Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological Analysis
2.2. Sieving
2.3. Angle of Repose
2.4. Thermogravimetric Analysis (TGA)
2.5. Surface Area and Porosity Analysis
2.6. Energy-Dispersive X-ray Spectroscopy (EDS)
2.7. Fourier-Transform Infrared Spectroscopy Analysis (FTIR)
3. Results
3.1. Morphological Analysis
3.2. Particle Area
3.3. Sieving
3.4. Angle of Repose
3.5. Analysis of Surface Area and Porosity
3.6. Energy-Dispersive X-ray Spectroscopy (EDS) Analysis
3.7. Fourier-Transform Infrared Spectroscopy Analysis (FTIR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Plant Nutrition Institute. Cloruro de Potasio. Available online: http://www.ipni.net/publication/nss-es.nsf/0/A48F7C5B42D2D6BF85257BBA0059A849/$FILE/NSS-ES-03.pdf (accessed on 7 October 2022).
- Sanz, J.; Tomasa, O.; Jimenez-Franco, A.; Sidki-Rius, N. Potassium (K) [Z = 19]. Elem. Miner. Resour. 2022, 1, 167–169. [Google Scholar] [CrossRef]
- Sanz, J.; Tomasa, O.; Jimenez-Franco, A.; Sidki-Rius, N. Sylvite. Elem. Miner. Resour. 2022, 387–389. [Google Scholar] [CrossRef]
- Hernández Díaz, M.I.; Chailloux Laffita, M.; Moreno Placeres, V.; Ojeda Veloz, A.; Salgado Pulido, J.M.; Bruzón Guerrero, O. Relaciones Nitrógeno-Potasio En Fertirriego Para El Cultivo Protegido Del Tomate En Suelo Ferralítico Rojo. Pesqui. Agropecuária Bras. 2009, 44, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, S.; Singh, A.; Rani, M. Role of Potassium in Plants. Mag. Agric. 2022, 1, 76–79. [Google Scholar]
- Mikkelsen, R.L.; Roberts, T.L. Inputs: Potassium Sources for Agricultural Systems. In Improving Potassium Recommendations for Agricultural Crops; Springer: Cham, Switzerland, 2020; pp. 47–73. [Google Scholar] [CrossRef]
- Livi Bacci, M. Historia Mínima de La Población Mundial; Crítica: Barcelona, Spain, 2009. [Google Scholar]
- Lobo, M. Importancia de Los Recursos Genéticos de La Agrobiodiversidad En El Desarrollo de Sistemas de Producción Sostenibles. Cienc. Tecnol. Agropecu. 2009, 9, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Oswaldo Benavides, H.; Mayorga Márquez, R.; Hurtado Moreno, G. Análisis de Índices de Extremos Climáticos Para Colombia Usando El RCLIMDEX; IDEAM–METEO/007-2007; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2007. [Google Scholar]
- Zamorio, M.J.; Peña, E.; López, C.; Silva, T. Efectos de La Sequía Y Del Cambio Climático En Los Recursos Hídricos Y En La Seguridad Alimentaria de Cinco Comunidades Del Municipio de Ciudad Darío, Matagalpa. Cuad. Investig. 2017, 1, 9–38. [Google Scholar]
- Soliveres, S. Efectos Del Estrés Abiótico Y Factores Bióticos En Las Interacciones Planta-Planta: Implicaciones Para El Funcionamiento Y La Restauración de Los Ecosistemas Semiáridos. Ecosistemas 2011, 20, 121–128. [Google Scholar]
- Martínez Castizo, D. La silvinita. Available online: https://diario16.com/la-silvinita/ (accessed on 7 October 2022).
- Kant, S.; Kafkafi, U. Absorción de Potasio Por Los Cultivos En Distintos Estadios Fisiológicos. (En Línea). In Proceedings of the Internacional Potash Institute Annual Conference, Hebrew University, Rehovot, Israel, 5 July 2000; Potasio en Plantas y Animales. pp. 263–302. [Google Scholar]
- Singh, T.A.; Thomas, G.W.; Moschler, W.W.; Martens, D.C. Phosphorus Uptake by Corn (Zea mays L.) under No-Tillage and Conventional Practices. Agron. J. 1966, 58, 147–148. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Li, R.; Liu, C.; Jiao, P.; Liu, W.; Wang, S. The Present Situation, Existing Problems, and Countermeasures for Exploitation and Utilization of Low-Grade Potash Minerals in Qarhan Salt Lake, Qinghai Province, China. Carbonates Evaporites 2020, 35, 34. [Google Scholar] [CrossRef]
- Soumare, A.; Sarr, D.; Diédhiou, A.G. Potassium Sources, Microorganisms, and Plant Nutrition—Challenges and Future Research Directions: A Review. Pedosphere, 2022; In Press. [Google Scholar] [CrossRef]
- Jena, S.K. A Review on Potash Recovery from Different Rock and Mineral Sources. Min. Metall. Explor. 2021, 38, 47–68. [Google Scholar] [CrossRef]
- Gonzales, O. ¿Para qué Sirve el Potasio?, Propiedades y Beneficios. 2018. Available online: https://laguiadelasvitaminas.com/para-que-sirve-el-potasio/ (accessed on 7 October 2022).
- Warren, J.K. Geological controls on the quality of potash. In Proceedings of the 8th World Salt Symposium, The Hague, The Netherlands, 7—11 May 2000; Elsevier: Amsterdam, The Netherlands, 2000; pp. 173–180. [Google Scholar]
- Stewart, J.A. Potassium Sources, Use, and Potential. Potassium Agric. 2015, 1, 83–98. [Google Scholar] [CrossRef]
- Kraus, H.; Hunt, F.; Ramsdell, S.; Navarro, A. Mineralogía: Una Introducción al Estudio de Minerales y Cristales, 5th ed.; Ediciones del Castillo: Madrid, España, 1965. [Google Scholar]
- ASTM C1444-00; Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Rodas, R.; Rousé, P. Análisis Comparativo de Métodos Para La Medición Del Ángulo de Reposo de Suelos Granulares. Rev. la Construcción 2010, 9, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Maldonado Uría, P.; Pino Vargas, E. Influencia Del Tipo de Material, Superficie de Contacto Y Altura de Almacenaje Sobre El Ángulo de Reposo, En Materiales Granulares. Cienc. Desarro. 2019, 18, 22–31. [Google Scholar] [CrossRef]
- De Araujo, A.C.; Valadão, G.E.S.; Da Gama, E.M.; Hernandez, C.A. Consistencia, Fluidez Y Viscosidad de Pastas Minerales de Relaves de Hierro. Inf. Tecnol. 2006, 17, 71–79. [Google Scholar] [CrossRef]
- Mikkelsen, R.L. Managing Potassium for Organic Crop Production. HortTechnology 2007, 17, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and Their Diverse Role in Agricultural Crops: Advances and Future Prospective. Acta Physiol. Plant. 2015, 37, 139. [Google Scholar] [CrossRef]
- Aftab, T.; Hakeem, K.R. Plant Micronutrients: Deficiency and Toxicity Management; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients. Marschner’s Miner. Nutr. High. Plants 2012, 3, 191–248. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Jarvis, S. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology; Cambridge University Press, Cop: Cambridge, UK, 2005. [Google Scholar]
- Small, J.A. The Analysis of Particles at Low Accelerating Voltages (<= 10 KV) with Energy Dispersive X-Ray Spectroscopy (EDS). J. Res. Natl. Inst. Stand. Technol. 2002, 107, 555. [Google Scholar] [CrossRef]
- ASTM C136; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Ruiz, M.E. métodos de análisis térmico. In Análisis Farmacéutico; 1st, ed, Guillermina-Volonté, M., Quiroga, P., Eds.; Universidad Nacional de La Plata: Buenos Aires, Argentina, 2013; p. 159. [Google Scholar]
- Train, D. Some Aspects of The Property of Angle Of Repose Of Powders. J. Pharm. Pharmacol. 1958, 10 (Suppl. 1), 127T–135T. [Google Scholar] [CrossRef] [PubMed]
- Contreras Pérez, J.B.; Araujo, A.L.; Fernández, R.E.; Santos Ortiz, R.D.L. Variaciones En El Equilibrio de Adsorción Según El Tamaño de Partícula Adsorbente. Cienc. Soc. 1992, 17, 52–59. [Google Scholar] [CrossRef]
- Sands, D. Introducción a la Cristalografía; Reverteé: Barcelona, Spain, 2011. [Google Scholar]
- Goldstein, J.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Henry, J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Mi-croanalysis; Springer: New York, NY, USA, 2018. [Google Scholar]
- Sharpe, S.W.; Reifschneider, D.; Wittig, C.; Beaudet, R.A. Infrared Absorption Spectroscopy of the CO2–Ar complex in the 2376 Cm−1 Combination Band Region: The Intermolecular Bend. J. Chem. Phys. 1991, 94, 233–238. [Google Scholar] [CrossRef]
- Moore, G.; Chizmeshya, A.; McMillan, P.F. Calibration of a Reflectance FTIR Method for Determination of Dissolved CO2 Concentration in Rhyolitic Glasses. Geochim. Cosmochim. Acta 2000, 64, 3571–3579. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian J. Sci. Technol. 2019, 4, 97. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
Area (mm2) | |||
---|---|---|---|
Sample | Minimum | Medium | Maximum |
Problema | 0.0754 | 0.2616 | 31.150 |
Blanco | 0.0575 | 0.5112 | 51.075 |
BPC | 0.0240 | 0.3484 | 31.086 |
Bueno | 0.0675 | 0.6438 | 50.838 |
Mesh Opening (mm) | Blanco | Problema | BPC | Bueno |
---|---|---|---|---|
2.000 | 1.9 | 5.0 | 1.0 | 1.0 |
1.000 | 21.6 | 41.0 | 7.1 | 37.0 |
0.500 | 48.7 | 42.3 | 42.0 | 53.4 |
0.355 | 15.6 | 11.3 | 33.6 | 7.5 |
0.212 | 11.7 | 0.3 | 15.1 | 1.0 |
0.150 | 0.3 | 0.0 | 1.2 | 0.0 |
0.106 | 0.0 | 0.0 | 0.0 | 0.0 |
Angle of Repose (θ) | ||||
---|---|---|---|---|
Funnel Height (cm) | Blanco | Problema | BPC | Bueno |
10 | 24.9 | 26.8 | 29.0 | 32.2 |
20 | 25.0 | 28.4 | 29.1 | 30.5 |
30 | 24.1 | 27.8 | 25.3 | 30.3 |
Average | 24.7 | 27.7 | 27.8 | 31.0 |
Free moisture (%) | 0.9 | 0.5 | 0.3 | 1.35 |
Parameter | Blanco | Problema | BPC | Bueno |
---|---|---|---|---|
Single Point Surface Area in P/Po | 0.159581639: 0.0080 m2/g | 0.159589767: 0.0312 m2/g | 0.299581172: 0.4332 m2/g | 0.299708541: 0.9995 m2/g |
BET Surface Area | 0.0066 m2/g | 0.0232 m2/g | 0.4552 m2/g | 1.2411 m2/g |
Langmuir Surface Area | 0.2137 m2/g | 0.0223 m2/g | 0.7572 m2/g | 2.4290 m2/g |
Micro Pore Area t-Plot | 0.7765 m2/g | 0.9200 m2/g | 0.0195 m2/g | |
External Surface Area t-Plot | 0.7699 m2/g | −0.8968 m2/g | 0.4357 m2/g | 2.0497 m2/g |
Pore Volume: Micro Pore Volume t-Plot | 0.000327 cm3/g | 0.000382 cm3/g | 0.000037 cm3/g | 0.000475 cm3/g |
Nanoparticle Size: Mean Particle Size | 9052430.914 Å | 2591285.485 Å | 131802.986 Å | 48345.286 Å |
Element | Blanco | Problema | BPC | Bueno |
---|---|---|---|---|
Be | 10.67 | - | - | - |
O | 2.86 | 9.57 | 12.20 | 12.86 |
Na | 0.78 | 1.10 | 0.87 | 1.76 |
Mg | 0.18 | 0.42 | 0.56 | 1.17 |
Si | 0.13 | 1.02 | 1.29 | 0.21 |
Cl | 44.95 | 42.84 | 41.22 | 43.77 |
K | 40.44 | 41.84 | 38.86 | 40.04 |
Al | - | 0.48 | 0.60 | 0.19 |
Mo | - | 0.88 | 1.30 | - |
Fe | - | 1.80 | 2.74 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Suarez, J.R.; Colpas-Castillo, F.; Taron-Dunoyer, A. Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers. Agronomy 2023, 13, 52. https://doi.org/10.3390/agronomy13010052
Castro-Suarez JR, Colpas-Castillo F, Taron-Dunoyer A. Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers. Agronomy. 2023; 13(1):52. https://doi.org/10.3390/agronomy13010052
Chicago/Turabian StyleCastro-Suarez, John R., Fredy Colpas-Castillo, and Arnulfo Taron-Dunoyer. 2023. "Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers" Agronomy 13, no. 1: 52. https://doi.org/10.3390/agronomy13010052
APA StyleCastro-Suarez, J. R., Colpas-Castillo, F., & Taron-Dunoyer, A. (2023). Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers. Agronomy, 13(1), 52. https://doi.org/10.3390/agronomy13010052