Influence of Cactus Pear Mucilage-Based Edible Coating on Marketability and Edibility Parameters of Minimally Processed Loquat Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Loquat Fruit Samples
2.2. Fresh Mucilage Extraction and Application
2.3. Quality Parameters: Firmness, Soluble Solid Content, Titratable Acidity, Color, and Weight Loss
2.4. Headspace Gas Composition
2.5. Nutraceutical Attributes
2.5.1. Fruit Extract Preparation
2.5.2. Total Phenolic and Total Carotenoids Content
2.5.3. DPPH and Hydroxyl Radical Scavenging Analysis
2.5.4. Ascorbic Acid Content
2.6. Sensory Analysis and Visual Score
2.7. Microbiological Characterization of O. ficus-indica Mucilage Edible Coating
2.7.1. Determination of Antibacterial Activity
2.7.2. Plate Count
2.8. Microbiological Analyses of Loquat Fruit
2.9. Statistical Analyses
3. Results
3.1. Quality Parameters: Firmness, Soluble Solid Content, Titratable Acidity, Extractable Juice, Ascorbic Acid Content, Color, and Weight Loss
3.2. Headspace Gas Composition
3.3. Bioactive Compounds (Total Phenolic and Total Carotenoids Content) and Radical Scavenging Activity
3.4. Inhibitory Properties and Microbiological Characterization of O. ficus-indica Mucilage Edible Coating
3.5. Evolution of Microbiological Parameters on Loquat Fruits
3.6. Sensory Analysis and Visual Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liguori, G.; Farina, V.; Sortino, G.; Mazzaglia, A.; Inglese, P. Effects of 1-methylcyclopropene on postharvest quality of white- and yellow-flesh loquat (Eriobotrya japonica Lindl.) fruit. Fruits 2014, 69, 363–370. [Google Scholar] [CrossRef]
- Pareek, S.; Benkeblia, N.; Janick, J.; Cao, S.; Yahia, E.M. Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. J. Sci. Food Agric. 2014, 94, 1495–1504. [Google Scholar] [CrossRef]
- Petriccione, M.; Pasquariello, M.S.; Mastrobuoni, F.; Zampella, L.; Di Patre, D.; Scortichini, M. Influence of a chitosan coating on the quality and nutraceutical traits of loquat fruit during postharvest life. Sci. Hortic. 2015, 197, 287–296. [Google Scholar] [CrossRef]
- Wang, L.; Shao, S.; Madebo, M.P.; Hou, Y.; Zheng, Y.; Jin, P. Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food Chem. 2020, 315, 126295. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.F.; Yang, Z.F.; Cai, Y.T.; Zheng, Y.H. Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chem. 2011, 127, 1777–1783. [Google Scholar] [CrossRef]
- Raffo, A.; Paoletti, F. Fresh-Cut Vegetables Processing: Environmental Sustainability and Food Safety Issues in a Comprehensive Perspective. Front. Sustain. Food Syst. 2022, 5, 681459. [Google Scholar] [CrossRef]
- Liguori, G.; Gaglio, R.; Settanni, L.; Inglese, P.; D’Anna, F.; Miceli, A. Effect of Opuntia ficus-indica Mucilage Edible Coating in Combination with Ascorbic Acid, on Strawberry Fruit Quality during Cold Storage. J. Food Qual. 2021, 2021, 9976052. [Google Scholar] [CrossRef]
- Liguori, G.; Gaglio, R.; Greco, G.; Gentile, C.; Settanni, L.; Inglese, P. Effect of Opuntia ficus-indica Mucilage Edible Coating on Quality, Nutraceutical, and Sensorial Parameters of Minimally Processed Cactus Pear Fruits. Agronomy 2021, 11, 1963. [Google Scholar] [CrossRef]
- Allegra, A.; Gallotta, A.; Carimi, F.; Mercati, F.; Inglese, P.; Martinelli, F. Metabolic profiling and post-harvest behavior of “Dottato” Fig (Ficus carica L.) fruit covered with an edible coating from O. ficus-indica. Front. Plant Sci. 2018, 9, 1321. [Google Scholar] [CrossRef] [PubMed]
- Gheribi, R.; Khwaldia, K. Cactus Mucilage for Food Packaging Applications. Coatings 2019, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- GirmaAbera, N.; Kebede, W.; Wassu, M. Effect of Aloe gel and cactus mucilage coating on chemical quality and sensory attributes of mango (Mangifera indica L.). J. Postharvest Technol. 2019, 7, 31–43. [Google Scholar]
- Sogvar, O.B.; Saba, M.K.; Emamifar, A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol. 2016, 114, 29–35. [Google Scholar] [CrossRef]
- Del Valle, V.; Hernández-Muñoz, P.; Guarda, A.; Galotto, M.J. Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chem. 2005, 91, 751–756. [Google Scholar] [CrossRef]
- Riaz, S.; Sultan, M.T.; Sibt-e-Abass, M.; Shabir Ahmad, M.I.R.; Bilal Hussain, M.; Shariati, M.A.; Kosenko, I.S.; Kleymenova, N.L.; Egorova, G.N. Extraction of polysaccharides from Opuntia cactus for its potential application in edible coating to improve the shelf life of citrus (Kinnow Mandarin) fruit. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 745–750. [Google Scholar] [CrossRef]
- Sortino, G.; Allegra, A.; Farina, V.; De Chiara, M.L.V.; Inglese, P. Genotype influence on shelf life behaviour of minimal processed loquat (Eriobotrya japonica (Thunb.) Lindl.) fruit: The role of sugar, acid organics and phenolic compounds. Chem. Biol. Technol. Agric. 2022, 9, 8. [Google Scholar] [CrossRef]
- Du Toit, A.; De Wit, M. A Process for Extracting Mucilage from Opuntia ficus-indica and Aloe barbadensis. South. Africa Patent No. PA153178/P, 12 May 2011. [Google Scholar]
- Passafiume, R.; Gugliuzza, G.; Gaglio, R.; Busetta, G.; Tinebra, I.; Sortino, G.; Farina, V. Aloe-Based Edible Coating to Maintain Quality of Fresh-Cut Italian Pears (Pyrus communis L.) during Cold Storage. Horticulturae 2021, 7, 581. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Granit, R. Betalains-A new class of dietary cationized antioxidants. J. Agric. Food Chem. 2001, 49, 5178–5185. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of total polyphenols with phospho-molybdic phosphor tungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Kichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvent. Biochem. Soc. Trans. 1983, 603, 591–593. [Google Scholar] [CrossRef]
- Ranganna, S. Manual of Analysis of Fruit and Vegetable Products; McGraw-Hill Publishing Co. Ltd.: New Delhi, India, 1977. [Google Scholar]
- Gaglio, R.; Barbera, M.; Aleo, A.; Lommatzsch, I.; La Mantia, T.; Settanni, L. Inhibitory activity and chemical characterization of Daucus carota subsp. maximus essential oils. Chem. Biod. 2017, 14, e1600477. [Google Scholar]
- Miceli, A.; Aleo, A.; Corona, O.; Sardina, M.T.; Mammina, C.; Settanni, L. Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control 2014, 40, 157–164. [Google Scholar] [CrossRef]
- Palma, A.; Continella, A.; La Malfa, S.; D’Aquino, S. Changes in physiological and some nutritional, nutraceuticals, chemical–physical, microbiological and sensory quality of minimally processed cactus pears cvs ‘Bianca’, ‘Gialla’ and ‘Rossa’ stored under passive modified atmosphere. J. Sci. Food Agric. 2018, 98, 1839–1849. [Google Scholar] [CrossRef] [PubMed]
- Irfan, P.K.; Vanjakshi, V.; Keshava Prakash, M.N.; Ravi, R.; Kudachikar, V.B. Calcium chloride extends the keeping quality of fig fruit (Ficus carica L.) during storage and shelf-life. Postharvest Biol. Technol. 2013, 82, 70–75. [Google Scholar] [CrossRef]
- Allegra, A.; Sortino, G.; Inglese, P.; Settanni, L.; Todaro, A.; Gallotta, A. The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packag. Shelf Life 2017, 12, 135–141. [Google Scholar] [CrossRef]
- Singh Bhooriya, M.; Bisen, B.P.; Pandey, S.K. Effect of post-harvest treatments on shelf life and quality of Guava (Psidiun guavajava) fruits. Int. J. Chem. Stud. 2018, 6, 2559–2564. [Google Scholar]
- Manganaris, G.A.; Vasilakakis, M.; Diamantidis, G.; Mignani, I. The effect of postharvest calcium application on tissue calcium concentration, quality attributes, incidence of flesh browning and cell wall physicochemical aspects of peach fruits. Food Chem. 2007, 100, 1385–1392. [Google Scholar] [CrossRef]
- Allegra, A.; Inglese, P.; Sortino, G.; Settanni, L.; Todaro, A.; Liguori, G. The influence of Opuntia ficus-indica mucilage edible coating on the quality of ‘Hayward’ kiwifruit slices. Postharvest Biol. Technol. 2016, 120, 45–51. [Google Scholar] [CrossRef]
- Ding, C.K.; Chachin, K.; Hamauzu, Y.; Ueda, Y.; Imahori, Y. Effects of storage temperatures on physiology and quality of loquat fruit. Postharvest Biol. Technol. 1998, 14, 309–315. [Google Scholar] [CrossRef]
- Christopoulos, M.V.; Gkatzos, D.; Kafkaletou, M.; Bai, J.; Fanourakis, D.; Tsaniklidis, G.; Tsantili, E. Edible Coatings from Opuntia ficus-indica Cladodes Alongside Chitosan on Quality and Antioxidants in Cherries during Storage. Foods 2022, 11, 699. [Google Scholar] [CrossRef]
- Xu, H.X.; Chen, J.W.; Xie, M. Effect of different light transmittance paper bags on fruit quality and antioxidant capacity in loquat. J. Sci. Food Agric. 2010, 90, 1783–1788. [Google Scholar] [CrossRef]
- Yang, S.L.; Sun, C.D.; Wang, P.; Shan, L.L.; Cai, C.; Zhang, B.; Zhang, W.; Ferguson, I.; Chen, K.S. Expression of expansin genes during postharvest lignification and softening of ‘Luoyangqing’ and ‘Baisha’ loquat fruit under different storage conditions. Postharvest Biol. Technol. 2008, 49, 46–53. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Li, S.; Gao, X.; Wu, N.; Zhao, Y.; Sun, W. Control of postharvest grey spot rot of loquat fruit with Metschnikowia pulcherrima E1 and potential mechanisms of action. Biol. Control 2021, 152, 104406. [Google Scholar] [CrossRef]
- Brackett, R. Microbiological consequences of minimally processed fruits and vegetables. J. Food Qual. 1987, 10, 195–206. [Google Scholar] [CrossRef]
- Miceli, A.; Gaglio, R.; Francesca, N.; Ciminata, A.; Moschetti, G.; Settanni, L. Evolution of shelf-life parameters of ready-to-eat escarole (Cichorium endivia var. latifolium) subjected to different cutting operations. Sci. Hortic. 2019, 247, 175–183. [Google Scholar]
- European Food Safety Authority. Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 1. EFSA J. 2013, 11, 3025. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Settanni, L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019, 69, 185–199. [Google Scholar] [CrossRef]
- Barth, M.; Hankinson, T.R.; Zhuang, H.; Breidt, F. Microbiological Spoilage of Fruits and Vegetables. In Compendium of the Microbiological Spoilage of Foods and Beverages; Food Microbiology and Food Safety; Sperber, W.H., Doyle, M.P., Eds.; Springer: New York, NY, USA, 2009; pp. 135–183. [Google Scholar]
- Leff, J.W.; Fierer, N. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS ONE 2013, 8, e59310. [Google Scholar] [CrossRef]
- Ergin, S.Ö.; Yaman, H.; Dilek, M. The usage of edible films extracted from cherry and apricot tree gums for coating of strawberry (Fragaria ananassa) and loquat (Eriobotrya japonica) fruits. Turk. J. Agric. Food Sci. Technol. 2018, 6, 561–569. [Google Scholar]
- Barba, F.J.; Garcia, C.; Fessard, A.; Munekata, P.E.; Lorenzo, J.M.; Aboudia, A.; Ouadia, A.; Remize, F. Opuntia ficus indica edible parts: A food and nutritional security perspective. Food Rev. Int. 2022, 38, 930–952. [Google Scholar] [CrossRef]
Variety | Storage Time | Treatments | Firmness | TSS | TA | Extractable Juice | Ascorbic Acid | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(days) | (N) | (°Brix) | (% malic acid) | (%) | (mg 100 g−1 FW) | |||||||
Martorana | 0 | CTR | 8.49 ± 0.12 | - | 10.15 ± 0.34 | - | 0.69 ± 0.02 | - | 56.30 ± 1.17 | - | 6.14 ± 0.03 | - |
3 | CTR | 7.75 ± 0.09 | b | 10.01 ± 0.23 | - | 0.57 ± 0.01 | b | |||||
5 | CTR | 7.35 ± 0.08 | b | 9.51 ± 0.41 | - | 0.52 ± 0.02 | b | 48.01 ± 0.50 | b | 4.95 ± 0.05 | b | |
7 | CTR | 6.72 ± 0.14 | b | 9.37 ± 0.21 | - | 0.51 ± 0.01 | b | |||||
10 | CTR | 6.10 ± 0.02 | b | 9.18 ± 0.29 | - | 0.44 ± 0.02 | b | |||||
13 | CTR | 5.03 ± 0.14 | b | 8.08 ± 0.12 | b | 0.35 ± 0.01 | b | 45.36 ± 0.68 | b | 3.38 ± 0.03 | b | |
Martorana | 0 | OFI-EC | 8.49 ± 0.12 | - | 10.15 ± 0.34 | - | 0.69 ± 0.02 | - | 56.30 ± 1.17 | 6.14 ± 0.03 | ||
3 | OFI-EC | 8.25 ± 0.08 | a | 10.05 ± 0.29 | - | 0.62 ± 0.01 | a | |||||
5 | OFI-EC | 7.81 ± 0.09 | a | 9.58 ± 0.32 | - | 0.58 ± 0.02 | a | 51.47 ± 0.49 | a | 5.15 ± 0.01 | a | |
7 | OFI-EC | 7.19 ± 0.11 | a | 9.48 ± 0.29 | - | 0.53 ± 0.01 | a | |||||
10 | OFI-EC | 6.91 ± 0.03 | a | 9.17 ± 0.14 | - | 0.51 ± 0.01 | a | |||||
13 | OFI-EC | 5.72 ± 0.12 | a | 9.15 ± 0.19 | a | 0.48 ± 0.01 | a | 50.14 ± 1.44 | a | 4.81 ± 0.06 | a | |
Gigante Rossa | 0 | CTR | 10.94 ± 0.32 | - | 10.33 ± 0.29 | - | 0.71 ± 0.02 | - | 50.30 ± 1.10 | - | 5.13 ± 0.04 | - |
3 | CTR | 8.92 ± 0.19 | b | 9.23 ± 0.13 | b | 0.61 ± 0.01 | b | |||||
5 | CTR | 8.74 ± 0.12 | b | 9.08 ± 0.21 | b | 0.53 ± 0.01 | b | 45.01 ± 0.10 | b | 3.12 ± 0.02 | b | |
7 | CTR | 8.53 ± 0.08 | b | 8.68 ± 0.24 | b | 0.51 ± 0.02 | b | |||||
10 | CTR | 8.31 ± 0.10 | b | 8.47 ± 014 | b | 0.41 ± 0.01 | b | |||||
13 | CTR | 7.76 ± 0.09 | b | 8.05 ± 0.18 | b | 0.35 ± 0.01 | b | 40.36 ± 0.68 | b | 2.51 ± 0.02 | b | |
Gigante Rossa | 0 | OFI-EC | 10.94 ± 0.32 | - | 10.33 ± 0.29 | - | 0.71 ± 0.02 | - | 50.30 ± 1.10 | - | 5.13 ± 0.04 | - |
3 | OFI-EC | 9.88 ± 0.12 | a | 9.97 ± 0.61 | a | 0.68 ± 0.02 | a | |||||
5 | OFI-EC | 9.39 ± 0.09 | a | 9.75 ± 0.18 | a | 0.61 ± 0.02 | a | 48.47 ± 0.49 | a | 4.97 ± 0.04 | a | |
7 | OFI-EC | 9.15 ± 0.11 | a | 9.60 ± 0.19 | a | 0.53 ± 0.02 | a | |||||
10 | OFI-EC | 8.92 ± 0.09 | a | 9.23 ± 0.11 | a | 0.48 ± 0.01 | a | |||||
13 | OFI-EC | 8.33 ± 0.07 | a | 9.21 ± 0.08 | a | 0.45 ± 0.01 | a | 44.14 ± 1.44 | a | 3.84 ± 0.03 | a |
Variety | Storage Time | Treatments | Total Phenolic Content | Total Carotenoids | ||
---|---|---|---|---|---|---|
(days) | (mg GAE/100 g FW) | (mg/100 g FW) | ||||
Martorana | 0 | CTR | 48.24 ± 0.89 | - | 1.30 ± 0.03 | - |
5 | CTR | 54.89 ± 1.04 | b | 1.40 ± 0.07 | - | |
13 | CTR | 50.41 ± 0.95 | b | 1.65 ± 0.08 | - | |
Martorana | 0 | OFI-EC | 48.24 ± 0.89 | - | 1.30 ± 0.03 | - |
5 | OFI-EC | 61.35 ± 1.09 | a | 1.45 ± 0.05 | - | |
13 | OFI-EC | 57.23 ± 0.56 | a | 1.60 ± 0.04 | - | |
Gigante Rossa | 0 | CTR | 29.03 ± 0.43 | - | 1.50 ± 0.06 | - |
5 | CTR | 38.41 ± 0.38 | b | 1.90 ± 0.04 | - | |
13 | CTR | 30.15 ± 0.52 | b | 2.08 ± 0.03 | - | |
Gigante Rossa | 0 | OFI-EC | 29.03 ± 0.43 | - | 1.50 ± 0.06 | - |
5 | OFI-EC | 49.36 ± 0.41 | a | 1.85 ± 0.04 | - | |
13 | OFI-EC | 38.42 ± 0.38 | a | 2.00 ± 0.07 | - |
Species | Strains | Source of Isolation | Inhibition (mm) |
---|---|---|---|
Spoilage | |||
Pseudomonas endophytica | 4G764 | Ready to eat salad | 14.8 ± 0.2 |
Pseudomonas fluorescens | 4G628 | Ready to eat salad | 13.9 ± 0.2 |
Pathogenic | |||
Escherichia coli | ATCC25922 | Clinical isolate | - |
Listeria monocytogenes | ATCC19114 | Animal tissue | 16.3 ± 0.3 |
Salmonella Enteritidis | ATCC13076 | Unknown | 13.7 ± 0.1 |
Staphylococcus aureus | ATCC33862 | Unknown | 12.1 ± 0.2 |
Storage Time | Samples | Microbial Loads | ||||
---|---|---|---|---|---|---|
TMM | TPM | Pseudomonads | Yeasts | Molds | ||
0 days | MRT CTR | <2 a | <2 a | <2 a | <2 a | <2 a |
MRT OFI-EC | <2 a | <2 a | <2 a | <2 a | <2 a | |
GR CTR | <2 a | <2 a | <2 a | <2 a | <2 a | |
GR OFI-EC | <2 a | <2 a | <2 a | <2 a | <2 a | |
3 days | MRT CTR | <2 a | <2 a | <2 a | <2 a | <2 a |
MRT OFI-EC | <2 a | <2 a | <2 a | <2 a | <2 a | |
GR CTR | <2 a | <2 a | <2 a | <2 a | <2 a | |
GR OFI-EC | <2 a | <2 a | <2 a | <2 a | <2 a | |
5 days | MRT CTR | <2 a | <2 a | <2 a | <2 a | <2 a |
MRT OFI-EC | <2 a | <2 a | <2 a | <2 a | <2 a | |
GR CTR | <2 a | <2 a | <2 a | <2 a | <2 a | |
GR OFI-EC | <2 a | <2 a | <2 a | <2 a | <2 a | |
7 days | MRT CTR | 3.06 ± 0.15 a | 3.11 ± 0.20 a | 3.04 ± 0.14 a | 3.01 ± 0.25 a | 2.99 ± 0.17 a |
MRT OFI-EC | 2.14 ± 0.13 b | 2.25 ± 0.19 b | 2.17 ± 0.13 b | 2.20 ± 0.12 b | 2.15 ± 0.23 b | |
GR CTR | 3.24 ± 0.24 a | 3.35 ± 0.21 a | 3.09 ± 0.23 a | 2.89 ± 0.15 a | 3.11 ± 0.11 a | |
GR OFI-EC | 2.33 ± 0.20 b | 2.15 ± 0.11 b | 2.19 ± 0.10 b | 2.30 ± 0.17 b | 2.24 ± 0.15 b | |
10 days | MRT CTR | 4.24 ± 0.32 a | 3.88 ± 0.20 a | 3.70 ± 0.25 a | 4.44 ± 0.25 a | 4.16 ± 0.27 a |
MRT OFI-EC | 3.41 ± 0.17 b | 3.01 ± 0.15 b | 3.11 ± 0.19 b | 3.39 ± 0.19 b | 3.27 ±0.23 b | |
GR CTR | 4.60 ± 0.20 a | 4.16 ± 0.31 a | 4.05 ± 0.21 a | 4.39 ±0.20 a | 4.27 ± 0.11 a | |
GR OFI-EC | 3.77 ± 0.12 b | 3.21 ± 0.13 b | 3.40 ± 0.24 b | 3.27 ± 0.14 b | 3.33 ± 0.31 b | |
13 days | MRT CTR | 5.48 ± 0.27 a | 5.04 ± 0.21 a | 5.12 ± 0.32 a | 5.60 ± 0.19 a | 5.41 ± 0.23 a |
MRT OFI-EC | 4.40 ± 0.30 b | 4.24 ± 0.15 b | 4.05 ± 0.22 b | 4.37 ± 0.20 b | 4.56 ± 0.15 b | |
GR CTR | 5.11 ± 0.23 a | 5.27 ± 0.19 a | 5.01 ± 0.31 a | 5.33 ± 0.25 a | 5.39 ± 0.32 a | |
GR OFI-EC | 4.22 ± 0.19 b | 4.19 ± 0.24 b | 4.33 ± 0.15 b | 4.49 ± 0.17 b | 4.20 ± 0.19 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liguori, G.; Greco, G.; Gaglio, R.; Settanni, L.; Inglese, P.; Allegra, A. Influence of Cactus Pear Mucilage-Based Edible Coating on Marketability and Edibility Parameters of Minimally Processed Loquat Fruits. Agronomy 2022, 12, 2120. https://doi.org/10.3390/agronomy12092120
Liguori G, Greco G, Gaglio R, Settanni L, Inglese P, Allegra A. Influence of Cactus Pear Mucilage-Based Edible Coating on Marketability and Edibility Parameters of Minimally Processed Loquat Fruits. Agronomy. 2022; 12(9):2120. https://doi.org/10.3390/agronomy12092120
Chicago/Turabian StyleLiguori, Giorgia, Giuseppe Greco, Raimondo Gaglio, Luca Settanni, Paolo Inglese, and Alessio Allegra. 2022. "Influence of Cactus Pear Mucilage-Based Edible Coating on Marketability and Edibility Parameters of Minimally Processed Loquat Fruits" Agronomy 12, no. 9: 2120. https://doi.org/10.3390/agronomy12092120
APA StyleLiguori, G., Greco, G., Gaglio, R., Settanni, L., Inglese, P., & Allegra, A. (2022). Influence of Cactus Pear Mucilage-Based Edible Coating on Marketability and Edibility Parameters of Minimally Processed Loquat Fruits. Agronomy, 12(9), 2120. https://doi.org/10.3390/agronomy12092120