Magnetized Water Irrigation Alleviates Emitter Clogging of a Drip Fertigation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Evaluation Parameters of Emitter Performance
2.3. Extraction and Evaluation of Clogging Substances in Emitters
2.3.1. Dry Weight of Clogging Substances
2.3.2. Mineral Composition of Clogging Substances
2.3.3. Surface Morphology of the Fouling
2.4. Statistical Analysis
3. Results
3.1. Effect of Fertilizer Application and Magnetization on Emitter Performance
3.2. Clogging Substance and Surface Morphology Characteristics
3.3. Proportion and Content of Mineral Components of Clogging Substances
4. Discussion
4.1. Effect of Fertilization on the Performance of a Drip Fertigation System in the Field
4.2. Effect of Magnetization on Emitter Clogging of Drip Fertigation System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jayakumar, M.; Janapriya, S.; Surendran, U. Effect of drip fertigation and polythene mulching on growth and productivity of coconut (Cocos nucifera L.), water, nutrient use efficiency and economic benefits. Agric. Water Manag. 2017, 182, 87–93. [Google Scholar] [CrossRef]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar] [CrossRef]
- Zarski, J.; Kusmierek-Tomaszewska, R.; Dudek, S. Impact of irrigation and fertigation on the yield and quality of sugar beet (Beta vulgaris L.) in a moderate climate. Agronomy 2020, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Oweis, T.Y.; Farahani, H.J.; Hachum, A.Y. Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria. Agric. Water Manag. 2011, 98, 1239–1248. [Google Scholar] [CrossRef]
- Wu, D.; Xu, X.X.; Chen, Y.L.; Shao, H. Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agric. Water Manag. 2019, 213, 200–211. [Google Scholar] [CrossRef]
- Li, Y.; Pan, J.; Chen, X. Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads. Agric. Water Manag. 2019, 213, 833–842. [Google Scholar] [CrossRef]
- Nakayama, F.S.; Bucks, D.A. Water quality in drip/trickle irrigation: A review. Irrig. Sci. 1991, 12, 187–192. [Google Scholar] [CrossRef]
- Pei, Y.; Li, Y.; Liu, Y. Eight emitters clogging characteristics and its suitability under on-site reclaimed water drip irrigation. Irrig. Sci. 2014, 32, 141–157. [Google Scholar] [CrossRef]
- Tang, P.; Li, H.; Issaka, Z.; Chen, C. Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems. Agric. Water Manag. 2018, 200, 71–79. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, R.; Wang, W.E. Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems. Agric. Water Manag. 2021, 250, 106829. [Google Scholar] [CrossRef]
- Li, K.Y.; Niu, W.Q.; Zhang, R.C. Accelerative effect of fertigation on emitter clogging by muddy water irrigation. Trans. CSAE 2015, 31, 81–89, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Tayel, M.Y.; El-Gindy, A.M.; El-Bagoury, K.F. Effect of injector types, irrigation and nitrogen treatments on emitters clogging. Misr J. Agric. Eng. 2009, 23, 1263–1276. [Google Scholar]
- Muhammad, T.; Zhou, B.; Liu, Z. Effects of phosphorus-fertigation on emitter clogging in drip irrigation system with saline water. Agric. Water Manag. 2021, 243, 106392. [Google Scholar] [CrossRef]
- Xiao, Y.; Puig-Bargués, J.; Zhou, B. Increasing phosphorus availability by reducing clogging in drip fertigation systems. J. Clean. Prod. 2020, 262, 121319. [Google Scholar] [CrossRef]
- Ma, C.; Xiao, Y.; Puig-Bargués, J.; Shukla, M.K. Using phosphate fertilizer to reduce emitter clogging of drip fertigation systems with high salinity water. J. Environ. Manag. 2020, 263, 110366. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, X.Q.; Li, J.S. Effect of phosphorus coupled nitrogen fertigation on clogging in drip emitters when applying saline water. Irrig. Sci. 2020, 38, 337–351. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Xiao, Y. Different operation patterns on mineral components of emitters clogging substances in drip phosphorus fertigation system. Irrig. Sci. 2019, 37, 691–707. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Muhammad, T.; Liu, Z.Y. Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems. Agric. Water Manag. 2022, 269, 107655. [Google Scholar] [CrossRef]
- Bucks, D.A.; Nakayama, F.S.; Gilbert, R.G. Trickle irrigation water quality and preventive maintenance. Agric. Water Manag. 1979, 2, 149–162. [Google Scholar] [CrossRef]
- Pitts, D.J.; Haman, D.Z.; Smajstria, A. Causes and Prevention of Emitter Plugging in Micro Irrigation Systems; Bulletin 258; Institute of food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 1990. [Google Scholar]
- Aali, K.A.; Liaghat, A.; Dehghanisanij, H. The effect of acidification and magnetic field on emitter clogging under saline water application. J. Agric. Sci. 2009, 1, 132. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. [Google Scholar] [CrossRef]
- Amor, H.B.; Elaoud, A.; Salah, N.B. Effect of magnetic treatment on surface tension and water evaporation. Int. J. Adv. Ind. Eng. 2017, 5, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Aladjadjiyan, A. Study of the influence of magnetic field on some biological characteristics of Zea mais. J. Cent. Eur. Agric. 2002, 3, 89–94. [Google Scholar] [CrossRef]
- Haq, Z.U.; Iqbal, M.; Jamil, Y. Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Inf. Process. Agric. 2016, 3, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Wang, S.; You, H.J.A.S. Effects of Magnetized Water on Seed Germination of Welsh Onion (Allium fistulosum L.). Agric. Sci. Technol. 2017, 18, 777–784. [Google Scholar]
- Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water Manag. 2009, 96, 1229. [Google Scholar] [CrossRef]
- Hamdy, A.; Khalifa, S.; Abdeen, S. Effect of magnetic water on yield and fruit quality of some mandarin varieties. Ann. Agric. Sci. 2015, 53, 657. [Google Scholar]
- Surendran, U.; Sandeep, O.; Josenph, E.J. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agric. Water Manag. 2016, 178, 21–29. [Google Scholar] [CrossRef]
- Al-Ogaidi, A.A.M.; Wayayok, A.; Rowshon, M.K.; Abdullah, A.F. The influence of magnetized water on soil water dynamics under drip irrigation systems. Agric. Water Manag. 2017, 180, 70–77. [Google Scholar] [CrossRef]
- Zlotopolski, V. The Impact of magnetic water treatment on salt distribution in a large unsaturated soil column. Int. Soil Water Conserv. Res. 2017, 5, 253–257. [Google Scholar] [CrossRef]
- Sahin, U.; Tunc, T.; Eroglu, S. Evaluation of CaCO3 clogging in emitters with magnetized saline waters. Desalination Water Treat. 2012, 40, 168–173. [Google Scholar] [CrossRef]
- Christiansen, J. Irrigation by sprinkling. University of California agricultural experiment station. Bulletin 1942, 670, 124. [Google Scholar]
- Talozi, S.; Hills, D. Simulating emitter clogging in a microirrigation subunit. Trans. ASAE 2001, 44, 1503. [Google Scholar] [CrossRef]
- Bozkurt, S.; Ozekici, B. The effects of fertigation managements on clogging of in-line emitters. J. Appl. Sci. 2006, 6, 3026–3034. [Google Scholar] [CrossRef]
- ASAE. Design and Installation of Micro-Irrigation Systems; EP405.1; ASAE: Washington, DC, USA, 2003. [Google Scholar]
- Xia, B.Y.; Chen, H.; Li, S.J. Effect of Emitter Clogging on Water-soluble Fertilizerin Drip Irrigation System. J. Agric. Sci. Technol. 2019, 21, 120–127. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W.Q.; Song, S.Y. Influence of red loam particles, fertilizer concentration and irrigation method on clogging of different irrigation emitters. Trans. CSAE 2018, 34, 92–99. [Google Scholar] [CrossRef]
- Wang, Z.X.; Zhao, X.; Zhang, W.Q. Effect of magnetization of irrigation water on the clogging of drip irrigation emitters with integrated water and fertilizer. Trans. CSAE 2021, 37, 127–135. [Google Scholar] [CrossRef]
- Khoshravesh, M.; Mirzaei, S.M.J.; Shirazi, P. Evaluation of dripper clogging using magnetic water in drip irrigation. Appl. Water Sci. 2018, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Cao, M.; Yin, H. Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste. Cem. Concr. Compos. 2019, 104, 103350. [Google Scholar] [CrossRef]
- Al Helal, A.; Soames, A.; Iglauer, S. The influence of magnetic fields on calcium carbonate scale formation within monoethylene glycol solutions at regeneration conditions. J. Pet. Sci. Eng. 2019, 173, 158–169. [Google Scholar] [CrossRef]
- Liu, Z.; Di Luccio, M.; García, S. Effect of magnetic field on calcium-silica fouling and interactions in brackish water distribution systems. Sci. Total Environ. 2021, 798, 148900. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Seo, Y.; Lin, Y. Electromagnetic fields for biofouling mitigation in reclaimed water distribution systems. Water Res. 2020, 173, 115562. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, Y.; Ma, C. Using electromagnetic fields to inhibit biofouling and scaling in biogas slurry drip irrigation emitters. J. Hazard. Mater. 2021, 401, 123265. [Google Scholar] [CrossRef] [PubMed]
- Neofotistou, E.; Demadis, K.D. Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: Fundamentals and applications in desalination systems. Desalination 2004, 167, 257–272. [Google Scholar] [CrossRef]
- Umar, A.A.; Saaid, I.B.M. Silicate scales formation during ASP flooding: A review. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 1543–1555. [Google Scholar] [CrossRef]
Treatment | Fertilization Amount/(kg·hm−2) | |||
---|---|---|---|---|
N | P2O5 | K2O | Total | |
M0F1 | 110 | 75 | 90 | 275 |
M0F2 | 165 | 112.5 | 135 | 412.5 |
M0F3 | 220 | 150 | 180 | 550 |
M1F1 | 110 | 75 | 90 | 275 |
M1F2 | 165 | 112.5 | 135 | 412.5 |
M1F3 | 220 | 150 | 180 | 550 |
Treatment | The First Season | The Second Season | ||
---|---|---|---|---|
Dra | CU | Dra | CU | |
Fertilizer application (F) | 2025.297 ** | 2969.601 ** | 12,494.782 ** | 12,490.952 ** |
Magnetization (M) | 2358.173 ** | 3172.257 ** | 17,180.818 ** | 12,214.173 ** |
Fertilizer application × magnetization (F × M) | 822.341 ** | 3154.981 ** | 11,016.973 ** | 12,523.260 ** |
Treatment | The First Season | The Second Season |
---|---|---|
Fertilizer application (F) | 6.240 ** | 15.139 ** |
Magnetization (M) | 9.490 ** | 22.072 ** |
Fertilizer application × magnetization (F × M) | 5.023 ** | 13.813 ** |
Season | Category/mg | M0F1 | M1F1 | Tendency | M0F2 | M1F2 | Tendency | M0F3 | M1F3 | Tendency |
---|---|---|---|---|---|---|---|---|---|---|
The first season | Quartz | 1.83 | 2.1 | ↑ | 2.56 | 1.94 | ↓ | 2.46 | 1.73 | ↓ |
Muscovite | 1.35 | 0.79 | ↓ | 1.22 | 1.17 | ↓ | 1.29 | 1.19 | ↓ | |
Chlorite | 0.27 | 0.58 | ↑ | 0.31 | 0.3 | ↓ | 1.55 | 0.79 | ↓ | |
Anorthite | 0.62 | 0.51 | ↓ | 0.71 | 0.75 | ↑ | 0.95 | 0.56 | ↓ | |
Magnesium calcite | 0 | 0.02 | ↑ | 0.41 | 0.02 | ↓ | 0.09 | 0 | ↓ | |
Calcite | 0.7 | 0.12 | ↑ | 1.01 | 0.18 | ↓ | 0.66 | 0.86 | ↑ | |
Calcium phosphate | 0 | 0 | — | 0 | 0 | — | 7.51 | 0 | ↓ | |
The second season | Quartz | 0.90 | 0.65 | ↓ | 2.96 | 1.21 | ↓ | 2.95 | 2.07 | ↓ |
Muscovite | 0.86 | 0.25 | ↓ | 1.06 | 0.58 | ↓ | 1.59 | 0.88 | ↓ | |
Chlorite | 0.47 | 0.30 | ↓ | 0.55 | 0.33 | ↓ | 1.75 | 0.80 | ↓ | |
Anorthite | 0.44 | 0.40 | ↓ | 1.44 | 0.57 | ↓ | 0.82 | 0.69 | ↓ | |
Magnesium calcite | 0.00 | 0.00 | — | 0.00 | 0.11 | ↑ | 0.00 | 0.02 | ↑ | |
Calcite | 1.78 | 0.18 | ↓ | 2.12 | 0.22 | ↓ | 1.21 | 0.22 | ↓ | |
Calcium phosphate | 0.77 | 2.55 | ↑ | 0.50 | 4.31 | ↑ | 13.68 | 0.82 | ↓ |
Treatment | M0F1 | M0F2 | M0F3 | M1F1 | M1F2 | M1F3 |
---|---|---|---|---|---|---|
Yield (kg/ha) | 95,126.85 | 84,848.55 | 75,385.05 | 105,771.75 | 99,925.95 | 95,242.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Kong, J.; Yue, H.; Huang, Y.; Wei, X.; Zhangzhong, L. Magnetized Water Irrigation Alleviates Emitter Clogging of a Drip Fertigation System. Agronomy 2023, 13, 108. https://doi.org/10.3390/agronomy13010108
Shi K, Kong J, Yue H, Huang Y, Wei X, Zhangzhong L. Magnetized Water Irrigation Alleviates Emitter Clogging of a Drip Fertigation System. Agronomy. 2023; 13(1):108. https://doi.org/10.3390/agronomy13010108
Chicago/Turabian StyleShi, Kaili, Jingyi Kong, Huanfang Yue, Yuan Huang, Xiaoming Wei, and Lili Zhangzhong. 2023. "Magnetized Water Irrigation Alleviates Emitter Clogging of a Drip Fertigation System" Agronomy 13, no. 1: 108. https://doi.org/10.3390/agronomy13010108
APA StyleShi, K., Kong, J., Yue, H., Huang, Y., Wei, X., & Zhangzhong, L. (2023). Magnetized Water Irrigation Alleviates Emitter Clogging of a Drip Fertigation System. Agronomy, 13(1), 108. https://doi.org/10.3390/agronomy13010108