Genome-Wide Association Study of Agronomic Traits in European Spring Barley from Polish Gene Bank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Experiment and Phenotypic Evaluation
2.2.1. Statistical Analysis
2.2.2. Genotyping
2.3. Data Filtering Process
2.4. Genome-Wide Association Studies (GWAS)
3. Results
3.1. Collecting Data of Plant Phenology Traits
3.2. Collecting Data of Plant Height and Lodging Tendency
3.3. Collecting Data of Spike and Grain Morphology Traits
3.4. Relationship between Phenological and Agronomical Traits
3.5. GWAS Analysis for Marker Trait Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Sullivan, P.; Arendt, E.; Gallagher, E. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol. 2013, 29, 124–134. [Google Scholar] [CrossRef]
- Cleveland, D.A.; Soleri, D.; Smith, S.E. A biological framework for understanding farmers~plant breeding 1. Econ. Bot. 2000, 54, 377–394. [Google Scholar] [CrossRef]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef]
- Marselle, M.R.; Stadler, J.; Korn, H.; Irvine, K.N.; Bonn, A. Correction to: Biodiversity and Health in the Face of Climate Change; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030023171. [Google Scholar]
- Rebetzke, G.J.; Jimenez-Berni, J.; Fischer, R.A.; Deery, D.M.; Smith, D.J. Review: High-throughput phenotyping to enhance the use of crop genetic resources. Plant Sci. 2019, 282, 40–48. [Google Scholar] [CrossRef]
- Westengen, O.T.; Skarbø, K.; Mulesa, T.H.; Berg, T. Access to genes: Linkages between genebanks and farmers’ seed systems. Food Secur. 2018, 10, 9–25. [Google Scholar] [CrossRef]
- Raggi, L.; Caproni, L.; Negri, V. Landrace added value and accessibility in Europe: What a collection of case studies tells us. Biodivers. Conserv. 2021, 30, 1031–1048. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Norton, S.L. Genebank phenomics: A strategic approach to enhance value and utilization of crop germplasm. Plants 2020, 9, 817. [Google Scholar] [CrossRef]
- Halewood, M.; Jamora, N.; Noriega, I.L.; Anglin, N.L.; Wenzl, P.; Payne, T.; Ndjiondjop, M.N.; Guarino, L.; Lava Kumar, P.; Yazbek, M.; et al. Germplasm acquisition and distribution by cgiar genebanks. Plants 2020, 9, 1296. [Google Scholar] [CrossRef]
- Volk, G.M.; Bretting, P.K.; Byrne, P.F. Survey identifies essential plant genetic resources training program components. Crop Sci. 2019, 59, 2308–2316. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, J.; Tibebu, R.; Bart, R.; Beyene, G.; Girma, D.; Kane, N.A.; Mace, E.S.; Mockler, T.; Nickson, T.E.; Taylor, N.; et al. Open access to genetic sequence data maximizes value to scientists, farmers, and society. Glob. Food Sec. 2020, 26, 100411. [Google Scholar] [CrossRef]
- Caldwell, K.S.; Russell, J.; Langridge, P.; Powell, W. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 2006, 172, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Milner, S.G.; Jost, M.; Taketa, S.; Mazón, E.R.; Himmelbach, A.; Oppermann, M.; Weise, S.; Knüpffer, H.; Basterrechea, M.; König, P.; et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 2019, 51, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Amatriaín, M.; Cuesta-Marcos, A.; Endelman, J.B.; Comadran, J.; Bonman, J.M.; Bockelman, H.E.; Chao, S.; Russell, J.; Waugh, R.; Hayes, P.M.; et al. The USDA barley core collection: Genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 2014, 9, e94688. [Google Scholar] [CrossRef]
- Marone, D.; Russo, M.A.; Mores, A.; Ficco, D.B.M.; Laidò, G.; Mastrangelo, A.M.; Borrelli, G.M. Importance of landraces in cereal breeding for stress tolerance. Plants 2021, 10, 1267. [Google Scholar] [CrossRef]
- Ingvordsen, C.H.; Backes, G.; Lyngkjær, M.F.; Peltonen-Sainio, P.; Jahoor, A.; Mikkelsen, T.N.; Jørgensen, R.B. Genome-wide association study of production and stability traits in barley cultivated under future climate scenarios. Mol. Breed. 2015, 35, 84. [Google Scholar] [CrossRef]
- Rasheed, A.; Hao, Y.; Xia, X.; Khan, A.; Xu, Y.; Varshney, R.K.; He, Z. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Mol. Plant 2017, 10, 1047–1064. [Google Scholar] [CrossRef]
- CGIAR Genebank Platform. Available online: https://www.genebanks.org/ (accessed on 25 July 2022).
- Volk, G.M.; Byrne, P.F.; Coyne, C.J.; Flint-Garcia, S.; Reeves, P.A.; Richards, C. Integrating Genomic and Phenomic Approaches to Support Plant Genetic Resources Conservation and Use. Plants 2021, 10, 2260. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Baird, S.J.E. Exploring linkage disequilibrium. Mol. Ecol. Resour. 2015, 15, 1017–1019. [Google Scholar] [CrossRef] [Green Version]
- Long, N.V.; Dolstra, O.; Malosetti, M.; Kilian, B.; Graner, A.; Visser, R.G.F.; van der Linden, C.G. Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2013, 126, 2335–2351. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Draicchio, F.; Bull, H.; Herzig, P.; Maurer, A.; Pillen, K.; Thomas, W.T.B.; Flavell, A.J. Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding. J. Exp. Bot. 2018, 69, 3811–3822. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.M.; Sallam, A.; Stephen Baenziger, P.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from Barley—A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Germán, S.; Pereyra, S.; Hayes, P.M.; Pérez, C.A.; Capettini, F.; Locatelli, A.; Berberian, N.M.; Falconi, E.E.; Estrada, R.; et al. Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. Theor. Appl. Genet. 2015, 128, 501–516. [Google Scholar] [CrossRef] [PubMed]
- Turuspekov, Y.; Ormanbekova, D.; Rsaliev, A.; Abugalieva, S. Genome-wide association study on stem rust resistance in Kazakh spring barley lines. BMC Plant Biol. 2016, 16, 13–21. [Google Scholar] [CrossRef]
- Ziems, L.A.; Hickey, L.T.; Platz, G.J.; Franckowiak, J.D.; Dracatos, P.M.; Singh, D.; Park, R.F. Characterization of Rph24: A gene conferring adult plant resistance to puccinia hordei in Barley. Phytopathology 2017, 107, 834–841. [Google Scholar] [CrossRef]
- Berger, G.L.; Liu, S.; Hall, M.D.; Brooks, W.S.; Chao, S.; Muehlbauer, G.J.; Baik, B.K.; Steffenson, B.; Griffey, C.A. Marker-trait associations in Virginia Tech winter barley identified using genome-wide mapping. Theor. Appl. Genet. 2013, 126, 693–710. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Cuesta-Marcos, A.; Castro, A.J.; von Zitzewitz, J.; Schmitt, M.; Hayes, P.M. Association Mapping of Malting Quality Quantitative Trait Loci in Winter Barley: Positive Signals from Small Germplasm Arrays. Plant Genome 2011, 4, 256–272. [Google Scholar] [CrossRef]
- Li, Z.; Lhundrup, N.; Guo, G.; Dol, K.; Chen, P.; Gao, L.; Chemi, W.; Zhang, J.; Wang, J.; Nyema, T.; et al. Gu in Qingke Barley (Hordeum Vulgare L.) in the Qinghai-Tibet Plateau. Front. Genet. 2020, 11, 638. [Google Scholar] [CrossRef]
- Almerekova, S.; Genievskaya, Y.; Abugalieva, S.; Sato, K.; Turuspekov, Y. Population structure and genetic diversity of two-rowed barley accessions from kazakhstan based on snp genotyping data. Plants 2021, 10, 2025. [Google Scholar] [CrossRef]
- Ramsay, L.; Comadran, J.; Druka, A.; Marshall, D.F.; Thomas, W.T.B.; MacAulay, M.; MacKenzie, K.; Simpson, C.; Fuller, J.; Bonar, N.; et al. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 2011, 43, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Pasam, R.K.; Sharma, R.; Malosetti, M.; van Eeuwijk, F.A.; Haseneyer, G.; Kilian, B.; Graner, A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 2012, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, N.; Jia, T.; Leach, L.; Cockram, J.; Waugh, R.; Ramsay, L.; Thomas, B.; Luo, Z. Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor. Appl. Genet. 2012, 124, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Czembor, J.H.; Czembor, E.; Suchecki, R.; Watson-haigh, N.S. Genome-Wide Association Study for Powdery Mildew and Rusts Adult Plant Resistance in European Spring Barley from Polish Gene Bank. Agronomy 2022, 12, 7. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J.; Bradshaw, J.E. Toward an Evolved Concept of Landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef]
- Mascher, M.; Gundlach, H.; Himmelbach, A.; Beier, S.; Twardziok, S.O.; Wicker, T.; Radchuk, V.; Dockter, C.; Hedley, P.E.; Russell, J.; et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 2017, 544, 427–433. [Google Scholar] [CrossRef]
- Czembor, E.; Czembor, J.H.; Suchecki, R.; Haigh, N.S.W. DArT—Based evaluation of soybean germplasm from Polish Gene Bank. BMC Res. Notes 2021, 14, 343. [Google Scholar] [CrossRef]
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef]
- Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- König, P.; Beier, S.; Basterrechea, M.; Schüler, D.; Arend, D.; Mascher, M.; Stein, N.; Scholz, U.; Lange, M. BRIDGE—A Visual Analytics Web Tool for Barley Genebank Genomics. Front. Plant Sci. 2020, 11, 701. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Li, H.; Zhang, X.; Li, Z.; Qiu, L. Genomics-based plant germplasm research (GPGR). Crop J. 2017, 5, 166–174. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Dziurdziak, J.; Bolc, P.; Wlodarczyk, S.; Puchta, M.; Gryziak, G.; Podyma, W.; Boczkowska, M. Multifaceted analysis of barley landraces collected during gene bank expeditions in poland at the end of the 20th century. Agronomy 2020, 10, 1958. [Google Scholar] [CrossRef]
- Piechota, U.; Czembor, P.C.; Czembor, J.H. Evaluating barley landraces collected in North Africa and the Middle East for powdery mildew infection at seedling and adult plant stages. Cereal Res. Commun. 2020, 48, 179–185. [Google Scholar] [CrossRef]
- Czembor, J.H.; Czembor, E. Mlo resistance to powdery mildew (Blumeria graminis f. sp. hordei) in barley landraces collected in Yemen. Agronomy 2021, 11, 1582. [Google Scholar] [CrossRef]
- Dziurdziak, J.; Podyma, W.; Bujak, H. Tracking Changes in the Spring Barley Gene Pool in Poland during 120 Years of Breeding. Int. J. Mol. Sci. 2022, 23, 4553. [Google Scholar] [CrossRef]
- Friedt, W.; Horsley, R.D.; Poulsen, D.; Government, Q.; Lance, R.C.M.; Ceccarelli, S.; Grando, S.; Capettini, F. Barley Breeding History, Progress, Objectives, and Technology; Ullrich, S.E., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2011; 637p, ISBN 9780470958636. [Google Scholar]
- Tsai, H.Y.; Janss, L.L.; Andersen, J.R.; Orabi, J.; Jensen, J.D.; Jahoor, A.; Jensen, J. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci. Rep. 2020, 10, 3347. [Google Scholar] [CrossRef]
- Karagöz, A.; Özbek, K.; Akar, T.; Ergün, N.; Aydoğan, S.; Sayim, İ. Agro-morphological variation among an ancient world barley collection. Tarim Bilim. Derg. 2017, 23, 444–452. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Schnurbusch, T. Heading date is not flowering time in spring barley. Front. Plant Sci. 2017, 8, 896. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.; Ana, C.; Ernesto, M.C. Major Flowering Time Genes of Barle: Allelic Diversity, Effects, and Comparison with Wheat; Springer: Berlin/Heidelberg, Germany, 2021; Volume 134, ISBN 0123456789. [Google Scholar]
- Wang, J.; Yang, J.; Jia, Q.; Zhu, J.; Shang, Y.; Hua, W.; Zhou, M. A New QTL for Plant Height in Barley (Hordeum vulgare L.) Showing No Negative Effects on Grain Yield. PLoS ONE 2014, 9, e90144. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, P.; Li, H.; Carling, J.; Zhou, M.; Raman, H.; Paul, E.; Hearnden, P.; Maier, C.; Xia, L.; Caig, V.; et al. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom. 2006, 7, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, G.; Ren, X.; Li, C.; Liu, L.; Wang, Q.; Du, B.; Sun, D. QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genet. 2016, 7, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Trait | Description |
---|---|---|
1 | DH | Days number from planting to the plants’ heading stage when half of the heads had emerged for 50% of the plants in a plot (Z55 according to the Zadoks growth scale). |
2 | DMW | Days number from planting to the plants’ early seeds’ milky-waxy maturity stage (Z75 according to Zadoks growth scale). |
3 | DM | Days number from planting to plants’ maturity stage (the Z90 according to Zadoks growth scale). |
4 | DPH | Days number from planting to plants’ harvesting stage (the Z97 according to Zadoks growth scale). |
5 | PH | Plants height (cm): measured under field conditions at maturity stage, from the ground level to the top of spike excluding awns. |
6 | LT | Plants lodging tendency: numeric scale 1–9 (9 vertical/upright, 6—most plants at 45° angle from ground, 3—all plants 20–30° angle from ground, 2—most plants flat/prostrate). |
7 | RN | Row number: numeric scale 1–6 (1—two-rowed; large or small sterile lateral florets, 2—two-rowed, deficient, 3—irregular, 4 six-rowed, awnless or awnleted lateral florets, 5—six-rowed, long awns on lateral florets, 6—other). |
8 | SD | Spike density: numeric scale 3–7 (3—lax, 5—intermediate, 7—dense an average of five typical spikes). |
11 | SL | Spike length (mm): measured from bottom to end of the spike excluding awns (a sample of 15 spikes collected from the experimental field, 5 spikes per replication). |
12 | NGS | Number of grains per spike (sample of 30 spikes collected from the experimental field, 10 spikes per replication, which have been threshing and the seeds were counted). |
9 | GH | Grain awn type: numeric: 1–5 (1—awnless, 2—awnleted, 3—awned, 4—sessile hoods, 5—elevated hoods). |
10 | GHC1 | Grain glume colour: numeric scale 1–4 (1—white, 2—yellow, 3 brown, 4—black). |
13 | GT | Grain type: numeric scale 1–3 (1—naked, 2—semi-covered, 3—covered). |
14 | GHC2 | numeric: 1–5 (1—amber (= normal), 2-tan/red, 3—purple, 4—black/grey, 5—other). |
15 | GC | Grain pericarp colour: numeric scale 1–5 (1—white, 2—tan/red, 3—purple, 4—black, 5—other). |
16 | TGW | Thousand-grain weight (g). |
Trait | DH | DMW | DM | DPH | PH | RN | NGS | TGW | GH | SD | GC | GHC1 | GHC2 | GC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMW | 0.228 * | |||||||||||||
DM | 0.312 ** | 0.427 *** | ||||||||||||
DPH | 0.257 ** | 0.350 ** | 0.941 *** | |||||||||||
PH | −0.260 ** | −0.222 * | −0.232 * | −0.250 ** | ||||||||||
RN | −0.330 ** | −0.099 | −0.077 | −0.083 | 0.097 | |||||||||
NGS | −0.340 ** | −0.036 | −0.100 | −0.117 * | 0.099 | 0.801 *** | ||||||||
TGW | 0.095 | 0.097 | 0.028 | 0.030 | −0.169 * | −0.400 *** | −0.341 ** | |||||||
SD | 0.021 | −0.014 | −0.013 | 0.039 | −0.081 | −0.049 | −0.010 | 0.078 | 0.000 | |||||
GT | 0.016 | 0.016 | −0.001 | −0.015 | −0.023 | −0.102 | −0.136 | 0.214 * | 0.001 | 0.017 | ||||
GHC1 | −0.125 * | −0.004 | −0.047 | −0.050 | 0.007 | 0.306 ** | 0.210 * | −0.058 | 0.000 | −0.015 | 0.007 | |||
GHC2 | −0.070 | 0.007 | 0.000 | 0.002 | 0.030 | 0.202 * | 0.146 * | −0.037 | 0.000 | −0.010 | 0.005 | 0.904 *** | ||
GC | −0.070 | 0.007 | 0.000 | 0.002 | 0.030 | 0.202 * | 0.146 * | −0.037 | 0.000 | −0.010 | 0.005 | 0.904 *** | 1.000 | |
LT | 0.176 * | 0.179 * | 0.028 | 0.040 | −0.427 *** | −0.196 * | −0.146 * | 0.232 * | 0.000 | 0.125 | −0.031 | −0.089 | −0.097 | −0.097 |
Chromosome | DH | DMW | DM | DPH | LT | PH | SD | NGS | TGW |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | 15 | 2 | 0 | 1 |
2 | 1 | 1 | 1 | 1 | 0 | 7 | 4 | 2 | 0 |
3 | 1 | 0 | 2 | 2 | 0 | 14 | 2 | 2 | 0 |
4 | 0 | 1 | 0 | 2 | 0 | 19 | 1 | 1 | 3 |
5 | 1 | 1 | 2 | 1 | 0 | 8 | 1 | 2 | 0 |
6 | 1 | 1 | 0 | 0 | 0 | 7 | 4 | 3 | 0 |
7 | 0 | 0 | 0 | 1 | 1 | 13 | 3 | 1 | 0 |
Un | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
Total | 5 | 6 | 5 | 7 | 1 | 88 | 16 | 11 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czembor, J.H.; Czembor, E. Genome-Wide Association Study of Agronomic Traits in European Spring Barley from Polish Gene Bank. Agronomy 2022, 12, 2135. https://doi.org/10.3390/agronomy12092135
Czembor JH, Czembor E. Genome-Wide Association Study of Agronomic Traits in European Spring Barley from Polish Gene Bank. Agronomy. 2022; 12(9):2135. https://doi.org/10.3390/agronomy12092135
Chicago/Turabian StyleCzembor, Jerzy H., and Elzbieta Czembor. 2022. "Genome-Wide Association Study of Agronomic Traits in European Spring Barley from Polish Gene Bank" Agronomy 12, no. 9: 2135. https://doi.org/10.3390/agronomy12092135
APA StyleCzembor, J. H., & Czembor, E. (2022). Genome-Wide Association Study of Agronomic Traits in European Spring Barley from Polish Gene Bank. Agronomy, 12(9), 2135. https://doi.org/10.3390/agronomy12092135