Exploring the Simultaneous Effect of Total Ion Concentration and K:Ca:Mg Ratio of the Nutrient Solution on the Growth and Nutritional Value of Hydroponically Grown Cichorium spinosum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Setting
2.2. EC and pH Values Monitoring and Water Consumption Determination
2.3. Growth and Yield Parameters
2.4. Nutrient Concentration in Plant Tissues
2.5. Statistical Analyses
3. Results
3.1. EC and pH Levels
3.2. Effects on Growth
3.3. Effect on the Nutrient Composition of Leaf Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tian, H.; Lu, C.; Pan, S.; Yang, J.; Miao, R.; Ren, W.; Yu, Q.; Fu, B.; Jin, F.-F.; Lu, Y.; et al. Optimizing resource use efficiencies in the food–energy–water nexus for sustainable agriculture: From conceptual model to decision support system. Curr. Opin. Environ. Sustain. 2018, 33, 104–113. [Google Scholar] [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural Land Degradation: Processes and Problems Undermining Future Food Security. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzeland, 2020; pp. 17–61. ISBN 9783030497323. [Google Scholar]
- Broadley, M.R.; White, P.J. Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? Proc. Nutr. Soc. 2010, 69, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Singh, B. Genotypic and breeding potential to improve mineral content of vegetable crops: An overview. Int. J. Veg. Sci. 2019, 25, 441–456. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Azeez, M.A.; Adubi, A.O.; Durodola, F.A. Landraces and Crop Genetic Improvement. In Rediscovery of Landraces as a Resource for the Future; IntechOpen: London, UK, 2018; pp. 1–20. [Google Scholar]
- Yfantopoulos, D.; Ntatsi, G.; Gruda, N.; Bilalis, D.; Savvas, D. Effects of the Preceding Crop on Soil N Availability, Biological Nitrogen Fixation, and Fresh Pod Yield of Organically Grown Faba Bean (Vicia faba L.). Horticulturae 2022, 8, 496. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Ntatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical characterization and bulb morphology of Greek Garlic landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef]
- Giorio, P.; Cirillo, V.; Caramante, M.; Oliva, M.; Guida, G.; Venezia, A.; Grillo, S.; Maggio, A.; Albrizio, R. Physiological basis of salt stress tolerance in a landrace and a commercial variety of sweet pepper (Capsicum annuum L.). Plants 2020, 9, 795. [Google Scholar] [CrossRef]
- Shidfar, M.; Keskin, S.; Khah, E.M.; Petropoulos, S.; Ozdemir, F.A.; Gokcen, I.S. RAPD markers reveal genetic variation between Cichorium spinosum L. and Taraxacum sp.; A substantial medicinal plants of Greece. Prog. Nutr. 2018, 20, 153–159. [Google Scholar]
- Liu, J.; Oita, A.; Hayashi, K.; Matsubae, K. Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability 2022, 14, 1042. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Janick, J.; Paris, H. History of Controlled Environment Horticulture: Ancient Origins. HortScience 2022, 57, 236–238. [Google Scholar] [CrossRef]
- Ranganathapura Sathyanarayana, S.; Vishal Gangadhar, W.; Badrinath, M.G.; Ravindra, R.M.; Shriramrao, A.U. Hydroponics: An Intensified Agriculture Practice to Improve Food Production. Rev. Agric. Sci. 2022, 10, 101–114. [Google Scholar] [CrossRef]
- Maheshwari, S. Vertical Farming: Resilience Towards Climate Change. In Urban Growth and Environmental Issues in India; Kateja, A., Jain, R., Eds.; Springer: Singapore, 2021; pp. 207–221. ISBN 978-981-16-4273-9. [Google Scholar]
- Van Gerrewey, T.; Boon, N.; Geelen, D. Vertical farming: The only way is up? Agronomy 2022, 12, 2. [Google Scholar] [CrossRef]
- Corrado, G.; De Micco, V.; Lucini, L.; Miras-Moreno, B.; Senizza, B.; Zengin, G.; El-Nakhel, C.; De Pascale, S.; Rouphael, Y. Isosmotic Macrocation Variation Modulates Mineral Efficiency, Morpho-Physiological Traits, and Functional Properties in Hydroponically Grown Lettuce Varieties (Lactuca sativa L.). Front. Plant Sci. 2021, 12, 678799. [Google Scholar] [CrossRef]
- Pieroni, A.; Sulaiman, N.; Sõukand, R. Chorta (Wild Greens) in Central Crete: The Bio-Cultural Heritage of a Hidden and Resilient Ingredient of the Mediterranean Diet. Biology 2022, 11, 673. [Google Scholar] [CrossRef]
- Motti, R. Wild Edible Plants: A Challenge for Future Diet and Health. Plants 2022, 11, 344. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef]
- Shaheen, S.; Ahmad, M.; Haroon, N. Edible Wild Plants: A Solution to Overcome Food Insecurity. In Edible Wild Plants: An Alternative Approach to Food Security; Springer: Cham, Switzerland, 2017; pp. 41–57. [Google Scholar]
- Corrado, G.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Zarrelli, A.; Giannini, P.; Ritieni, A.; De Pascale, S.; Kyriacou, M.C.; Rouphael, Y. Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae 2021, 7, 211. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Reyes-García, V.; Menendez-Baceta, G.; Aceituno-Mata, L.; Acosta-Naranjo, R.; Calvet-Mir, L.; Domínguez, P.; Garnatje, T.; Gómez-Baggethun, E.; Molina-Bustamante, M.; Molina, M.; et al. From famine foods to delicatessen: Interpreting trends in the use of wild edible plants through cultural ecosystem services. Ecol. Econ. 2015, 120, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Klados, E.; Tzortzakis, N. Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef]
- Papafilippaki, A.; Nikolaidis, N.P. Comparative study of wild and cultivated populations of Cichorium spinosum: The influence of soil and organic matter addition. Sci. Hortic. 2020, 261, 108942. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I.C.F.R. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Vasileios, A.; Ntatsi, G.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018, 239, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Stojković, D.; Pereira, C.; Taofiq, O.; Di Gioia, F.; Tzortzakis, N.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Cotton and cardoon byproducts as potential growing media components for Cichorium spinosum L. commercial cultivation. J. Clean. Prod. 2019, 240, 118254. [Google Scholar] [CrossRef]
- Chatzigianni, M.; Ntatsi, G.; Theodorou, M.; Stamatakis, A.; Livieratos, I.; Rouphael, Y.; Savvas, D. Functional Quality, Mineral Composition and Biomass Production in Hydroponic Spiny Chicory (Cichorium spinosum L.) Are Modulated Interactively by Ecotype, Salinity and Nitrogen Supply. Front. Plant Sci. 2019, 10, 1040. [Google Scholar] [CrossRef]
- Chatzigianni, M.; Aliferis, K.A.; Ntatsi, G.; Savvas, D. Effect of N Supply Level and N Source Ratio on Cichorium spinosum L. Metabolism. Agronomy 2020, 10, 952. [Google Scholar] [CrossRef]
- Ntatsi, G.; Aliferis, K.A.; Rouphael, Y.; Napolitano, F.; Makris, K.; Kalala, G.; Katopodis, G.; Savvas, D. Salinity source alters mineral composition and metabolism of Cichorium spinosum. Environ. Exp. Bot. 2017, 141, 113–123. [Google Scholar] [CrossRef]
- Bautista, A.S.; López-Galarza, S.; Martínez, A.; Pascual, B.; Maroto, J.V. Influence of Cation Proportions of the Nutrient Solution on Tipburn Incidence in Strawberry Plants. J. Plant Nutr. 2009, 32, 1527–1539. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. Effect of different macronutrient cation ratios on macronutrient and water uptake by melon (Cucumis melo) grown in recirculating nutrient solution. J. Plant Nutr. Soil Sci. 2015, 178, 320–332. [Google Scholar] [CrossRef]
- Fanasca, S.; Rouphael, Y.; Cardarelli, M.; Colla, G. The influence of K:Ca:Mg:Na Ratio and total concentration on yield and fruit quality of soilless-grown tomatoes: A modelling approach. Acta Hortic. 2005, 697, 345–350. [Google Scholar] [CrossRef]
- Fallovo, C.; Youssef, R.; Mariateresa, C.; Elvira, R.; Alberto, B.; Giuseppe, C. Yield and quality of leafy lettuce in response to nutrient solution composition and growing season. J. Food Agric. Environ. 2009, 7, 456–462. [Google Scholar]
- Huett, D. Growth, nutrient uptake and tipburn severity of hydroponic lettuce in response to electrical conductivity and K:Ca ratio in solution. Aust. J. Agric. Res. 1994, 45, 251. [Google Scholar] [CrossRef]
- Barickman, T.C.; Horgan, T.E.; Wheeler, J.R.; Sams, C.E. Elevated Levels of Potassium in Greenhouse-grown Red Romaine Lettuce Impacts Mineral Nutrient and Soluble Sugar Concentrations. HortScience 2016, 51, 504–509. [Google Scholar] [CrossRef]
- Luna, M.C.; Martínez-Sánchez, A.; Selma, M.V.; Tudela, J.A.; Baixauli, C.; Gil, M.I. Influence of nutrient solutions in an open-field soilless system on the quality characteristics and shelf life of fresh-cut red and green lettuces (Lactuca sativa L.) in different seasons. J. Sci. Food Agric. 2013, 93, 415–421. [Google Scholar] [CrossRef]
- Chatzigianni, M.; Alkhaled, B.; Livieratos, I.; Stamatakis, A.; Ntatsi, G.; Savvas, D. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically. J. Sci. Food Agric. 2018, 98, 1615–1624. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; Volume 47, ISBN 978-90-481-2531-9. [Google Scholar]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef]
- Savvas, D.; Drakatos, S.; Panagiotakis, I.; Ntatsi, G. NUTRISENSE: A new online portal to calculate nutrient solutions and optimize fertilization of greenhouse crops grown hydroponically. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS), Leuven, Belgium, 21 March 2017; pp. 149–156. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Haroon, M.H.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Zenki, M.; Nose, K.; Tôei, K. Spectrophotometric determination of boron with an azomethine H derivative. Anal. Bioanal. Chem. 1989, 334, 238–241. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I.C.F.R. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Zeghichi, S.; Kallithraka, S.; Simopoulos, A.P. Nutritional Composition of Molokhia (Corchorus olitorius) and Stamnagathi (Cichorium spinosum). In Plants in Human Health and Nutrition Policy; Karger: Basel, Switzerland, 2003; pp. 1–21. [Google Scholar]
- Karley, A.J.; White, P.J. Moving cationic minerals to edible tissues: Potassium, magnesium, calcium. Curr. Opin. Plant Biol. 2009, 12, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Nazarideljou, M.J.; Haghshenas, M.; Jaberian Hamedan, H.; Ferrante, A. Growth, yield and antioxidant capacity of strawberry under various K+ :Ca ++ ratios in hydroponic culture. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2019, 69, 105–113. [Google Scholar] [CrossRef]
- Gustiar, F.; Munandar, M.; Ningsih, S.W.; Ammar, M. Biofortification of calcium on mustard (Brassica juncea L.) and lettuce (Lactuca sativa) cultivated in floating hydroponic system. Bul. Agroteknologi 2020, 1, 27. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Response of tomatoes (Lycopersicon esculentum) to an unequal distribution of nutrients in the root environment. In Plant Nutrition—Physiology and Applications; Van Beusichem, M.L., Ed.; Springer: Dordrecht, The Netherlands, 1990; pp. 509–514. ISBN 978-94-009-0585-6. [Google Scholar]
- Bryan, N.S.; Alexander, D.D.; Coughlin, J.R.; Milkowski, A.L.; Boffetta, P. Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food Chem. Toxicol. 2012, 50, 3646–3665. [Google Scholar] [CrossRef]
- Chan, T.Y.K. Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicol. Lett. 2011, 200, 107–108. [Google Scholar] [CrossRef]
- Druart, N. Nitrate assimilation in chicory roots (Cichorium intybus L.) which acquire radial growth. J. Exp. Bot. 2000, 51, 539–546. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A. Producing Nitrate-free Endive Heads: Effect of Nitrogen Form on Growth, Yield, and Ion Composition of Endive. J. Am. Soc. Hortic. Sci. 1997, 122, 140–145. [Google Scholar] [CrossRef]
- Santamaria, P.; Gonnella, M.; Elia, A.; Parente, A.; Serio, F. Ways of Redicing Rocket Salad Nitrate Content. Acta Hortic. 2001, 548, 529–536. [Google Scholar] [CrossRef]
- O’Brien, J.A.; Vega, A.; Bouguyon, E.; Krouk, G.; Gojon, A.; Coruzzi, G.; Gutiérrez, R.A. Nitrate Transport, Sensing, and Responses in Plants. Mol. Plant 2016, 9, 837–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojciechowska, R.; Kołton, A.; Długosz-Grochowska, O.; Knop, E. Nitrate content in Valerianella locusta L. plants is affected by supplemental LED lighting. Sci. Hortic. 2016, 211, 179–186. [Google Scholar] [CrossRef]
- Długosz-Grochowska, O.; Wojciechowska, R.; Kruczek, M.; Habela, A. Supplemental lighting with LEDs improves the biochemical composition of two Valerianella locusta (L.) cultivars. Hortic. Environ. Biotechnol. 2017 585 2017, 58, 441–449. [Google Scholar] [CrossRef]
- Viršilė, A.; Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Miliauskienė, J.; Jankauskienė, J.; Novičkovas, A.; Samuolienė, G. Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce. J. Sci. Food Agric. 2019, 99, 6608–6619. [Google Scholar] [CrossRef] [PubMed]
- Zamaniyan, M.; Panahandeh, J.; Tabatabaei, S.J.; Motallebie-Azar, A. Effects of different ratios of K:Ca in nutrient solution on growth, yield and chicon quality of witloof chicory (Cichorium intybus L.). Int. J. AgriSci. 2012, 2, 1137–1142. [Google Scholar]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient deprivation eustress elicits differential secondary metabolites in red and green-pigmented butterhead lettuce grown in a closed soilless system. J. Sci. Food Agric. 2019, 99, 6962–6972. [Google Scholar] [CrossRef]
Nutrient Solutions | |||||
---|---|---|---|---|---|
Treatment Name | L-50:40:10 | L-40:50:10 | H-50:40:10 | H-40:50:10 | Replenishment |
EC (dS/m) | 2.4 | 3.6 | 2.2 | ||
K:Ca:Mg | 50:40:10 | 40:50:10 | 50:40:10 | 40:50:10 | 60:32:8 |
pH | 5.6 | 6.1 | |||
K+ (mmol/L) | 6.93 | 5.14 | 10.69 | 7.9 | 7.54 |
Ca2+ (mmol/L) | 5.54 | 6.52 | 8.55 | 10.07 | 4.02 |
Mg2+ (mmol/L) | 1.39 | 1.30 | 2.14 | 2.01 | 1.01 |
SO42− (mmol/L) | 3.08 | 5.18 | 1.98 | ||
NH4+ (mmol/L) | 1.15 | 1.87 | 1.68 | ||
NO3− (mmol/L) | 14.17 | 21.97 | 11.4 | ||
H2PO4− (mmol/L) | 1.4 | 1.12 | |||
Fe (μmol/L) | 20 | 14.88 | |||
Mn++ (μmol/L) | 9 | 8.37 | |||
Zn++ (μmol/L) | 5 | 3.72 | |||
Cu++ (μmol/L) | 0.8 | 0.65 | |||
B (μmol/L) | 30 | 23.25 | |||
Mo (μmol/L) | 0.5 | 0.47 | |||
Cl− (μmol/L) | 0.4 | ||||
Na++ (μmol/L) | 0.6 | ||||
HCO3− (μmol/L) | 0.4 |
Main Effects | |||||
---|---|---|---|---|---|
Factor | Treatment | FW (g) | DW (g) | LN | LA (cm2) |
EC level | L | 9.179 | 0.815 | 20.98 | 137.75 |
H | 7.8625 | 0.823 | 17.56 | 123.43 | |
K:Ca:Mg ratio | 40:50:10 | 7.763 | 0.766 | 18.19 | 123.67 |
50:40:10 | 9.279 | 0.873 | 20.34 | 137.50 | |
Statistical Significance | |||||
EC | NS | NS | NS | NS | |
K:Ca:Mg ratio | NS | NS | NS | NS | |
EC × K:Ca:Mg ratio | NS | NS | NS | NS |
Main Effects | |||||
---|---|---|---|---|---|
Factor | Treatment | K (mg/g) | Ca (mg/g) | Mg (mg/g) | P (mg/g) |
EC level | L | 51.25 | 3.68 | 2.27 | 7.66 |
H | 56.75 | 3.72 | 2.074 | 8.62 | |
K:Ca:Mg ratio | 40:50:10 | 54.00 | 4.31 | 2.17 | 8.24 |
50:40:10 | 54.00 | 3.10 | 2.17 | 8.04 | |
Statistical Significance | |||||
EC | * | NS | NS | NS | |
K:Ca:Mg ratio | NS | * | NS | NS | |
EC × K:Ca:Mg ratio | NS | NS | NS | NS |
Main Effects | |||||||
---|---|---|---|---|---|---|---|
Factor | Treatment | Fe (μg/g) | Mn (μg/g) | B (μg/g) | Zn (μg/g) | Cu (μg/g) | Na (mg/g) |
EC level | L | 114.69 | 131.7 a | 63.21 | 112.59 a | 22.5 | 0.68 |
H | 110.75 | 112.79 b | 62.87 | 99.28 b | 16.88 | 0.66 | |
K:Ca:Mg ratio | 40:50:10 | 116.11 | 122.68 | 64.53 | 105.84 | 21.12 | 0.69 |
50:40:10 | 109.33 | 121.82 | 61.55 | 106.03 | 18.26 | 0.66 | |
Statistical Significance | |||||||
EC | NS | * | NS | * | NS | NS | |
K:Ca:Mg ratio | NS | NS | NS | NS | NS | NS | |
EC × K:Ca:Mg ratio | NS | NS | NS | NS | NS | NS |
Main Effects | |||
---|---|---|---|
Factor | Treatment | NO3-N (mg kg−1 fw) | Total N (mg g−1 dw) |
EC level | L | 721.21 b | 48.99 |
H | 933.28 a | 47.98 | |
K:Ca:Mg ratio | 40:50:10 | 822.53 | 49.05 |
50:40:10 | 833.53 | 47.92 | |
Statistical Significance | |||
EC | * | NS | |
K:Ca:Mg ratio | NS | NS | |
EC × K:Ca:Mg ratio | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voutsinos-Frantzis, O.; Ntatsi, G.; Karavidas, I.; Neofytou, I.; Deriziotis, K.; Ropokis, A.; Consentino, B.B.; Sabatino, L.; Savvas, D. Exploring the Simultaneous Effect of Total Ion Concentration and K:Ca:Mg Ratio of the Nutrient Solution on the Growth and Nutritional Value of Hydroponically Grown Cichorium spinosum L. Agronomy 2022, 12, 2214. https://doi.org/10.3390/agronomy12092214
Voutsinos-Frantzis O, Ntatsi G, Karavidas I, Neofytou I, Deriziotis K, Ropokis A, Consentino BB, Sabatino L, Savvas D. Exploring the Simultaneous Effect of Total Ion Concentration and K:Ca:Mg Ratio of the Nutrient Solution on the Growth and Nutritional Value of Hydroponically Grown Cichorium spinosum L. Agronomy. 2022; 12(9):2214. https://doi.org/10.3390/agronomy12092214
Chicago/Turabian StyleVoutsinos-Frantzis, Orfeas, Georgia Ntatsi, Ioannis Karavidas, Ioannis Neofytou, Konstantinos Deriziotis, Andreas Ropokis, Beppe Benedetto Consentino, Leo Sabatino, and Dimitrios Savvas. 2022. "Exploring the Simultaneous Effect of Total Ion Concentration and K:Ca:Mg Ratio of the Nutrient Solution on the Growth and Nutritional Value of Hydroponically Grown Cichorium spinosum L." Agronomy 12, no. 9: 2214. https://doi.org/10.3390/agronomy12092214
APA StyleVoutsinos-Frantzis, O., Ntatsi, G., Karavidas, I., Neofytou, I., Deriziotis, K., Ropokis, A., Consentino, B. B., Sabatino, L., & Savvas, D. (2022). Exploring the Simultaneous Effect of Total Ion Concentration and K:Ca:Mg Ratio of the Nutrient Solution on the Growth and Nutritional Value of Hydroponically Grown Cichorium spinosum L. Agronomy, 12(9), 2214. https://doi.org/10.3390/agronomy12092214