Consecutive Application Effects of Washed Rice Water on Plant Growth, Soil Chemical Properties, Nutrient Leaching, and Soil Bacterial Population on Three Different Soil Textures over Three Planting Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Washed Rice Water Preparation
2.3. Soil Collection and Preparation
2.4. Experimental Site
2.5. Planting and Treatments Application
2.6. Plant and Leaching Parameters Determination
2.7. Plant Growth and Nutrient Contents Analyses
2.8. Washed Rice Water Analysis
2.9. Soil Analyses
2.10. Experimental Design and Data Analysis
3. Results
3.1. Washed Rice Water and Soil Properties
3.2. Effect of Soil Types, Treatments, and Planting Cycles on Plant Growth Parameters
3.3. Nutrients Leaching and Soil Moisture
3.4. Plant Nutrient Contents
3.5. Soil Nutrient Contents
3.6. Relationships between Plant Growth Parameters and Soil Bacterial Population
3.7. Water Productivity and Water Use Efficiency of Choy Sum
4. Discussion
4.1. Plant Growth, Plant Nutrient Content, and Soil Nutrient Content
4.2. Nutrient Leaching
4.3. Water Productivity and Water Use Efficiency of Choy Sum
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juliano, B.O. Rice in Human Nutrition; FAO Food and Nutrition Series: Rome, Italy, 1993. [Google Scholar]
- Malakar, M.C.; Banerjee, S.N. Effect of cooking rice with different volumes of water on the loss of nutrients and on digestibility of rice in vitro. Food Res. 1959, 24, 751–756. [Google Scholar] [CrossRef]
- Juliano, B.O. Rice: Chemistry and Technology, 2nd ed.; American Association of Cereal Chemists: Eagan, MN, USA, 1985. [Google Scholar]
- Nabayi, A.; Teh, C.B.S.; Ngai, T.P.; Tan, A.K.Z. Wastewater from washed rice water as plant nutrient source: Current understanding and knowledge gaps. Pertanika J. Sci. Technol. 2021, 29, 1347–1369. [Google Scholar] [CrossRef]
- Akib, M.A.; Setiawaty, H.; Haniarti, H.; Sulfiah, S. Improving the quality of “Leri” rice washing waste by different period of fermentation and yeast concentration as an alternative liquid organic fertilizer. Int. J. Agric. Syst. 2015, 2, 153–162. [Google Scholar]
- Hariyadi, S.P. The Effect of watering on rice washing water, MSG water, and AC (Air Conditioner) wastewater on yields components and tomato yields (Lycopersicon esculentum L.) in the deep peatland. Univers. J. 2020, 7, 1–12. [Google Scholar]
- He, Q.; Feng, C.; Chen, N.; Zhang, D.; Hou, T.; Dai, J.; Hao, C.; Mao, B. Characterizations of dissolved organic matter and bacterial community structures in rice washing drainage (RWD)-based synthetic groundwater denitrification. Chemosphere 2019, 215, 142–152. [Google Scholar] [CrossRef]
- Nabayi, A.; Sung, C.T.B.; Zuan, A.T.K.; Paing, T.N. Fermentation of washed rice water increases beneficial plant bacterial population and nutrient concentrations. Sustainability 2021, 13, 1–19. [Google Scholar] [CrossRef]
- Dini, I.R.; Salbiah, D. Growth and pepper yields (Capsicum annuum L.) by giving a formulation of biological fertilizer of cellulolytic bacteria based on organic liquid waste. In Proceedings of the Journal of Physics: Conference Series, Pekanbaru, Indonesia, 10 September 2019; IOP Publishing: Bristol, UK, 2019; Volume 1351, p. 12097. [Google Scholar]
- Park, J. Environment and health: An overview of current trends at WHO and OECD. J. Environ. Health Sci. 2013, 39, 299–311. [Google Scholar] [CrossRef]
- United Nations, G.A. United Nations, G.A. United Nations World Water Assessment Programme (UNWWAP). In The World Water Development Report; United Nations: Paris, France, 2016; pp. 1–148. [Google Scholar]
- Khalid, S.; Shahid, M.; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef]
- Winance, G.M.; Ernaningsih, D.; Eting, D.E. Effect of utilization of rice washing water and eggshells on the growth of tomato plants (Lycopersium escuslentum Mill). BIOS J. Pendidik. Biol. dan Pengajaran 2018, 1, 1–9. [Google Scholar]
- The Jakarta Post Village in Bogor Uses Leftover Rice Water to Grow Plants. Jakarta Post News Desk 2017. Village in Bogor Uses Leftover Rice Water to Grow plants-City-The Jakarta Post. Available online: https://www.thejakartapost.com/news/2017/10/07/village-in-bogor-uses-leftover-rice-water-to-grow-plants.html (accessed on 26 May 2021).
- Supraptiningsih, L.K.; Nuriyanti, R.; Sutrisno, A. Processing household waste (washed rice water) into liquid organic fertilizer in probolinggo regency empowering. J. Pengabdi. Masy. Fak. Psikol. 2019, 3, 12–20. [Google Scholar]
- Iskarlia, G.R. The growth of hydroponic mustard plant (Brassica rapa L.) using the nutrition of washed rice water and chicken egg shells. Agric Sains J. Budid. Tanam. Perkeb. Politek. Hasnur. 2017, 3, 42–51. [Google Scholar]
- Ratnadi, N.W.Y.; Sumardika, N.I.; Setiawan, N.A.G. Effect of watering rice washing water and urea fertilizer with different concentrations on the growth of henna plants (Impatiens balsamina L.). J. Biol. Educ. 2014, 1, 1–9. [Google Scholar]
- Leandro, M. Effect of Rice Wash Water Concentration on Growth of Tomato and Eggplant Plants. Available online: http://cikaciko.blogspot.com/2009/01/PengaruhKonsentrasiAirCucianBerasterhadapPertumbuhanTanamanTomatdanTerong.html (accessed on 18 January 2021).
- Bahar, A. Pengaruh pemberian limbah air cucian beras terhadap pertumbuhan tanaman kangkung darat (Ipomoea reptans Poir). J. Ilm. Mhs. Fak. Pertan. 2016, 3, 1–9. [Google Scholar]
- Wardiah, L.; Hafnati, L.R. Potensi limbah air cucian beras sebagai pupuk organik cair pada pertumbuhan pakchoy (Brassica rapa L.). J. Biol. Edukasi 2014, 6, 34–38. [Google Scholar]
- Istiqomah, N. Efektivitas pemberian air cucian beras coklat terhadap produktivitas tanaman kacang hijau (Phaseolus radiatus L.) pada lahan rawa lebak. Ziraa’ah 2012, 33, 99–108. [Google Scholar]
- Ariwibowo, F. Utilization of Chicken Eggshells and Rice Washed Water on the Growth of Tomato Plants (Solonum Lycopercium L.) with Hydroponic Growing Media. Unpublished Undergraduate Thesis, Universitas Muhammadiah Surakarta, Surakarta, Indonesia, 2012. [Google Scholar]
- Siagian, A.S. Response of Organic Fertilizer to Liquid Water Wash on Growth and Production of Lettuce (Lactuca sativa L.). Unpublished Undergraduate Thesis, University of Medan Area Faculty of Agricultural Studies Program of Agrotechnology, Medan, Indonesia, 2018. Available online: http://repository.uma.ac.id/handle/123456789/10578 (accessed on 26 May 2021).
- Wulandari, C.G.M.; Muhartini, S.; Trisnowati, S. Pengaruh air cucian beras merah dan beras putih terhadap pertumbuhan dan hasil selada (Lactuca sativa L.). Vegetalika 2012, 1, 24–35. [Google Scholar]
- Karlina, A.; Yursida; Ruli, J.P. Growth response of water spinach (Ipomea reptans) to the application of liquid organic fertilizer from cow urine and organic fertilizer in tidal land overflow type C. J. Ilm. Agric. 2013, 1, 1–16. [Google Scholar]
- Sairi, F.; Ismail, N.; Ibrahim, N. The effect of FRAW towards the growth of chilli seedlings and its associated microorganisms. Malays. J. Microbiol. 2018, 14, 606–610. [Google Scholar]
- Nabayi, A.; Sung, C.T.B.; Zuan, A.T.K.; Paing, T.N.; Akhir, N.I.M. Chemical and microbial characterization of washed rice water waste to assess its potential as plant fertilizer and for increasing soil health. Agronomy 2021, 11, 2391. [Google Scholar] [CrossRef]
- Austin, D.F. Water spinach (Ipomoea aquatica, Convolvulaceae): A food gone wild. Ethnobot. Res. Appl. 2007, 5, 123–146. [Google Scholar] [CrossRef]
- Wiersema, J.H.; León, B. World Economic Plants: A Standard Reference; CRC press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Vimala, P.; Chan, S.K. Tanah dan pembajaan. Panduan pengeluaran sayur-sayuran. Malays. Agric. Res. Dev. Inst. (MARDI) 1990, 1, 1–47. [Google Scholar]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.R.; Plank, C.O. Preparation of plant tissue for laboratory analysis. Methods Plant Anal. 1998, 37, 37–49. [Google Scholar]
- Heydari, N. Water productivity in agriculture: Challenges in concepts, terms and values. Irrig. Drain. 2014, 63, 22–28. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Wiley: Hoboken, NJ, USA, 1983; Volume 9, pp. 539–579. [Google Scholar]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA Inc.: Phoenix, AZ, USA; SSSA Inc. Publishers: New York, NY, USA, 1982; Volume 9, pp. 199–224. [Google Scholar]
- Skjemstad, J.O.; Baldock, J.A. Total and organic carbon. In Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2007; pp. 225–239. [Google Scholar]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA Inc.: Phoenix, AZ, USA; SSSA Inc. Publishers: New York, NY, USA, 1982; Volume 9, pp. 159–165. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of soil Analysis. Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; ASA Inc.: Phoenix, AZ, USA; SSSA Inc. Publishers: Madison, WI, USA, 1986; Volume 9, pp. 383–411. [Google Scholar]
- Richards, L.A. Pressure-membrane apparatus, construction and use. Agric. Eng. 1947, 28, 451–454. [Google Scholar]
- Tan, K.Z.; Radziah, O.; Halimi, M.S.; Khairuddin, A.R.; Habib, S.H.; Shamsuddin, Z.H. Isolation and characterization of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. Am. J. Agric. Biol. Sci. 2014, 9, 342–360. [Google Scholar] [CrossRef]
- Thomas, P.; Sekhar, A.C.; Upreti, R.; Mujawar, M.M.; Pasha, S.S. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnol. Rep. 2015, 8, 45–55. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Nabayi, A.; Teh, C.B.S.; Husni, M.H.A.; Sulaiman, Z. Plant growth, nutrient content and water use of rubber (Hevea brasiliensis) seedlings grown using root trainers and different irrigation systems. Pertanika J. Trop. Agric. Sci. 2018, 41, 251–270. [Google Scholar]
- Feng, G.; Zhang, Y.; Chen, Y.; Li, Q.; Chen, F.; Gao, Q.; Mi, G. Effects of nitrogen application on root length and grain yield of rain-fed maize under different soil types. Agron. J. 2016, 108, 1656–1665. [Google Scholar] [CrossRef]
- Kalsum, U.S.; Fatimah; Wasonowati, C. Effectiveness of washed rice water provision on growth and yield of white oyster mushroom (Pleurotus ostreatus). J. Agrovigor 2011, 4, 86–92. [Google Scholar]
- Mosharrof, M.; Uddin, M.K.; Sulaiman, M.F.; Mia, S.; Shamsuzzaman, S.M.; Haque, A.N.A. Combined application of rice husk biochar and lime increases phosphorus availability and maize yield in an acidic soil. Agriculture 2021, 11, 793. [Google Scholar] [CrossRef]
- Islam, M.M.; Karim, A.J.; Jahiruddin, M.; Majid, N.M.; Miah, M.G.; Ahmed, M.M.; Hakim, M.A. Effects of organic manure and chemical fertilizers on crops in the radish-stem amaranth-Indian spinach cropping pattern in homestead area. Aust. J. Crop Sci. 2011, 5, 1370–1378. [Google Scholar]
- Petrucci; Ralph, H.; Geoffrey, H.F.; Jeffrey, D.M.; Bissonnette, C. General Chemistry: Principles and Modern Applications, 10th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Hugo, L.F.; Yetnerberk, S. Developments in Sorghum Bread Making; Woodhead Publishing Limited: Sawston, UK, 2005. [Google Scholar]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
Parameters | F0 | F3 | Tap Water |
---|---|---|---|
pH | 6.53 ± 0.02 | 4.53 ± 0.08 | 6.58 ± 0.02 |
EC (µS cm−1) | 285.83 ± 34.53 | 551.30 ± 21.42 | 125.36 ± 28.21 |
Total C (mg kg−1) | 2850.23 ± 120.74 | 2160.43 ± 401.23 | 30.02 ± 2.23 |
S (mg kg−1) | 110.10 ± 40.39 | 120.62 ± 10.57 | 100.21 ± 10.31 |
Total N (mg kg−1) | 160.11 ± 5.20 | 220.11 ± 41.62 | 30.20 ± 4.12 |
-N (mg kg−1) | 10.50 ± 1.68 | 11.80 ± 0.36 | 1.44 ± 0.04 |
(mg kg−1) | 5.48 ± 1.41 | 5.40 ± 0.06 | 1.45 ± 0.03 |
P (mg kg−1) | 90.92 ± 3.76 | 209.81 ± 11.21 | 0.05 ± 0.02 |
K (mg kg−1) | 118.11 ± 14.21 | 135.80 ± 9.22 | 5.74 ± 0.15 |
Ca (mg kg−1) | 8.52 ± 2.10 | 13.61 ± 0.53 | 10.95 ± 0.06 |
Mg (mg kg−1) | 27.9 ± 1.76 | 66.81 ± 3.22 | 0.97 ± 0.06 |
Cu (mg kg−1) | 0.188 ± 0.01 | 0.206 ± 0.03 | 0.002 ± 0.0001 |
Zn (mg kg−1) | 0.074 ± 0.01 | 0.253 ± 0.01 | 0.005 ± 0.0001 |
B (mg kg−1) | 0.121 ± 0.02 | 0.183 ± 0.02 | 0.001 ± 0.0001 |
Parameters | Sandy Clay Loam | Silt Loam | Clay |
---|---|---|---|
pH | 5.32 ± 0.21 | 6.3 ± 0.11 | 6.8 ± 0.26 |
EC (dS m−1) | 0.72 ± 0.05 | 1.03 ± 0.10 | 0.62 ± 0.04 |
Clay (<2 μm) | 21.59 ± 1.21 | 17.8 ± 1.01 | 65.19 ± 2.76 |
Silt (2–50 μm) | 6.63 ± 0.67 | 54.69 ± 1.37 | 9.28 ± 0.07 |
Sand (>50 μm) | 71.78 ± 3.41 | 27.51 ± 1.62 | 25.53 ± 1.60 |
Total C (%) | 1.01 ± 0.05 | 1.47 ± 0.10 | 1.75 ± 0.03 |
Total N (%) | 0.08 ± 0.01 | 0.12 ± 0.01 | 0.15 ± 0.01 |
N (mg kg−1) | 38.82 ± 0.24 | 31.9 ± 1.26 | 34.54 ± 1.75 |
N (mg kg−1) | 3.70 ± 0.12 | 5.96 ± 0.42 | 4.85 ± 0.32 |
P (mg kg−1) | 12.40 ± 0.41 | 23.60 ± 1.02 | 19.20 ± 0.81 |
K (mg kg−1) | 1053.21 ± 0.08 | 382.20 ± 0.05 | 588.90 ± 0.03 |
Ca (mg kg−1) | 1578.36 ± 0.52 | 1082.01 ± 0.11 | 1558.01 ± 0.22 |
Mg (mg kg−1) | 337.20 ± 0.11 | 206.40 ± 0.03 | 114.00 ± 0.05 |
Cu (mg kg−1) | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.22 ± 0.01 |
Zn (mg kg−1) | 2.41 ± 0.05 | 0.50 ± 0.01 | 2.19 ± 0.07 |
B (mg kg−1) | 0.18 ± 0.01 | 0.31 ± 0.02 | 0.54 ± 0.01 |
Bulk density (Mg m−3) | 1.50 ± 0.04 | 1.60 ± 0.04 | 1.55 ± 0.02 |
CEC (cmol kg−1) | 7.24 ± 0.13 | 6.33 ± 0.14 | 11.24 ± 0.30 |
Volumetric soil water content (m3 m−3) | |||
Saturation | 0.62 ± 0.03 | 0.73 ± 0.02 | 0.78 ± 0.03 |
Field capacity | 0.31 ± 0.01 | 0.37 ± 0.01 | 0.45 ± 0.01 |
Permanent wilting point | 0.13 ± 0.01 | 0.21 ± 0.01 | 0.26 ± 0.01 |
Parameters | F0 | F3 | NPK | Tap Water |
---|---|---|---|---|
Total C (mg) | 59850 ± 1120 | 45360 ± 1400 | − | 1320 ± 60 |
S (mg) | 2310 ± 240 | 2530 ± 160 | − | 1130 ± 160 |
Total N (mg) | 3310 ± 820 | 4620 ± 320 | 3830 ± 160 | 1131 ± 80 |
-N (mg) | 220 ± 10 | 250 ± 60 | − | 91 ± 10 |
(mg) | 120 ± 10 | 110 ± 40 | − | 90 ± 10 |
P (mg) | 1900 ± 80 | 4400 ± 210 | 2730 ± 140 | 31 ± 10 |
K (mg) | 2510 ± 100 | 2850 ± 120 | 3610 ± 120 | 361 ± 20 |
Ca (mg) | 180 ± 10 | 280 ± 20 | − | 689 ± 40 |
Mg (mg) | 580 ± 20 | 1400 ± 70 | − | 61 ± 7 |
Cu (mg) | 3.92 ± 0.11 | 4.33 ± 0.23 | − | 0.151 ± 0.01 |
Zn (mg) | 1.51 ± 0.06 | 5.32 ± 0.31 | − | 0.333 ± 0.01 |
B (mg) | 2.54 ± 0.13 | 3.81 ± 0.13 | − | 0.175 ± 0.01 |
Soil Type | Treatment | HGT | SFW | SDW | LFW | LDW | TLA | SLA | Chlorophyll |
---|---|---|---|---|---|---|---|---|---|
cm | g plant−1 | cm2 | g cm−2 | µg cm−2 | |||||
CL | NPK | 34.16 ± 1.22 a | 18.76 ± 0.64 d | 1.92 ± 0.10 b | 71.49 ± 2.13 a | 6.19 ± 0.32 a | 1525.11 ± 112.60 a | 202.82 ± 13.20 abc | 33.92 ± 0.74 a |
F3 | 35.01 ± 0.62 a | 26.23 ± 0.47 b | 2.29 ± 0.12 a | 65.83 ± 1.25 ab | 5.70 ± 0.25 ab | 1483.09 ± 98.20 a | 216.07 ± 16.20 abc | 33.13 ± 0.74 ab | |
F0 | 31.93 ± 0.92 b | 17.34 ± 0.28 e | 1.76 ± 0.11 b | 52.06 ± 2.12 cd | 4.92 ± 0.23 bcd | 1061.73 ± 79.30 de | 182.84 ± 10.20 bc | 31.51 ± 0.65 bc | |
CON | 27.90 ± 0.99 ef | 8.05 ± 0.21 i | 0.75 ± 0.07 e | 35.75 ± 2.10 fg | 3.29 ± 0.25 fg | 712.27 ± 21.60 fg | 200.16 ± 14.40 abc | 28.88 ± 1.71 d | |
SL | NPK | 30.46 ± 1.01 cd | 17.30 ± 0.31 e | 1.71 ± 0.10 b | 55.75 ± 2.87 cd | 4.92 ± 0.32 bcd | 974.82 ± 21.60 e | 188.17 ± 10.62 bc | 32.11 ± 2.01 ab |
F3 | 31.44 ± 0.76 c | 17.68 ± 0.41 de | 1.66 ± 0.08 b | 50.92 ± 2.15 cde | 4.44 ± 0.08 cde | 947.12 ± 36.20 e | 198.51 ± 11.60 ab | 32.99 ± 1.65 ab | |
F0 | 29.14 ± 0.59 de | 14.63 ± 0.37 f | 1.27 ± 0.08 c | 42.09 ± 1.89 ef | 3.75 ± 0.98 ef | 784.42 ± 22.30 f | 194.91 ± 12.70 bc | 31.48 ± 1.43 bc | |
CON | 27.15 ± 0.55 f | 10.12 ± 0.26 h | 0.89 ± 0.03 de | 31.36 ± 1.23 g | 2.69 ± 0.56 g | 593.72 ± 34.21 g | 214.11 ± 14.30 abc | 29.70 ± 0.96 cd | |
SCL | NPK | 34.30 ± 1.10 a | 17.83 ± 0.29 de | 2.01 ± 0.71 ab | 58.81 ± 2.54 bc | 5.44 ± 0.21 ab | 1301.93 ± 78.50 bc | 218.92 ± 10.62 ab | 31.25 ± 0.56 bc |
F3 | 34.71 ± 1.17 a | 33.64 ± 1.05 a | 2.36 ± 0.91 a | 55.55 ± 2.88 cd | 5.26 ± 0.16 bc | 1434.97 ± 98.99 ab | 258.33 ± 17.80 a | 32.76 ± 1.22 ab | |
F0 | 33.32 ± 1.21 ab | 22.47 ± 0.89 c | 1.86 ± 0.86 b | 54.78 ± 3.01 cd | 5.19 ± 0.27 bcd | 1192.13 ± 85.64 cd | 199.59 ± 13.70 abc | 31.94 ± 1.43 ab | |
CON | 28.68 ± 0.93 ef | 12.62 ± 0.67 g | 1.20 ± 0.79 cd | 47.40 ± 2.52 de | 4.39 ± 0.62 de | 711.14 ± 23.70 fg | 155.68 ± 12.40 c | 28.14 ± 0.78 d | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.160 |
Soil Type | Treatment | VMC | pH | ||
---|---|---|---|---|---|
% | mg L−1 | ||||
CL | NPK | 31.80 ± 0.43 a | 3.78 ± 0.10 e | 112.04 ± 8.61 cde | 118.22 ± 5.41 cde |
F3 | 32.07 ± 0.27 a | 4.11 ± 0.20 de | 119.70 ± 7.2 cde | 138.38 ± 10.1 bcd | |
F0 | 31.64 ± 0.73 a | 6.00 ± 0.32 a | 99.15 ± 6.91 def | 183.53 ± 10.62 a | |
CON | 31.55 ± 1.12 a | 4.57 ± 0.21 cde | 64.30 ± 4.32 f | 101.56 ± 8.62 de | |
SL | NPK | 31.99 ± 1.43 a | 5.10 ± 0.31 bc | 113.77 ± 9.43 cde | 87.64 ± 6.32 e |
F3 | 31.70 ± 0.67 a | 5.66 ± 0.24 ab | 132.43 ± 8.2 bcd | 173.47 ± 8.54 ab | |
F0 | 32.52 ± 1.54 a | 5.67 ± 0.26 ab | 123.84 ± 6.55 cd | 121.56 ± 10.87 cde | |
CON | 32.57 ± 1.54 a | 5.13 ± 0.27 bc | 82.41 ± 5.21 ef | 90.14 ± 7.54 e | |
SCL | NPK | 29.18 ± 0.88 b | 4.31 ± 0.21 cde | 168.60 ± 7.92 b | 113.54 ± 9.65 cde |
F3 | 29.18 ± 0.47 b | 4.94 ± 0.21 bcd | 230.37 ± 14.3 a | 152.06 ± 11.87 abc | |
F0 | 29.45 ± 0.65 b | 5.63 ± 0.36 ab | 148.07 ± 7.92 bc | 147.33 ± 12.61 abc | |
CON | 28.83 ± 0.66 b | 5.14 ± 0.28 bc | 125.67 ± 8.43 cd | 127.42 ± 7.66 cde | |
p-value | 0.02 | <0.001 | <0.001 | <0.001 |
Parameters | HGT | LFNUM | SFW | SDW | LFW | LDW | TLA | SLA | CHP |
---|---|---|---|---|---|---|---|---|---|
LFNUM | 0.878 ** | ||||||||
SFW | 0.667 ** | 0.438 * | |||||||
SDW | 0.810 ** | 0.661 ** | 0.932 ** | ||||||
LFW | 0.742 ** | 0.516 * | 0.818 ** | 0.788 ** | |||||
LDW | 0.774 ** | 0.557 * | 0.833 ** | 0.817 ** | 0.992 ** | ||||
TLA | 0.757 ** | 0.499 * | 0.886 ** | 0.840 ** | 0.960 ** | 0.957 ** | |||
SLA | 0.585 ** | 0.293 ns | 0.861 ** | 0.762 ** | 0.766 ** | 0.758 ** | 0.894 ** | ||
CHP | 0.697 ** | 0.630 ** | 0.657 ** | 0.719 ** | 0.695 ** | 0.694 ** | 0.693 ** | 0.626 ** | |
SBP (×106) | 0.707 ** | 0.472 * | 0.736 ** | 0.722 ** | 0.608 ** | 0.630 ** | 0.694 ** | 0.664 ** | 0.542 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabayi, A.; Teh, C.B.S.; Tan, A.K.Z.; Tan, N.P. Consecutive Application Effects of Washed Rice Water on Plant Growth, Soil Chemical Properties, Nutrient Leaching, and Soil Bacterial Population on Three Different Soil Textures over Three Planting Cycles. Agronomy 2022, 12, 2220. https://doi.org/10.3390/agronomy12092220
Nabayi A, Teh CBS, Tan AKZ, Tan NP. Consecutive Application Effects of Washed Rice Water on Plant Growth, Soil Chemical Properties, Nutrient Leaching, and Soil Bacterial Population on Three Different Soil Textures over Three Planting Cycles. Agronomy. 2022; 12(9):2220. https://doi.org/10.3390/agronomy12092220
Chicago/Turabian StyleNabayi, Abba, Christopher Boon Sung Teh, Ali Kee Zuan Tan, and Ngai Paing Tan. 2022. "Consecutive Application Effects of Washed Rice Water on Plant Growth, Soil Chemical Properties, Nutrient Leaching, and Soil Bacterial Population on Three Different Soil Textures over Three Planting Cycles" Agronomy 12, no. 9: 2220. https://doi.org/10.3390/agronomy12092220
APA StyleNabayi, A., Teh, C. B. S., Tan, A. K. Z., & Tan, N. P. (2022). Consecutive Application Effects of Washed Rice Water on Plant Growth, Soil Chemical Properties, Nutrient Leaching, and Soil Bacterial Population on Three Different Soil Textures over Three Planting Cycles. Agronomy, 12(9), 2220. https://doi.org/10.3390/agronomy12092220