Field Performance of Disease-Free Plants of Ginger Produced by Tissue Culture and Agronomic, Cytological, and Molecular Characterization of the Morphological Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Materials
2.2. Field Planting of the Acclimatized Plants
2.3. Morphological Measurements, Visual Screening of Morphological Variants, and Main Agronomic Traits Analysis
2.4. Stomatal Measurements
2.5. Flow Cytometry Analysis
2.6. Chromosome Counting
2.7. Genomic DNA Extraction and SSR Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance, Changes in the Plant Morphological Parameters, and Variation in the Absolute Growth Rate of the Disease-Free Plants during the Growth Period
3.2. Visually Screening, Morphological Characterization, and Main Yield Traits Evaluation of Somaclonal Variation at Harvest
3.3. Evaluation of Stomatal Characteristics, Ploidy Level, and Chromosome Number of Somaclonal Variation
3.4. SSR Characterization of the Two Variation Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibarahim, S.A.; Mnayer, D.; Zakaria, Z.A. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyama, R. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J. Nutr. Biochem. 2020, 86, 108486. [Google Scholar] [CrossRef] [PubMed]
- Daharia, A.; Jaiswal, V.K.; Royal, K.P.; Sharma, H.; Joginath, A.K.; Kumar, R.; Saha, P. A Comparative review on ginger and garlic with their pharmacological Action. Asian J. Pharm. Res. Dev. 2022, 10, 65–69. [Google Scholar]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res. 2021, 35, 711–742. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Luo, D.; Ma, Y.; Zhang, J.; Li, M.; Yao, L.; Shi, X.; Liu, X.; Yang, K. Ginger for health care: An overview of systematic reviews. Complement. ther. Med. 2019, 45, 114–123. [Google Scholar] [CrossRef]
- Kalhoro, M.T.; Zhang, H.; Kalhoro, G.M.; Wang, F.; Chen, T.; Faqir, Y.; Nabi, F. Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae. Sci. Rep. 2022, 12, 2191. [Google Scholar] [CrossRef]
- Liu, X.; Xi, K.; Wang, Y.; Ma, J.; Huang, X.; Liu, R.; Cai, X.; Zhu, Y.; Yin, J.; Jia, Q. Evaluation of the contact toxicity and physiological mechanisms of ginger (Zingiber officinale) shoot extract and selected major constituent compounds against Melanaphis sorghi Theobald. Horticulturae 2022, 8, 944. [Google Scholar] [CrossRef]
- Peng, H.M.; Hu, H.J.; Xi, K.Y.; Zhu, X.M.; Zhou, J.; Yin, J.L.; Guo, F.L.; Liu, Y.Q.; Zhu, Y.X. Silicon nanoparticles enhance ginger rhizomes tolerance to postharvest deterioration and resistance to Fusarium solani. Front. Plant Sci. 2022, 13, 816143. [Google Scholar] [CrossRef]
- Guji, M.J.; Yetayew, H.T.; Kidanu, E.D. Yield loss of ginger (Zingiber officinale) due to bacterial wilt (Ralstonia solanacearum) in different wilt management systems in Ethiopia. Agric. Food Secur. 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.I.; Naveen, K.P.; Pamitha, N.S.; Pant, R.P. Association of two novel viruses with chlorotic fleck disease of ginger. Ann. Appl. Biol. 2020, 177, 232–242. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Q.; Li, Y.; Guo, M.; Guo, X.; Ouyang, C.; Migheli, Q.; Xu, J.; Cao, A. Efficacy and economics evaluation of seed rhizome treatment combined with preplant soil fumigation on ginger soilborne disease, plant growth, and yield promotion. J. Sci. Food Agric. 2022, 102, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wisniewski, M.; Kennedy, J.F.; Jiang, Y.; Tang, J.; Liu, J. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohyd. Polym. 2016, 151, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Guo, F.; Qi, C.; Fu, J.; Xiao, Y.; Wu, J. Efficient ex-vitro rooting and acclimatization for tissue culture plantlets of ginger. PCTOC 2022, 150, 451–458. [Google Scholar] [CrossRef]
- Cantabella, D.; Dolcet-Sanjuan, R.; Teixidó, N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. Planta 2022, 255, 117. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.R.; Singh, B.M. High-frequency in vitro multiplication of disease-free Zingiber officinale Rosc. Plant Cell Rep. 1997, 17, 68–72. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Sen, A. Rapid in vitro multiplication of disease-free Zingiber officinale Rosc. Indian J. Plant Physiol. 2006, 11, 379–384. [Google Scholar]
- Zahid, N.A.; Jaafar, H.Z.E.; Hakiman, M. Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale Roscoe) var. Bentong with regards to sucrose and plant growth regulators application. Agronomy 2021, 11, 320. [Google Scholar] [CrossRef]
- Saini, R.K.; Shetty, N.P.; Giridhar, P.; Ravishankar, G.A. Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech 2012, 2, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, D.; Trzewik, A.; Kucharska, D. Field performance and genetic stability of micropropagated gooseberry plants (Ribes grossularia L.). Agronomy 2021, 11, 45. [Google Scholar] [CrossRef]
- Smith, M.K.; Hamill, S.D. Field evaluation of micropropagated and conventionally propagated ginger in subtropical Queensland. Aust. J. Exp. Agric. 1996, 36, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Lincy, A.K.; Jayarajan, K.; Sasikumar, B. Relationship between vegetative and rhizome characters and final rhizome yield in micropropagated ginger plants (Zingiber officinale Rosc.) over two generations. Sci. Hortic. 2008, 118, 70–73. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Q.; Li, Z.; Liu, Y.; Tang, J. Difference of material production characteristics and yield formation of ginger tissue culture seedlings in different generations. Acta Agr. Zhejiangensis 2020, 32, 661–670, (In Chinese with English abstract). [Google Scholar]
- Zambrano Blanco, E.; Baldin Pinheiro, J. Agronomie evaluation and clonal selection of ginger genotypes (Zingiber officinale Roseoe) in Brazil. Agronomía Colombiana 2017, 35, 275–284. [Google Scholar] [CrossRef]
- Kaeppler, S.M.; Kaeppler, H.F.; Rhee, Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 2000, 43, 179–188. [Google Scholar] [CrossRef]
- Krishna, H.; Alizadeh, M.; Singh, D.; Singh, U.; Chauhan, N.; Eftekhari, M.; Sadh, R.K. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 2016, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Zhao, X.; Wang, Y.; Jiang, D.; Zhang, Y.; Hu, L.; Liu, y.; Cai, X. Morphological, cytological, and molecular-based genetic stability analysis of in vitro-propagated plants from newly induced aneuploids in caladium. Agriculture 2022, 12, 1708. [Google Scholar] [CrossRef]
- Subbarayudu, S.; Shankar Naik, B.; Sunitibala Devi, H.; Bhau, B.S.; Shaik Sha Valli Khan, P. Microsporogenesis and pollen formation in Zingiber officinale Roscoe. Plant Syst. Evol. 2014, 300, 619–632. [Google Scholar] [CrossRef]
- Sharma, V.; Thakur, M.; Tomar, M. In vitro selection of gamma irradiated shoots of ginger (Zingiber officinale Rosc.) against Fusarium oxysporum f. sp. zingiberi and molecular analysis of the resistant plants. Plant Cell Tiss. Org. Cult. 2020, 143, 319–330. [Google Scholar] [CrossRef]
- Prasath, D.; Nair, R.R.; Babu, P.A. Effect of colchicine induced tetraploids of ginger (Zingiber officinale Roscoe) on cytology, rhizome morphology, and essential oil content. J. Appl. Res. Med. Aroma. 2022, 31, 100422. [Google Scholar] [CrossRef]
- Musfir Mehaboob, V.; Faizal, K.; Thilip, C.; Raja, P.; Thiagu, G.; Aslam, A.; Shajahan, A. Indirect somatic embryogenesis and Agrobacterium-mediated transient transformation of ginger (Zingiber officinale Rosc.) using leaf sheath explants. J. Hortic. Sci. Biotechnol. 2019, 94, 753–760. [Google Scholar] [CrossRef]
- Nirmal Babu, K.; Samsudeen, K.; Ravindran, P.N. Biotechnological approaches for crop improvement in ginger, Zingiber officinale Rosc. In Recent Advances in Biotechnological Applications on Plant Tissue and Cell Culture; Ravisankar, G.A., Venkataraman, L.V., Eds.; Oxford Pub.: New Delhi, India, 1996; pp. 321–332. [Google Scholar]
- Bhardwaj, S.V.; Thakur, T.; Sharma, R.; Sharma, P. In vitro selection of resistant mutants of ginger (Zingiber officinale Rosc.) against wilt pathogen (Fusarium oxysporum f. sp. zingiberi Trujillo). Plant Dis. Re. 2012, 27, 194–199. [Google Scholar]
- Abd El-Hameid, A.R.; El-kheir, Z.A.A.; Abdel-Hady, M.S.; Helmy, W.A. Identification of DNA variation in callus derived from Zingiber officinale and anticoagulation activities of ginger rhizome and callus. Bull. Nat. Res. Cen. 2020, 44, 28. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.J.; Zhang, Y.S.; Duan, J.X.; Cao, Y.M.; Cai, X.D. Morphological, cytological, and pigment analysis of leaf color variants regenerated from long-term subcultured caladium callus. Vitro Cell Dev. Biol. Plant 2021, 57, 60–71. [Google Scholar] [CrossRef]
- Fulton, T.M.; Chunzoongse, J.; Tanksley, S.D. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 1995, 13, 207–209. [Google Scholar] [CrossRef]
- Wang, L.; Gao, F.S.; Xu, K.; Li, X. Natural occurrence of mixploid ginger (Zingiber officinale Rosc.) in China and its morphological variations. Sci. Hortic. 2014, 172, 54–60. [Google Scholar] [CrossRef]
- Ai, X.Z.; Song, J.F.; Xu, X. Ginger production in Southeast Asia. In Ginger: The Genus Zingiber; Ravindran, P., Babu, K.N., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 241–278. [Google Scholar]
- Marangelli, F.; Pavese, V.; Vaia, G.; Lupo, M.; Bashir, M.A.; Cristofori, V.; Silvestri, C. In Vitro polyploid induction of highbush blueberry through De Novo shoot organogenesis. Plants 2022, 11, 2349. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Gao, X.; Wang, L.; Jia, G. Effects of ploidy level on the cellular, photochemical and photosynthetic characteristics in Lilium FO hybrids. Plant Physiol. Biochem. 2018, 133, 50–56. [Google Scholar] [CrossRef]
- Li, H.L.; Wu, L.; Dong, Z.M.; Jiang, Y.S.; Jiang, S.J.; Xing, H.T.; Li, Q.; Liu, G.C.; Tian, S.M.; Wu, Z.Y. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Hortic. Res. 2021, 8, 189. [Google Scholar] [CrossRef]
- Ioannidis, K.; Tomprou, I.; Mitsis, V.; Koropouli, P. Genetic evaluation of in vitro micropropagated and regenerated plants of Cannabis sativa L. using SSR molecular markers. Plants 2022, 11, 2569. [Google Scholar] [CrossRef]
Code | Forward Primer | Reverse Primer | Product Size (bp) |
---|---|---|---|
Ginger02 | CTTCCTTATGTGCGTTTGTGC | TATCTGGAATGTTGATGAAGTTACC | 405 |
Ginger07 | ATTGGTTGCGGAATAAAGGTGT | AGCAAAATGGATTAAACATTTGGTC | 236 |
Ginger11 | AAATGGAGAAGGGGAACTAAT | GCTGAATCATCAATCTTTGTAGTTT | 275 |
Ginger18 | TGGGTATGTATTGAATGGTGTAGGA | ATCCACCAACTGCTGCTGC | 302 |
Ginger22 | AAAAGGCGTGGGTGCTACAT | TCGAACACCGGACAACAGAG | 282 |
Ginger25 | ACTCCAGCAGAACCACAACG | TGGAGGTATCCTCGGTGTCC | 455 |
Ginger31 | CCGACTCGACCAAGGTAAGC | TCCATTGCAGGTGCCTCTACT | 412 |
Ginger37 | ATTTCTAGCCAGTTTAGCTGAGCAA | CGTGGAGGAGCCACTTCCG | 283 |
Ginger44 | CTGAAGCAGATTGTTGTGGTCG | GCGCGACTGACACGACAGG | 324 |
Ginger49 | CCTCTGTTCAGTTGTTGCCTTGC | ACCGCACGGGCTGTGGATA | 328 |
Ginger52 | TGGTTCAGTATTTCGGTGGT | ACCAGACTGAGAAGTGGCTAA | 248 |
Ginger58 | GTCTGTACCATCGGGTTTTGTTA | TTATACCTTGAGATAGGGATGCC | 361 |
Ginger60 | AGCGACTATTGTGCTTGGGTT | AGGGTGCTCAATAATGACAGA | 285 |
Ginger69 | CTTCCTTATGTGCGTTTGTGC | TATCTGGAATGTTGATGAAGTTACC | 405 |
Ginger73 | AGATCAACATAAATGATCTGGTGGC | CGCAAGCCAAGCAAACAAGG | 187 |
Ginger77 | GATTTACTTTCAACCAGTCAACCCTT | CACTTGCATCACTCTGATCAACA | 322 |
Ginger82 | ATGGGAGACTCAGGTGGTGT | ACCAACAAATGGAGGAAGAG | 266 |
Ginger84 | ACTGCAGCGATTGCGTTTC | GAAGAACTGGAGCGAACGAAG | 360 |
Ginger92 | CGACTATTGTGCTTGGGTTGA | ACCATCGCCGTCGTACTAAA | 343 |
Ginger97 | TTTATCCGGTTGGCTCAGC | GTATGTCTCTTTCAGCATTCCTCAC | 238 |
Days after Planting (d) | Plant Height (cm) | No. of Tillers per Plant | Tiller Diameter (mm) | No. of Leaves per Tiller | Leaf Length (cm) | Leaf Width (cm) | Leaf Length/Width Ratio |
---|---|---|---|---|---|---|---|
0 | 8.54 ± 0.93 f | 1.12 ± 0.11 f | 2.61 ± 0.13 f | 5.54 ± 0.99 e | 5.28 ± 0.37 e | 1.06 ± 0.09 e | 4.99 ± 0.25 d |
30 | 15.72 ± 2.11 e | 2.06 ± 0.09 e | 4.54 ± 0.21 e | 6.42 ± 1.36 d | 8.38 ± 0.42 d | 1.40 ± 0.16 d | 6.04 ± 0.66 c |
60 | 31.80 ± 2.58 d | 4.16 ± 1.02 d | 6.51 ± 0.32 d | 7.76 ± 1.51 c | 11.40 ± 0.82 c | 1.76 ± 0.18 c | 6.50 ± 0.25 c |
90 | 52.46 ± 6.49 c | 10.72 ± 1.70 c | 7.56 ± 0.38 c | 9.78 ± 1.85 b | 17.42 ± 1.23 b | 2.36 ± 0.15 b | 7.39 ± 0.45 b |
120 | 73.23 ± 6.57 b | 12.34 ± 1.93 b | 10.90 ± 0.57 b | 14.36 ± 1.71 a | 25.86 ± 1.85 a | 3.12 ± 0.19 a | 8.29 ± 0.35 a |
150 | 80.01 ± 7.24 a | 13.40 ± 1.81 a | 11.52 ± 0.26 a | 14.84 ± 1.48 a | 27.22 ± 0.92 a | 3.30 ± 0.19 a | 8.27 ± 0.51 a |
Plant Types | Leaf SPAD Value | Plant Height (cm) | Tiller Diameter (mm) | No. of Tillers per Plant | Leaf Length (cm) | Leaf Width (cm) | Leaf Length/Width Ratio |
---|---|---|---|---|---|---|---|
Normal type | 48.70 ± 0.85 b | 80.73 ± 4.29 b | 7.65 ± 0.64 b | 14.67 ± 1.15 b | 24.55 ± 0.49 b | 2.80 ± 0.14 b | 8.78 ± 0.62 ab |
VT1 | 44.53 ± 0.88 c | 72.95 ± 7.28 b | 6.23 ± 0.67 b | 27.50 ± 4.95 a | 23.70 ± 1.60 b | 2.48 ± 0.13 c | 9.60 ± 0.89 a |
VT2 | 54.88 ± 1.65 a | 89.40 ± 4.93 a | 11.63 ± 1.65 a | 10.50 ± 1.22 c | 27.48 ± 1.19 a | 3.33 ± 0.17 a | 8.27 ± 0.41 b |
Plant Types | Rhizome Length (cm) | Rhizome Height (cm) | No. of Rhizome Knobs per Plant | Rhizome Fresh Weight per Plant (g) |
---|---|---|---|---|
Normal type | 19.90 ± 4.81 ab | 4.50 ± 0.16 ab | 26.50 ± 2.12 ab | 147.80 ± 22.63 b |
VT1 | 15.23 ± 2.89 b | 4.05 ± 0.21 b | 32.25 ± 6.40 a | 170.83 ± 14.91 b |
VT2 | 20.63 ± 4.05 a | 4.95 ± 0.42 a | 16.50 ± 4.43 b | 269.48 ± 35.47 a |
Plant Types | Aperture Length (μm) | Aperture Width (μm) | Guard Cell Length (μm) | Guard Cell Width (μm) | Stomatal Density (No./mm2) |
---|---|---|---|---|---|
Normal type | 26.83 ± 2.46 b | 13.23 ± 2.09 b | 38.56 ± 2.07 b | 23.60 ± 1.41 a | 85.04 ± 6.21 a |
VT1 | 25.44 ± 2.51 b | 11.88 ± 2.19 c | 37.68 ± 1.86 b | 23.72 ± 1.75 a | 81.34 ± 5.95 a |
VT2 | 29.3 ± 2.66 a | 15.68 ± 2.91 a | 42.01 ± 2.17 a | 24.67 ± 2.14 a | 65.10 ± 4.77 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Yu, S.; Wang, Y.; Jiang, D.; Zhang, Y.; Hu, L.; Zhu, Y.; Jia, Q.; Yin, J.; Liu, Y.; et al. Field Performance of Disease-Free Plants of Ginger Produced by Tissue Culture and Agronomic, Cytological, and Molecular Characterization of the Morphological Variants. Agronomy 2023, 13, 74. https://doi.org/10.3390/agronomy13010074
Zhao X, Yu S, Wang Y, Jiang D, Zhang Y, Hu L, Zhu Y, Jia Q, Yin J, Liu Y, et al. Field Performance of Disease-Free Plants of Ginger Produced by Tissue Culture and Agronomic, Cytological, and Molecular Characterization of the Morphological Variants. Agronomy. 2023; 13(1):74. https://doi.org/10.3390/agronomy13010074
Chicago/Turabian StyleZhao, Xiaoqin, Shuangying Yu, Yida Wang, Dongzhu Jiang, Yiming Zhang, Liu Hu, Yongxing Zhu, Qie Jia, Junliang Yin, Yiqing Liu, and et al. 2023. "Field Performance of Disease-Free Plants of Ginger Produced by Tissue Culture and Agronomic, Cytological, and Molecular Characterization of the Morphological Variants" Agronomy 13, no. 1: 74. https://doi.org/10.3390/agronomy13010074
APA StyleZhao, X., Yu, S., Wang, Y., Jiang, D., Zhang, Y., Hu, L., Zhu, Y., Jia, Q., Yin, J., Liu, Y., & Cai, X. (2023). Field Performance of Disease-Free Plants of Ginger Produced by Tissue Culture and Agronomic, Cytological, and Molecular Characterization of the Morphological Variants. Agronomy, 13(1), 74. https://doi.org/10.3390/agronomy13010074