field in Southeast China. Paddy Water Environ. 2020, 18, 15–25. [Google Scholar] [CrossRef]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent Responses of Soil Microbial Communities to Elevated Nutrient Inputs in Grasslands across the Globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, Y.; Lv, M.; Tian, G.; Zhang, X.; Li, L.; Jiang, Y.; Ge, S. Soil Fertility, Microbial Biomass, and Microbial Functional Diversity Responses to Four Years Fertilization in an Apple Orchard in North China. Hortic. Plant J. 2020, 6, 223–230. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Yang, F.; Yaoyao, E.; Raza, W.; Huang, Q.; Shen, Q. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil. Microb. Ecol. 2017, 73, 404–416. [Google Scholar] [CrossRef]
- Kilic, N.; Burgut, A.; Gündesli, M.A.; Nogay, G.; Ercisli, S.; Kafkas, N.E.; Ekiert, H.; Elansary, H.O.; Szopa, A. The Effect of Organic, Inorganic Fertilizers and Their Combinations on Fruit Quality Parameters in Strawberry. Horticulturae 2021, 7, 354. [Google Scholar] [CrossRef]
- Kafkas, E.; Koşar, M.; Paydaş, S.; Kafkas, S.; Başer, K.H.C. Quality Characteristics of Strawberry Genotypes at Different Maturation Stages. Food Chem. 2007, 100, 1229–1236. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Weng, B.; Li, F.; An, M.; Luo, T. Effect of Different Fertilizer on Accumulation, Distribution and Assimilation of Nitrate in Radish. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 148–154. [Google Scholar] [CrossRef]
- He, Y.; Zhang, C.; Zhang, X.; Xv, G.; Hei, G. Key Points of Sample Collection and Preparation for Detailed Investigation of Soil Pollution in Agricultural Land. Soush China Agric. 2021, 15, 230–231. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, W.; Muneer, M.A.; Ji, Z.; Tong, L.; Zhang, X.; Li, X.; Wang, W.; Zhang, F.; Wu, L. Integrated Use of Lime with Mg Fertilizer Significantly Improves the Pomelo Yield, Quality, Economic Returns and Soil Physicochemical Properties under Acidic Soil of Southern China. Sci. Hortic. 2021, 290, 110502. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, X.; Sun, Y.; Zhang, J.; Wu, W.; Liao, Y. Mulching Practices Altered Soil Bacterial Community Structure and Improved Orchard Productivity and Apple Quality after Five Growing Seasons. Sci. Hortic. 2014, 172, 248–257. [Google Scholar] [CrossRef]
- GAO, X.-s.; XIAO, Y.; DENG, L.-j.; LI, Q.-q.; WANG, C.-q.; LI, B.; DENG, O.-p.; ZENG, M. Spatial Variability of Soil Total Nitrogen, Phosphorus and Potassium in Renshou County of Sichuan Basin, China. J. Integr. Agric. 2019, 18, 279–289. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J. The Influence of Organic, Organo-Mineral and Mineral Fertilizers on Tree Growth, Yielding, Fruit Quality and Leaf Nutrient Composition of Apple Cv. ‘Golden Delicious Reinders’. Sci. Hortic. 2022, 297, 110978. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, F.; Liu, L.; Xv, D.; Xv, B. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Yield, Quality and Content of Mineral Elements in Leaves of Red Fuji Apple. China Fruit 2009, 2, 14–17. [Google Scholar] [CrossRef]
- Raese, J.T.; Drake, S.R. Nitrogen Fertilization and Elemental Composition Affects Fruit Quality of “Fuji” Apples. J. Plant Nutr. 1997, 20, 1797–1809. [Google Scholar] [CrossRef]
- Purnomo, E.; Sinaga, F.; Amanda, I.P.; Putra, R.D.P. Balance of Nitrogen in Plant-Soil System with the Presence of Compost+Charcoal. Pertanika J. Trop. Agric. Sci. 2018, 41, 833–844. [Google Scholar]
- Möller, K.; Müller, T. Effects of Anaerobic Digestion on Digestate Nutrient Availability and Crop Growth: A Review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar]
- Cao, K.; Chang, Y.; Sun, R.; Shen, F.; Wu, T.; Wang, Y.; Zhang, X.; Han, Z. Candidate Gene Prediction via Quantitative Trait Locus Analysis of Fruit Shape Index Traits in Apple. Euphytica 2015, 206, 381–391. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, A.; Montaño-Carrasco, M.; Ojeda-Barrios, D.; Martínez-Rosales, A.; Cruz-Álvarez, O.; Martínez-Damián, M.T.; Rodríguez-Roque, M.J. Foliar Nutritional Content and Apple Fruit Quality as Affected by Organic, Conventional, or Integrated Management. J. Plant Nutr. 2021, 44, 1886–1902. [Google Scholar] [CrossRef]
- Nava, G.; Dechen, A.R.; Nachtigall, G.R. Nitrogen and Potassium Fertilization Affect Apple Fruit Quality in Southern Brazil. Commun. Soil Sci. Plant Anal. 2008, 39, 96–107. [Google Scholar] [CrossRef]
- Jakopic, J.; Schmitzer, V.; Veberic, R.; Smrke, T.; Stampar, F. Metabolic Response of ‘Topaz’ Apple Fruit to Minimal Application of Nitrogen during Cell Enlargement Stage. Horticulturae 2021, 7, 266. [Google Scholar] [CrossRef]
- Amiri, M.E.; Fallahi, E. Impact of Animal Manure on Soil Chemistry, Mineral Nutrients, Yield, and Fruit Quality in “golden Delicious” Apple. J. Plant Nutr. 2009, 32, 610–617. [Google Scholar] [CrossRef]
- Wang, F.; Sha, J.; Chen, Q.; Xu, X.; Zhu, Z.; Ge, S.; Jiang, Y. Exogenous Abscisic Acid Regulates Distribution of 13C and 15N and Anthocyanin Synthesis in ‘Red Fuji’ Apple Fruit Under High Nitrogen Supply. Front. Plant Sci. 2020, 10, 1738. [Google Scholar] [CrossRef]
- Skendrović Babojelić, M.; Ivančić, K.; Družić, J.; Kovač, A.; Voća, S. Chemical and Sensory Characteristics of Three Apple Cultivarz (Malus x Domestica Borkh.). Agric. Conspec. Sci. 2007, 72, 317–322. [Google Scholar]
- Lin, R.U.I.; Yu-ying, Y.; Ti-jiang, R.U.I.; Li-chun, L.I.U.; Peng-fei, Z.; Chun-xiang, Y.O.U.; Yu-jin, H.A.O. Influence of Biogas Slurry on the Growth and Fruit Quality of Red Fuji Apple Trees in Low Latitude Plateau. J. Shandong Agric. Univ. 2020, 51, 985–991. [Google Scholar] [CrossRef]
- Murtić, S.; Oljača, R.; Koleška, I.; Čivić, H. Apple Quality and Calcium Content as Affected by Fertilizer Treatment. Polish J. Environ. Stud. 2017, 26, 2107–2111. [Google Scholar] [CrossRef]
- Küçükyumuk, Z.; Erdal, İ. Effect of Calcium on Mineral Nutrient Concentrations and Fruit Quality in Different Apple Tree Varieties. J. Elem. 2022, 27, 75–85. [Google Scholar] [CrossRef]
- Kai, T.; Adhikari, D. Effect of Organic and Chemical Fertilizer Application on Apple Nutrient Content and Orchard Soil Condition. Agriculture 2021, 11, 340. [Google Scholar] [CrossRef]
- Ernani, P.R.; Rogeri, D.; Proença, M.M.; Dias, J. Addition of Nitrogen Had No Effect on Yield and Quality of Apples in an High Density Orchard Carrying a Dwarf Rootstock. Rev. Bras. Frutic. 2008, 30, 1113–1118. [Google Scholar] [CrossRef]
- Crop, A.; Society, S. Use of Mineral, Organic, Slow Release and Biofertilizers for Anna Apple Trees in a Sandy Soil. In Proceedings of the 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007; Volume 8, pp. 265–271. [Google Scholar]
- Zhao, Z.P.; Yan, S.; Liu, F.; Ji, P.H.; Wang, X.Y.; Tong, Y.A. Effects of Chemical Fertilizer Combined with Organic Manure on Fuji Apple Quality, Yield and Soil Fertility in Apple Orchard on the Loess Plateau of China. Int. J. Agric. Biol. Eng. 2014, 7, 45–55. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Z.; Zhao, J.; Ma, P.; Xu, X. Comprehensive Assessment of Fertilization, Spatial Variability of Soil Chemical Properties, and Relationships among Nutrients, Apple Yield and Orchard Age: A Case Study in Luochuan County, China. Ecol. Indic. 2021, 122, 107285. [Google Scholar] [CrossRef]
- Zhong, W.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.; Huang, Q.; Shen, W. The Effects of Mineral Fertilizer and Organic Manure on Soil Microbial Community and Diversity. Plant Soil 2010, 326, 511–522. [Google Scholar] [CrossRef]
- Möller, K.; Stinner, W.; Deuker, A.; Leithold, G. Effects of Different Manuring Systems with and without Biogas Digestion on Nitrogen Cycle and Crop Yield in Mixed Organic Dairy Farming Systems. Nutr. Cycl. Agroecosystems 2008, 82, 209–232. [Google Scholar] [CrossRef]
- Wang, L.; Yang, F.; Yao, E.; Yuan, J.; Raza, W.; Huang, Q.; Shen, Q. Long-Term Application of Bioorganic Fertilizers Improved Soil Biochemical Properties and Microbial Communities of an Apple Orchard Soil. Front. Microbiol. 2016, 7, 1893. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Yang, J.; Song, Y.; Chen, F.; Li, X.; Awasthi, M.K.; Li, H.; Zhang, L. Clean Technology for Biochar and Organic Waste Recycling, and Utilization in Apple Orchard. Chemosphere 2021, 274, 129914. [Google Scholar] [CrossRef]
- Tan, B.; Fan, J.; He, Y. Effect of Long-Term Application of Chemical Fertilizer on Soil Organic Carbon Content in Top Layer of Paddy Fields in South China. Acta Pedol. Sin. 2014, 51, 96–103. [Google Scholar]
- Sabir, M.S.; Shahzadi, F.; Ali, F.; Shakeela, Q.; Niaz, Z.; Ahmed, S. Comparative Effect of Fertilization Practices on Soil Microbial Diversity and Activity: An Overview. Curr. Microbiol. 2021, 78, 3644–3655. [Google Scholar] [CrossRef]
- Shao, Z.; Guo, X.; Qu, Q.; Kang, K.; Su, Q.; Wang, C.; Qiu, L. Effects of Chlorine Disinfectants on the Microbial Community Structure and the Performance of Anaerobic Digestion of Swine Manure. Bioresour. Technol. 2021, 339, 125576. [Google Scholar] [CrossRef]
- Tamilselvi, S.M.; Chinnadurai, C.; Ilamurugu, K.; Arulmozhiselvan, K.; Balachandar, D. Effect of Long-Term Nutrient Managements on Biological and Biochemical Properties of Semi-Arid Tropical Alfisol during Maize Crop Development Stages. Ecol. Indic. 2015, 48, 76–87. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Wang, B.; Wang, X.; Franks, A.E.; Teng, Y.; Li, Z.; Luo, Y. Changes in the Abundance and Structure of Bacterial Communities under Long-Term Fertilization Treatments in a Peanut Monocropping System. Plant Soil 2015, 395, 415–427. [Google Scholar] [CrossRef]
- Kumar, U.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Bhattacharyya, P.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Variation of Functional Diversity of Soil Microbial Community in Sub-Humid Tropical Rice-Rice Cropping System under Long-Term Organic and Inorganic Fertilization. Ecol. Indic. 2017, 73, 536–543. [Google Scholar] [CrossRef]
- Hanrahan-tan, D.G.; Henderson, L.; Kertesz, M.A.; Lilje, O. The Effects of Nitrogen and Phosphorus on Colony Growth and Zoospore Characteristics of Soil Chytridiomycota. J. Fungi 2022, 8, 341. [Google Scholar] [CrossRef]
- Zhao, B.; Xing, P.; Wu, Q.L. Microbes Participated in Macrophyte Leaf Litters Decomposition in Freshwater Habitat. FEMS Microbiol. Ecol. 2017, 93, fix108. [Google Scholar] [CrossRef] [Green Version]
- Kjøller, R.; Rosendahl, S. Cultivated and Fallow Fields Harbor Distinct Communities of Basidiomycota. Fungal Ecol. 2014, 9, 43–51. [Google Scholar] [CrossRef]
- Singh, B.; Pandey, R. Differences in Root Exudation among Phosphorus-Starved Genotypes of Maize and Green Gram and Its Relationship with Phosphorus Uptake. J. Plant Nutr. 2003, 26, 2391–2401. [Google Scholar] [CrossRef]
- Shange, R.S.; Ankumah, R.O.; Ibekwe, A.M.; Zabawa, R.; Dowd, S.E. Distinct Soil Bacterial Communities Revealed under a Diversely Managed Agroecosystem. PLoS ONE 2012, 7, e40338. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, L.; Yang, J.; Zhang, Z.; Awasthi, M.K.; Li, H. Insight to Bacteria Community Response of Organic Management in Apple Orchard-Bagasse Fertilizer Combined with Biochar. Chemosphere 2022, 286, 131693. [Google Scholar] [CrossRef]
Treatment | Fertilization Time | N (kg ha−1) | P2O5 (kg ha−1) | K2O (kg ha−1) |
---|---|---|---|---|
CK | October 2017 (Base fertilize) | |||
March 2018 (Topdressing) | ||||
July 2018 (Topdressing) | ||||
CF | October 2017 (Base fertilize) | 150 | 188 | 188 |
March 2018 (Topdressing) | 150 | 188 | 188 | |
July 2018 (Topdressing) | 75 | 135 | ||
CM | October 2017 (Base fertilize) | C150 | C188 | C159 + 29 |
March 2018 (Topdressing) | C150 | C188 | C159 + 29 | |
July 2018 (Topdressing) | 75 | 135 | ||
BS | October 2017 (Base fertilize) | C150 | C29 + 159 | C188 |
March 2018 (Topdressing) | C150 | C29 + 159 | C188 | |
July 2018 (Topdressing) | 75 | 135 |
Fertilizer Treatment | Shape | Weight of Single Fruit (g) | Color | Flesh Firmness (kg cm−2) | ||||
---|---|---|---|---|---|---|---|---|
Vertical Diameter (mm) | Transverse Diameter (mm) | Fruit Shape Index | L* | a* | b* | |||
CK | 72.81 ± 1.79 b | 81.33 ± 2.07 b | 0.89 ± 0.04 a | 246.16 ± 9.18 c | 54.20 ± 1.55 ab | 32.52 ± 1.06 ab | 17.72 ± 0.53 b | 6.86 ± 0.24 b |
CF | 74.88 ± 4.09 ab | 81.38 ± 1.52 b | 0.92 ± 0.05 a | 267.48 ± 13.98 b | 50.93 ± 4.56 b | 33.97 ± 5.56 a | 17.24 ± 2.07 b | 6.71 ± 0.23 b |
CM | 78.72 ± 4.32 a | 87.51 ± 1.3 a | 0.90 ± 0.04 a | 281.79 ± 19.3 a | 55.48 ± 5.48 a | 29.70 ± 6.42 c | 18.96 ± 1.86 a | 7.43 ± 0.32 a |
BS | 75.68 ± 3.62 ab | 83.37 ± 1.35 ab | 0.89 ± 0.03 a | 266.88 ± 17.63 b | 52.20 ± 2.2 b | 31.98 ± 3.03 b | 17.50 ± 0.65 b | 7.51 ± 0.34 a |
Treatment | Total Sugars (%) | Total Acid (%) | TS/TA Ratio | Vitamin C mg/100 g | Soluble Solid (°Brix) | Crude Protein (%) |
---|---|---|---|---|---|---|
CK | 12.70 b | 0.25 c | 53.0 a | 1.81 d | 11.63 c | 0.24 b |
CF | 12.30 b | 0.24 c | 51.3 a | 3.22 b | 12.44 b | 0.19 c |
CM | 13.25 ab | 0.35 a | 37.9 c | 2.88 c | 13.15 a | 0.29 a |
BS | 13.85 a | 0.30 b | 46.2 b | 3.61 a | 13.25 a | 0.27 a |
Amino Acid | CK | CF | CM | BS |
---|---|---|---|---|
Thr * | 0.008 | 0.008 | 0.009 | 0.01 |
Vla * | 0.007 | 0.006 | 0.008 | 0.007 |
Met *# | 0.001 | 0 | 0 | 0 |
Ile *# | 0.006 | 0.006 | 0.007 | 0.007 |
Leu *# | 0.009 | 0.009 | 0.011 | 0.010 |
Phe *# | 0.003 | 0.005 | 0.006 | 0.004 |
Lys *# | 0.011 | 0.01 | 0.012 | 0.011 |
His | 0.003 | 0.003 | 0.005 | 0.004 |
Arg # | 0.009 | 0.004 | 0.005 | 0.004 |
Pro | 0.01 | 0.011 | 0.013 | 0.013 |
Gly # | 0.007 | 0.006 | 0.007 | 0.007 |
Ala | 0.008 | 0.008 | 0.009 | 0.009 |
Cys | 0 | 0 | 0 | 0 |
Asp # | 0.093 | 0.081 | 0.099 | 0.134 |
Ser | 0.009 | 0.008 | 0.01 | 0.01 |
Glu # | 0.018 | 0.017 | 0.022 | 0.019 |
Tyr | 0.003 | 0.003 | 0.003 | 0.003 |
E | 0.045 c | 0.044 c | 0.053 a | 0.049 b |
N | 0.16 c | 0.141 d | 0.173 b | 0.203 a |
T | 0.205 c | 0.185 d | 0.226 b | 0.252 a |
M | 0.157 c | 0.138 d | 0.169 b | 0.196 a |
Soil Depth (cm) | Fertilizers | Total N (g kg−1) | Total P (g kg−1) | Total K (g kg−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | Organics (%) |
---|---|---|---|---|---|---|---|---|
0–20 | CK | 0.60 d | 0.52 d | 23.25 a | 50.19 b | 2.31 d | 167 c | 0.74 d |
CF | 0.67 c | 0.57 c | 21.39 b | 51.92 b | 2.65 c | 196 b | 1.06 c | |
CM | 1.12 a | 0.84 a | 23.20 a | 58.84 a | 26.93 a | 487 a | 1.64 a | |
BS | 0.84 b | 0.68 b | 23.17 a | 51.92 b | 8.60 b | 188 b | 1.24 b | |
20–40 | CK | 0.32 c | 0.57 b | 19.27 c | 46.72 b | 1.39 c | 116 b | 0.45 c |
CF | 0.34 c | 0.54 c | 23.07 ab | 41.53 c | 1.27 d | 114 b | 0.45 c | |
CM | 0.70 a | 0.61 a | 24.08 a | 82.12 a | 3.82 a | 358 a | 0.92 a | |
BS | 0.47 b | 0.56 b | 22.40 b | 38.07 d | 1.55 b | 101 c | 0.63 b |
Soil Death (cm) | Treatment | Simpson | Chao1 | Shannon | Coverage |
---|---|---|---|---|---|
Bacteria | |||||
0–20 | CK | 0.009 b | 2079 b | 6.25 a | 0.99 a |
CF | 0.030 a | 1849 c | 5.50 b | 0.99 a | |
CM | 0.006 d | 2239 a | 6.48 a | 0.99 a | |
BS | 0.008 c | 2091 b | 6.32 a | 0.98 a | |
20–40 | CK | 0.046 a | 1921 b | 4.98 b | 0.99 a |
CF | 0.006 c | 2121 a | 6.34 a | 0.99 a | |
CM | 0.007 b | 2204 a | 6.36 a | 0.99 a | |
BS | 0.004 d | 2110 a | 6.42 a | 0.99 a | |
Fungal | |||||
0–20 | CK | 0.107 a | 297 c | 3.31 d | 1 a |
CF | 0.061 b | 256 d | 3.68 c | 1 a | |
CM | 0.036 c | 412 b | 3.98 b | 1 a | |
BS | 0.025 d | 464 a | 4.38 a | 1 a | |
20–40 | CK | 0.173 a | 266 c | 2.54 c | 1 a |
CF | 0.045 b | 407 a | 3.97 b | 1 a | |
CM | 0.025 c | 340 b | 4.23 a | 1 a | |
BS | 0.044 b | 354 b | 4.1 ab | 1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Bao, Q.; Sun, G.; Li, J. Application of Homemade Organic Fertilizer for Improving Quality of Apple Fruit, Soil Physicochemical Characteristics, and Microbial Diversity. Agronomy 2022, 12, 2055. https://doi.org/10.3390/agronomy12092055
Wang X, Bao Q, Sun G, Li J. Application of Homemade Organic Fertilizer for Improving Quality of Apple Fruit, Soil Physicochemical Characteristics, and Microbial Diversity. Agronomy. 2022; 12(9):2055. https://doi.org/10.3390/agronomy12092055
Chicago/Turabian StyleWang, Xiuzhang, Qi Bao, Guotao Sun, and Jianming Li. 2022. "Application of Homemade Organic Fertilizer for Improving Quality of Apple Fruit, Soil Physicochemical Characteristics, and Microbial Diversity" Agronomy 12, no. 9: 2055. https://doi.org/10.3390/agronomy12092055
APA StyleWang, X., Bao, Q., Sun, G., & Li, J. (2022). Application of Homemade Organic Fertilizer for Improving Quality of Apple Fruit, Soil Physicochemical Characteristics, and Microbial Diversity. Agronomy, 12(9), 2055. https://doi.org/10.3390/agronomy12092055