Effect of Shading, Substrate, and Container Size on Argania spinosa Growth and Cost–Benefit Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Treatments
2.3. Soil Analysis
2.4. Germination Rate and Plant Growth Parameters Determination
2.5. Leaf Mineral Elements Analysis
2.6. Economic Analysis
2.7. Statistical Analysis
3. Results
3.1. The Effect of Substrate, Container, and Shade on the Argan Seeds Germination
3.2. Effect of Shade on Argan Seedling Growth
3.3. Effect of the Substrate on Argan Seedling Production
3.3.1. Soil Analysis
3.3.2. Effect of the Substrate on Argan Seedling Growth
3.4. The Effect of Containers on Argan Seedling Growth
3.5. Effect of Shade, Substrate, and Container on Argan Seedling Leaf Minerals Accumulation
3.6. Designate the Best Substrate and Container in Each Shade Percentage
3.6.1. No Shaded Compartment
3.6.2. Compartment 20% Shaded
3.6.3. Compartment 40% Shaded
3.6.4. Compartment 80% Shaded
3.7. Principal Component Analysis
3.8. Cost-Benefit Analysis
4. Discussion
4.1. Germination
4.2. Effect of Shade
4.3. Effect of Container
4.4. Effect of Substrate
4.5. Cost-Benefit Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillaume, D.; Pioch, D.; Charrouf, Z. Argan [Argania spinosa (L.) Skeels] Oil. In Fruit Oils: Chemistry and Functionality; Springer: Berlin/Heidelberg, Germany, 2019; pp. 317–352. [Google Scholar] [CrossRef]
- Msanda, F.; El Aboudi, A.; Peltier, J.P. Biodiversité et biogéographie de l’arganeraie marocaine. Cah. Agric. 2005, 14, 357–364. [Google Scholar]
- Zrira, S. Some important aromatic and medicinal plants of Morocco. Med. Aromat. Plants World-Afr. 2017, 3, 91–125. [Google Scholar] [CrossRef]
- Metougui, M.L.; Mokhtari, M.; Machati, I.; Azeroual, I.; Benlhabib, O. Multiplication végétative de l’arganier (Argania spinosa) par bouturage et par greffage. Rev. Mar. Sci. Agron. Vét. 2017, 5, 428–436. [Google Scholar]
- Khallouki, F.; Younos, C.; Soulimani, R.; Oster, T.; Charrouf, Z.; Spiegelhalder, B.; Bartsch, H.; Owen, R.W. Consumption of Argan Oil (Morocco) with Its Unique Profile of Fatty Acids, Tocopherols, Squalene, Sterols and Phenolic Compounds Should Confer Valuable Cancer Chemopreventive Effects. Eur. J. Cancer Prev. 2003, 12, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Charrouf, Z.; Guillaume, D. Argan Oil: Occurrence, Composition and Impact on Human Health. Eur. J. Lipid Sci. Technol. 2008, 110, 632–636. [Google Scholar] [CrossRef]
- Moukrim, S.; Lahssini, S.; Rhazi, M.; Alaoui, H.M.; Benabou, A.; Wahby, I.; El Madihi, M.; Arahou, M.; Rhazi, L. Climate Change Impacts on Potential Distribution of Multipurpose Agro-Forestry Species: Argania spinosa (L.) Skeels as Case Study. Agrofor. Syst. 2019, 93, 1209–1219. [Google Scholar] [CrossRef]
- Ait Aabd, N.; Bouharroud, R.; Tahiri, A.; Wifaya, A.; Mimouni, A.; El Mousadik, A. Genetic Diversity and Breeding of ArganTree (Argania spinosa L. Skeels). In Advances in Plant Breeding Strategies: Nut and Beverage Crops; Springer: Berlin/Heidelberg, Germany, 2019; pp. 31–56. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Argan Oil, the 35-years-of-research Product. Eur. J. Lipid Sci. Technol. 2014, 116, 1316–1321. [Google Scholar] [CrossRef]
- Koufan, M.; Mazri, M.A.; Essatte, A.; Moussafir, S.; Belkoura, I.; El Rhaffari, L.; Toufik, I. A Novel Regeneration System through Micrografting for Argania spinosa (L.) Skeels, and Confirmation of Successful Rootstock-Scion Union by Histological Analysis. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 142, 369–378. [Google Scholar] [CrossRef]
- Alouani, M.; Bani-Aameur, F. Argan (Argania spinosa (L.) Skeels) Seed Germination under Nursery Conditions: Effect of Cold Storage, Gibberellic Acid and Mother-Tree Genotype. Ann. For. Sci. 2004, 61, 191–194. [Google Scholar] [CrossRef]
- Zahidi, A.; Bani-Aameur, F. Argan Seedling Damping-off under Nursery Conditions: Effects of Mother-Tree Genotype, Kernel Origin and Seedling Age. Ecol. Mediterr. 1998, 24, 27–32. [Google Scholar] [CrossRef]
- Alouani, M.; Bani-Aameur, F. Limitations actuelles de la production et de la transplantation des plants d’arganier. In Colloque International sur les Ressources Végétales: L’arganier et les plantes des zones arides et semi-arides. Fac. Des Sci. D’agadir 1998, 23-25, 180–184. [Google Scholar] [CrossRef]
- Larcher, F.; Scariot, V. Assessment of partial peat substitutes for the production of Camellia japonica. HortScience 2009, 44, 312–316. [Google Scholar] [CrossRef]
- Gruda, N. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Särkkä, L.; Mäkilä, J.; Tahvonen, R.; Reinikainen, O.; Herranen, M. Different peat types as growing media for greenhouse cut rose and tomato—Preliminary trials. Acta Hortic. 2004, 644, 189–192. [Google Scholar] [CrossRef]
- Hanna, H.Y. Properly Recycled Perlite Saves Money, Does Not Reduce Greenhouse Tomato Yield, and Can Be Reused for Many Years. HortTechnology 2005, 15, 342–345. [Google Scholar] [CrossRef]
- Hanna, H.Y. Reducing Time and Expense to Recycle Perlite for Repeat Use in Greenhouse Tomato Operations. HortTechnology 2010, 20, 746–750. [Google Scholar] [CrossRef]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- DaMatta, F.M.; Chaves, A.R.M.; Pinheiro, H.A.; Ducatti, C.; Loureiro, M.E. Drought Tolerance of Two Field-Grown Clones of Coffea Canephora. Plant Sci. 2003, 164, s0168–s9452. [Google Scholar] [CrossRef]
- Bainbridge, D.A. Using tree shelters as deep containers. Tree Plant. Notes 2012, 55, 49–54. [Google Scholar]
- Zine El Abidine, A.; Bouderrah, M.; Bekkour, A.; Lamhamedi, M.S.; Abbas, Y. Growth and development of seedlings of two cork oak provenances produced in nursery in containers of different depths. Forêt Méditerranéenne 2016, 37, 137–150. [Google Scholar]
- De La Fuente, L.; Ovalle, J.; Arellano, E.; Ginocchio, R. Use of Alternative Containers for Promoting Deep Rooting of Native Forest Species Used for Dryland Restoration: The Case of Acacia Caven. iForest—Biogeosci. For. 2017, 10, 776–782. [Google Scholar] [CrossRef]
- Youn, W.B.; Hernandez, J.O.; Park, B.B. Effects of Shade and Planting Methods on the Growth of Heracleum moellendorffii and Adenophora divaricata in Different Soil Moisture and Nutrient Conditions. Plants 2021, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Shawon, M.R.A.; An, J.H.; Lee, H.J.; Kwon, D.J.; Hwang, I.-C.; Bae, J.H.; Choi, K.Y. Effect of Shade Screen on Sap Flow, Chlorophyll Fluorescence, NDVI, Plant Growth and Fruit Characteristics of Cultivated Paprika in Greenhouse. Agriculture 2022, 12, 1405. [Google Scholar] [CrossRef]
- Loisier, J.E.A.N. Proposition d’un cadre d’analyse coûts-efficacité pour le choix de systèmes de formation supérieure à distance. Distances 1998, 2, 81–106. [Google Scholar]
- Kjeldahl, J. New Method for the Determination of Nitrogen. Sci. Am. 1883, 16, 6470. [Google Scholar] [CrossRef]
- Schulte, E.E.; Hopkins, B.G. Estimation of Soil Organic Matter by Weight Loss-On-Ignition. Soil Org. Matter Anal. Interpret. 2015, 46, 21–31. [Google Scholar] [CrossRef]
- Lamhamedi, M.S.; Labbé, L.; Margolis, H.A.; Stowe, D.C.; Blais, L.; Renaud, M. Spatial variability of substrate water content and growth of white spruce seedlings. Soil Sci. Soc. Am. J. 2006, 70, 108–120. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis: Part I Physical and Mineralogical Properties; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Diagayété, M.; Schenkel, H. Composition minérale des ligneux consommés par les ruminants de la zone sahélienne. Rev. D’élevage Médecine Vétérinaire Pays Trop. 1986, 39, 421–424. [Google Scholar]
- Alouani, M.; Bani-Aameur, F. Effect of Light on Germination of Argan (Argania spinosa (L.) Skeels) Seeds. Acta Bot. Galica 2003, 150, 59–64. [Google Scholar] [CrossRef]
- Kołodziejek, J.; Patykowski, J.; Wala, M. Effect of Light, Gibberellic Acid and Nitrogen Source on Germination of Eight Taxa from Dissapearing European Temperate Forest, Potentillo Albae-Quercetum. Sci. Rep. 2017, 7, 13924. [Google Scholar] [CrossRef]
- Skubacz, A.; Daszkowska-Golec, A. Seed dormancy: The complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work. In Phytohormones: Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses; InTech: Rijeka, Croatia, 2017; pp. 77–100. [Google Scholar] [CrossRef]
- Li, B.; Zhang, P.; Wang, F.; Li, R.; Liu, J.; Wang, Q.; Liu, W.; Wang, B.; Hu, G. Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA3-Induced Dormancy Release in Leymus chinensis Seeds. Int. J. Mol. Sci. 2021, 22, 4161. [Google Scholar] [CrossRef]
- Ikinci, A. Effects of the water presoaking duration and gibberellic acid treatments on seed germination of Argania spinosa L. under nursery conditions. Fresenius Environ. Bull. 2014, 23, 138–143. [Google Scholar]
- Bouzoubaâ, Z.; El Mousadik, A. Effet de La Température, Du Déficit Hydrique et de La Salinité Sur La Germination de l’Arganier Argania spinosa (L.) Skeels. Acta Bot. Gall. 2003, 150, 321–330. [Google Scholar] [CrossRef]
- Simon, E.W.; Minchin, A.; Mcmenamin, M.M.; Smith, J.M. the low temperature limit for seed germination. New Phytol. 1976, 77, 301–311. [Google Scholar] [CrossRef]
- Pandey, B.; Choudhary, K.K. Air pollution: Role in climate change and its impact on crop plants. In Climate Change and Agricultural Ecosystems; Woodhead Publishing: Sawston, UK, 2019; pp. 211–247. [Google Scholar] [CrossRef]
- Ouhiwa, H. Contribution à l’Etude de la Variabilité des Graines d’Arganier (Argania spinosa) en Rapport avec la Durée de Stockage et la Provenance. Ph.D. Thesis, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco, 2008. [Google Scholar]
- Yasin, M.; Andreasen, C. Effect of Reduced Oxygen Concentration on the Germination Behavior of Vegetable Seeds. Hortic. Environ. Biotechnol. 2016, 57, 453–461. [Google Scholar] [CrossRef]
- Hmouni, D.; Zidane, L.; El Yacoubi, H.; Kaibi, K.; Maskour, F.; Ouallal, I.; Abbas, Y.; Rochdi, A. Multiplication of the argan tree (Argania spinosa L. Skeels) by germination, cuttings and microcuttings. In Proceedings of the 2nd International Argan Congress, Agadir, Morocco, 9–13 December 2013. [Google Scholar]
- Magnani, M.F.C.; Cardoso, J.C. Seed germination and substrates for seedlings cultivation of Melocactus zehntneri. Hortic. Bras. 2022, 40, 384–392. [Google Scholar] [CrossRef]
- Willumsen, J. Improvement of the physical conditions in peat substrates during the germination of cabbage seeds in organic farming (REFEREED). Acta Hortic. 1997, 450, 183–190. [Google Scholar] [CrossRef]
- Schmidt, L.H. Guide to Handling of Tropical and Subtropical Forest Seed; Danida Forest Seed Centre: Copenhagen, Denmark, 2000; pp. 263–303. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.706.5441&rep=rep1&type=pdf (accessed on 12 January 2023).
- Alouani, M.; Bani-Aameur, F. Viabilité et vieillissement des semences d’arganier (Argania spinosa (L.) Skeels). Afr. Sci. Rev. Int. Sci. Technol. 2014, 10, 245–255. [Google Scholar]
- Alouani, M.; Bani-Aameur, F. Des propositions pour améliorer la levée des plants de l’arganier en pépinières. In Colloque International sur les Ressources Végétales: L’arganier et les Plantes des Zones Arides et Semi-Arides, (Abstract); Faculté des Sciences d’Agadir: Agadir, Morocco, 1998; pp. 112–113. [Google Scholar] [CrossRef]
- Ouallal, I.; Ouajdi, M.; Kerdouh, B.; Sanguin, H.; Rochdi, A.; Abbas, Y. Characterization of mycorrhizal resources for the safeguard of the argan forest ecosystem: A tool for modern biotechnology for the regeneration of the argan tree (Argania spinosa L). In Proceedings of the 2nd International Argan Congress, Agadir, Morocco, 9–13 December 2013. [Google Scholar]
- Hartmann, H.T.; Rester, D.E.; Davies, F.T. Plant Propagation Principles and Practices; Prentice Hall International: Singapore, 1990; p. 647. [Google Scholar]
- Ferradous, A.; Hafidi, M. Production de Plants d’arganier (Argania Spinosa) Au Maroc: Choix Du Conteneur et Du Substrat. Bois For. Trop. 2018, 334, 37. [Google Scholar] [CrossRef]
- Bani-Aameur, F.; Louali, L.; Dupuis, P. Maturation et chute des fruits de l’arganier. Actes L’institut Agron. Vétérinaire Hassan II 1998, 18, 137–144. [Google Scholar]
- Zahidi, A.; Bani-Aameur, F. Germination des amandes d’arganier (Argania spinosa (L.) Skeels): Effet du génotype, de la date de semis et de l’année de récolte. Ann. Rech. For. Maroc 1997, 30, 2–16. [Google Scholar]
- Berka, S.; Harfouche, A. Effets de quelques traitements physico-chimiques et de la température sur la faculté germinative de la graine d’arganier. Rev. For. Française 2001, 53, 125–130. [Google Scholar] [CrossRef]
- Fleming, M.B.; Richards, C.M.; Walters, C. Decline in RNA Integrity of Dry-Stored Soybean Seeds Correlates with Loss of Germination Potential. J. Exp. Bot. 2017, 68, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Nouaim, R.; Mangin, G.; Breuil, M.C.; Chaussod, R. The argan tree (Argania spinosa) in Morocco: Propagation by seeds, cuttings and in-vitro techniques. Agrofor. Syst. 2002, 54, 71–81. [Google Scholar] [CrossRef]
- Bani-Aameur, F.; Alouani, M. Viabilité et Dormance Des Semences d’arganier (Argania spinosa (L.) Skeels). Ecol. Mediterr. 1999, 25, 75–86. [Google Scholar] [CrossRef]
- Hamani, Z.; Belloufa, A.; Kaid-Harche, M. Effect of harvest time and seed coat on germination of Argania spinosa (L.) Skeels. Range Manag. Agrofor. 2018, 39, 72–76. [Google Scholar]
- El Mandouri, F.Z.; Abidli, Z.; Benyahia, H.; Benkirane, R. Knowledge and consumption of argan oil (Argania spinosa L. Skeels). Plant Cell Biotechnol. Mol. Biol. 2019, 8, 910–916. [Google Scholar]
- Ouswati, S.A.; Hachemi, A.; Moumni, A.; Zine, H.; Elgadi, S.; Belghazi, T.; Ouhammou, A.; Lahrouni, A.; EL Messoussi, S. Argan (Argania spinosa (L.) Skeels) seed germination under some pretreatments of thermal shocks. Kastamonu Univ. J. For. Fac. 2022, 22, 56–67. [Google Scholar] [CrossRef]
- Hammed, L.A.; Aliyu, O.M.; Dada, K.E.; Egbewale, S.O. Cultivar type and nut-sowing orientation influence germination and plant vigor in cashew (Anacardium occidentale L.). Int. J. Fruit Sci. 2013, 14, 69–80. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C. Bell Pepper (Capsicum annum L.) Crop as Affected by Shade Level: Microenvironment, Plant Growth, Leaf Gas Exchange, and Leaf Mineral Nutrient Concentration. HortScience 2013, 48, 175–182. [Google Scholar] [CrossRef]
- Ha, J.B.; Lim, C.S.; Kang, H.Y.; Kang, Y.S.; Hwang, S.J.; Mun, H.S.; An, C.G. Effect of Shading Methods on Growth and Fruit Quality of Paprika in Summer Season. J. Bio-Environ. Control. 2012, 21, 419–427. [Google Scholar] [CrossRef]
- King, D.A. The Adaptive Significance of Tree Height. Am. Nat. 1990, 135, 809–828. [Google Scholar] [CrossRef]
- Franklin, O.; Harrison, S.P.; Dewar, R.; Farrior, C.E.; Brännström, Å.; Dieckmann, U.; Pietsch, S.; Falster, D.; Cramer, W.; Loreau, M.; et al. Organizing Principles for Vegetation Dynamics. Nat. Plants 2020, 6, 444–453. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, R.; Zhou, Y. Effects of Shading Stress during the Reproductive Stages on Photosynthetic Physiology and Yield Characteristics of Peanut (Arachis hypogaea Linn.). J. Integr. Agric. 2021, 20, 1250–1265. [Google Scholar] [CrossRef]
- Manders, P.T. The Effects of Shading on Nursery Grown Seedlings of the Clanwilliam Cedar. For. J. 1986, 138, 15–22. [Google Scholar] [CrossRef]
- Zhu, J.J.; Qiang, P.E.N.G.; Liang, Y.L.; Xing, W.U.; Hao, W.L. Leaf gas exchange, chlorophyll fluorescence, and fruit yield in hot pepper (Capsicum anmuum L.) grown under different shade and soil moisture during the fruit growth stage. J. Integr. Agric. 2012, 11, 927–937. [Google Scholar] [CrossRef]
- Pierson, E.A.; Mack, R.N.; Black, R.A. The effect of shading on photosynthesis, growth, and regrowth following defoliation for Bromus tectorum. Oecologia 1990, 84, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, M.; Gómez, P.; Gajardo, J.; Espinoza, S. Growth and Physiological Acclimation to Shade in Young Plants of Adesmia Bijuga Phil., a Critically Endangered Species in Central Chile. iForest—Biogeosci. For. 2021, 14, 307–312. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, H.; Zhu, Q.; Li, C.; Zhang, H.; Wu, J.-J.; Xie, F. Photosynthetic Response of Soybean Leaf to Wide Light-Fluctuation in Maize-Soybean Intercropping System. Front. Plant Sci. 2017, 8, 1695. [Google Scholar] [CrossRef]
- Kim, J.K.; Shawon, M.R.A.; An, J.H.; Yun, Y.J.; Park, S.J.; Na, J.K.; Choi, K.Y. Influence of substrate composition and container size on the growth of tissue culture propagated apple rootstock plants. Agronomy 2021, 11, 2450. [Google Scholar] [CrossRef]
- Li, Y.; Shi, D.; Li, G.; Zhao, B.; Zhang, J.; Liu, P.; Ren, B.; Dong, S. Maize/Peanut Intercropping Increases Photosynthetic Characteristics, 13C-Photosynthate Distribution, and Grain Yield of Summer Maize. J. Integr. Agric. 2019, 18, 2219–2229. [Google Scholar] [CrossRef]
- Tran, T. The Effect of Light Exposure on the Total Chlorophyll Content, Chl a/b Ratio, and Car/Chl Ratio in the Barks of Fraxinus Latifolia Seedlings. Bachelor’s Thesis, Portland State University, Portland, OR, USA, 2018; p. 575. [Google Scholar] [CrossRef]
- Jiang, C.-D.; Wang, X.; Gao, H.-Y.; Shi, L.; Chow, W.S. Systemic Regulation of Leaf Anatomical Structure, Photosynthetic Performance, and High-Light Tolerance in Sorghum. Plant Physiol. 2011, 155, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Wang, Z.; Yang, P. Review: The Effect of Light on the Key Pigment Compounds of Photosensitive Etiolated Tea Plant. Bot. Stud. 2021, 62, 21. [Google Scholar] [CrossRef]
- Pardos, M.; Jiménez, M.D.; Aranda, I.; Puértolas, J.; Pardos, J.A. Water Relations of Cork Oak (Quercus suber L.) Seedlings in Response to Shading and Moderate Drought. Ann. For. Sci. 2005, 62, 377–384. [Google Scholar] [CrossRef]
- Jensen, E. Grain yield, symbiotic N2-fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Carlsson, G.; Palmborg, C.; Jumpponen, A.; Scherer-Lorenzen, M.; Högberg, P.; Huss-Danell, K. N2 fixation in three perennial Trifolium species in experimental grasslands of varied plant species richness and composition. Plant Ecol. 2009, 205, 87–104. [Google Scholar] [CrossRef]
- Friel, C.A.; Friesen, M.L. Legumes Modulate Allocation to Rhizobial Nitrogen Fixation in Response to Factorial Light and Nitrogen Manipulation. Front. Plant Sci. 2019, 10, 1316. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.A.; Miller, E.K.; Friedland, A.J. Effect of nitrogen and light on nutrient concentrations and associated physiological responses in birch and fir seedlings. Plant Soil 2001, 236, 197–207. [Google Scholar] [CrossRef]
- NeSmith, D.S.; Bridges, D.C.; Barbour, J.C. Bell Pepper Responses to Root Restriction. J. Plant Nutr. 1992, 15, 2763–2776. [Google Scholar] [CrossRef]
- Peterson, T.A.; Reinsel, M.D.; Krizek, D.T. Tomato (Lycopersicon esculentum Mill., Cv. ‘Better Bush’) Plant Response to Root Restriction. J. Exp. Bot. 1991, 42, 1233–1240. [Google Scholar] [CrossRef]
- Mathers, H.M.; Lowe, S.B.; Scagel, C.; Struve, D.K.; Case, L.T. Abiotic Factors Influencing Root Growth of Woody Nursery Plants in Containers. HortTechnology 2007, 17, 151–162. [Google Scholar] [CrossRef]
- Wheeldon, C.D.; Walker, C.H.; Hamon-Josse, M.; Bennett, T. Wheat Plants Sense Substrate Volume and Root Density to Proactively Modulate Shoot Growth. Plant Cell Environ. 2020, 44, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Ozores-Hampton, M.; Frasca, A.C.; Scott, J.; Hutton, S. Compact Growth Habit Tomatoes. EDIS 2014, 49, 1529–1536. [Google Scholar] [CrossRef]
- Sage, R.F. Acclimation of Photosynthesis to Increasing Atmospheric CO2: The Gas Exchange Perspective. Photosynth. Res. 1994, 39, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Rieger, M.; Marra, F. Responses of Young Peach Trees to Root Confinement. J. Am. Soc. Hortic. Sci. 1994, 119, 223–228. [Google Scholar] [CrossRef]
- Tschaplinski, T.J.; Blake, T.J. Effects of Root Restriction on Growth Correlations, Water Relations and Senescence of Alder Seedlings. Physiol. Plant. 1985, 64, 167–176. [Google Scholar] [CrossRef]
- Van Iersel, M. Root restriction effects on growth and development of salvia (Salvia splendens). HortScience 1997, 32, 11861190. [Google Scholar] [CrossRef]
- Newby, A.; Fare, D.C. Maple growth affected by container and liner size. In Proceedings of the Southern Nursery Association Research Conference, Atlanta, GA, USA, 22–23 July 2001; pp. 113–116. [Google Scholar]
- Abebe, H. Effects of Pot Size and Planting Media on the Early Seedling Growth Performance of Azadirachta indica A. Juss. J. Plant Sci. 2021, 9, 208. [Google Scholar] [CrossRef]
- Segaw, H.A.; Tura, F.S.; Gobelle, S.K.; Komicho, D.N.; Gifawesen, S.T. Evaluation of the effect of different pot sizes and growing media on the seedling growth morphology of Cajanus cajan and Sesbanian sesban in dryland areas, Southern parts of Ethiopia. J. Biol. Agric. Healthc. 2016, 6, 23. [Google Scholar]
- Ronchi, C.P.; DaMatta, F.M.; Batista, K.D.; Moraes, G.A.B.K.; Loureiro, M.E.; Ducatti, C. Growth and Photosynthetic Down-Regulation in Coffea Arabica in Response to Restricted Root Volume. Funct. Plant Biol. 2006, 33, 1013. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Bar-Yosef, B.; Kafkafi, U. Pepper Transplant Response to Root Volume and Nutrition in the Nursery. Agron. J. 1990, 82, 989–995. [Google Scholar] [CrossRef]
- Garcia, L. Post-Transplant Establishment and Economic Value of Three Tree Species from Five Container Sizes. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
- Lambert, B.; Harper, S.; Robinson, S. Effect of Container Size at Time of Planting on Tree Growth Rates for Baldcypress [Taxodium distichum (L.) Rich], Red Maple (Acer rubrum L.), and Longleaf Pine (Pinus palustris Mill.). Arboric. Urban For. 2010, 36, 93–99. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Drought and Salinity: A Comparison of Their Effects on Mineral Nutrition of Plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Fields, J.S.; Fonteno, W.C.; Jackson, B.E.; Heltman, J.L.; Owen, J.S. Hydrophysical properties, moisture retention, and drainage profiles of wood and traditional components for greenhouse substrates. HortScience 2014, 49, 827–832. [Google Scholar] [CrossRef]
- Barcelos, C.; Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Bryla, D.R. Effects of Substrate Type on Plant Growth and Nitrogen and Nitrate Concentration in Spinach. Int. J. Plant Biol. 2016, 7, 6325. [Google Scholar] [CrossRef]
- Ceglie, F.G.; Bustamante, M.A.; Amara, M.B.; Tittarelli, F. The challenge of peat substitution in organic seedling prduction: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef] [PubMed]
- Jindo, K.; Sánchez-Monedero, M.A.; Mastrolonardo, G.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Modini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chem. Biol. Technol. Agric. 2020, 7, 16. [Google Scholar] [CrossRef]
- García-Rodríguez, Á.F.; Moreno-Racero, F.J.; García de Castro Barragán, J.M.; Colmenero-Flores, J.M.; Greggio, N.; Knicker, H.; Rosales, M.A. Influence of Biochar Mixed into Peat Substrate on Lettuce Growth and Nutrient Supply. Horticulturae 2022, 8, 1214. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In Biochar an Imperative Amendment for Soil and the Environment; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Amery, F.; Debode, J.; Ommeslag, S.; Visser, R.; De Tender, C.; Vandecasteele, B. Biochar for circular horticulture: Feedstock related effects in soilless cultivation. Agronomy 2021, 11, 629. [Google Scholar] [CrossRef]
- Alam, I.; Alam, M.; Khan, A.; Haq, S.U.; Ayaz, A.; Jalal, A.; Bhat, J.A. Biochar supplementation regulates growth and heavy metal accumulation in tomato grown in contaminated soils. Physiol. Plant. 2021, 173, 340–351. [Google Scholar] [CrossRef]
- Heiskanen, J.; Hagner, M.; Ruhanen, H.; Mäkitalo, K. Addition of recyclable biochar, compost and fibre clay to the growth medium layer for the cover system of mine tailings: A bioassay in a greenhouse. Environ. Earth Sci. 2020, 79, 422. [Google Scholar] [CrossRef]
- Hossain, Z.; Bahar, M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Kiralan, M.; Ketenoglu, O. Utilization of tomato (Solanum lycopersicum) by-products: An overview. In Mediterranean Fruits Bio-Wastes; Springer: Berlin/Heidelberg, Germany, 2022; pp. 799–818. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Bichar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Wong, J.W.; Ogbonnaya, U.O. Biochar porosity: A nature-based dependent parameter to deliver microorganisms to soils for land restoration. Environ. Sci. Pollut. Res. 2021, 28, 46894–46909. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of Biochar Application on Root Traits: A Meta-Analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- El Moussaoui, H.; Bouqbis, L. Interactive Effect of Biochar and Bio-Compost on Starting Growth and Physiologic Parameters of Argan. Sustainability 2022, 14, 7270. [Google Scholar] [CrossRef]
- Garcia-Gomez, A. Growth of Ornamental Plants in Two Composts Prepared from Agroindustrial Wastes. Bioresour. Technol. 2002, 83, 81–87. [Google Scholar] [CrossRef]
- Chong, C.; Cline, R.A.; Rinker, D.L. Bark- and Peat-Amended Spent Mushroom Compost for Containerized Culture of Shrubs. HortScience 1994, 29, 781–784. [Google Scholar] [CrossRef]
- Wever, G.; Baas, R.; Marques, J.C.; Van Aanholt, L.J. Gas concentration measurement in horticultural growing media. Acta Hortic. 1997, 554, 149–156. [Google Scholar] [CrossRef]
- Tu, A.; Xie, S.; Zheng, H.; Li, H.; Li, Y.; Mo, M. Long-term effects of living grass mulching on soil and water conservation and fruit yield of citrus orchard in south China. Agric. Water Manag. 2021, 252, 106897. [Google Scholar] [CrossRef]
- Mulder, D. Les elements mineurs en culture fruitiere. In Convegno Nazionale Fruitticoltura; Montana de Saint Vincent: Florence, Italy, 1953; pp. 118–198. [Google Scholar]
- Kuchenbuch, R.; Claassen, N.; Jungk, A. Potassium Availability in Relation to Soil Moisture. Plant Soil 1986, 95, 221–231. [Google Scholar] [CrossRef]
- Al-Menaie, H.S.; Bhat, N.R.; El-Nil, M.A.; Al-Dosery, S.M.; Al-Shatti, A.A.; Gamalin, P.; Suresh, N. Seed germination of Argan (Argania spinosa L.). Am.-Eurasian J. Sci. Res. 2007, 2, 1–4. [Google Scholar]
- Ferradous, A.; Bani-Aameur, F.; Dupuis, P. Climat stationnel, phénologie et fructification de l’arganier (Argania spinosa (L.) Skeels). Actes L’institutagronomique Vétérinaire Hassan II 1996, 17, 51–60. [Google Scholar]
- Belghazi, B.; Ourous, O.; Ponette, Q.; Dallahi, Y. La problématique de la régénération de l’arganier: Quelle innovation en matière de production de plants de qualité ? In Proceedings of the Premier Congrès International de l’Arganier, Agadir, Morocco, 15–17 December 2011; pp. 155–167. Available online: www.inra.org.ma/Docs/actesarganier/arganier155164.pdf (accessed on 25 March 2023).
- Lemaire, F.; Dartigues, A.; Rivière, L.M.; Charpentier, S. Cultures en Pots et Conteneurs: Principes Agronomiques et Applications; INRA: Paris, France, 1989; p. 210. [Google Scholar]
- Landis, T.D.; Luna, T.; Dumroese, R.K. Nursery Manual: A Guide to Starting and Operating a Nursery for Native and Traditional Plants. In Agriculture Handbook 732; US Department of Agriculture, Forest Service: Washington, DC, USA, 2014; pp. 123–140. Available online: https://www.fs.usda.gov/treesearch/pubs/46345 (accessed on 17 July 2023).
- Krugman, P.; Wells, R. Chapitre 9. La prise de décisions par les individus et les firmes in Microéconomie, 2è édition, traduction de la 3è édition américaine par Laurent Baechler. Boeck 2013, 3, 409–436. [Google Scholar]
- Ivetić, V.; Devetaković, J.; Maksimović, Z. Initial Height and Diameter Are Equally Related to Survival and Growth of Hardwood Seedlings in First Year after Field Planting. Reforesta 2016, 2, 6–21. [Google Scholar] [CrossRef]
- Córdoba, R.D.; Vargas, H.J.J.; López, U.J.; Muñoz, O.A. Root growth in young plants of Pinus pinceana Gordon in response to soil moisture. Agrociencia 2011, 45, 493–506. Available online: http://www.scielo.org.mx/pdf/agro/v45n4/v45n4a8.pdf (accessed on 23 March 2023).
- Grossnickle, S.C.; MacDonald, J.E. Seedling quality: History, application, and plant attributes. Forests 2018, 9, 283. [Google Scholar] [CrossRef]
Factors | Shade (SH) | Substrate (S) | Container (C) | SH × S | SH × C | S × C | SH × S × C |
---|---|---|---|---|---|---|---|
Mean Square | 124.031 *** | 92.637 *** | 6.429 ns | 9.142 * | 10.494 * | 5.563 ns | 4.876 ns |
Shoot Length (cm) | Shoot Diameter (mm) | Number of Ramifications | Fresh Shoot Weight (g) | Dry Shoot Weight (g) | Root Length (cm) | Root Diameter (mm) | Number of Secondary Roots | Number of Lateral Roots | Fresh Root Weight (g) | Dry Root Weight (g) | Chlorophyll Content (mg/m2) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Df | Mean Square | ||||||||||||
Shade (SH) | 3 | 319.529 *** | 73.921 *** | 265.55 *** | 168.735 *** | 16.582 *** | 814.28 *** | 22.696 *** | 292.675 * | 4681.142 *** | 79.202 *** | 42.687 *** | 85,093.451 *** |
Substrate (S) | 5 | 3032.268 *** | 26.738 *** | 255.326 *** | 457.974 *** | 44.006 *** | 2311.597 *** | 12.068 *** | 1791.242 *** | 997.919 *** | 87.996 *** | 55.066 *** | 24,967.393 * |
Container © | 3 | 97.772 ns | 2.933 ** | 12.231 ns | 51.514 *** | 6.954 *** | 4811.99 *** | 7.116 *** | 789.81 *** | 226.922 ns | 10.368 ** | 3.324 * | 38,881.113 ** |
SH × S | 15 | 163.238 *** | 2.428 *** | 28.606 *** | 61.186 *** | 6.654 *** | 220.054 ** | 3.571 *** | 127.793 ns | 189.016 ns | 16.313 *** | 9.935 *** | 20,058.064 ** |
SH × C | 9 | 73.415 ns | 1.167 ns | 12.112 ns | 19.212 ** | 2.771 ** | 244.092 ** | 1.346 * | 181.504 ns | 251.695 ns | 3.425 * | 2.147 * | 25,695.597 ** |
S × C | 15 | 103.457 ** | 1.363 * | 13.374 ns | 30.553 *** | 4.273 *** | 379.765 *** | 1.335 ** | 441.349 *** | 414.553 ** | 3.626 * | 3.616 *** | 11,054.987 ns |
SH × S × C | 45 | 132.631 *** | 1.3 ** | 5.698 ns | 22.884 *** | 2.687 *** | 166.437 ** | 1.475 *** | 107.063 ns | 219.773 ns | 4.4249 *** | 2.505 *** | 18,476.028 *** |
Shoot Length (cm) | Shoot Diameter (mm) | Number of Ramifications | Fresh Shoot Weight (g) | Dry Shoot Weight (g) | Root Length (cm) | Root Diameter (mm) | Number of Secondary Root | Number of Lateral Roots | Fresh Root Weight (g) | Dry Root Weight (g) | Chlorophyll Content (mg/m2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shade | ||||||||||||
0% | 24.06 ± 8.78 bc | 2.16 ± 1.11 a | 2.36 ± 3.38 a | 5.84 ± 4.43 a | 1.99 ± 1.17 ab | 25.52 ± 15.9 bc | 2.58 ± 1.18 a | 21.18 ± 13.32 ab | 26.68 ± 17.04 a | 2.59 ± 2.02 a | 0.8 ± 0.18 a | 375.8 ± 132.98 a |
20% | 23.18 ± 10.39 c | 1.46 ± 0.8 b | 1.62 ± 2.91 b | 4.2 ± 4.31 b | 1.62 ± 1 b | 22.11 ± 9.97 c | 2.47 ± 1.07 a | 20.6 ± 10.51 b | 13.93 ± 10.96 c | 1.92 ± 1.66 b | 0.59 ± 0.13 b | 320.41 ± 91.26 b |
40% | 25.86 ± 11.79 ab | 1.6 ± 0.99 b | 2.13 ± 3.84 ab | 5.43 ± 4.83 a | 2.14 ± 1.67 a | 29.24 ± 15.27 a | 2.55 ± 1.18 a | 24.5 ± 12.81 a | 21.14 ± 16.71 b | 2.96 ± 2.8 a | 0.94 ± 0.19 a | 373.66 ± 99.34 a |
80% | 27.25 ± 9.91 a | 1.22 ± 0.6 c | 0.41 ± 1.6 c | 2.9 ± 1.73 c | 0.99 ± 0.6 c | 25.82 ± 13.14 ab | 1.56 ± 0.52 b | 21.5 ± 12.45 ab | 11.3 ± 11.08 c | 0.89 ± 1.03 c | 0.29 ± 0.09 c | 327.12 ± 90.77 b |
Substrate | ||||||||||||
S1 | 35.26 ± 11.04 a | 2.07 ± 1.24 a | 2.76 ± 1.96 a | 8.49 ± 5.13 a | 3.16 ± 1.88 a | 32.34 ± 15.13 a | 2.98 ± 1.41 a | 25.92 ± 13.73 ab | 21.89 ± 18.3 a | 4.09 ± 2.87 a | 1.32 ± 0.94 a | 385.4 ± 94.56 a |
S2 | 19.51 ± 6.01 c | 1.32 ± 0.59 c | 0.53 ± 1.35 b | 1.86 ± 1.23 c | 0.69 ± 0.3 c | 19.97 ± 9.4 de | 1.72 ± 0.62 d | 16.96 ± 9.01 d | 13.97 ± 12 bc | 0.85 ± 0.15 c | 0.32 ± 0.13 c | 330.9 ± 103.73 b |
S3 | 27.35 ± 11.04 b | 1.79 ± 1.01 b | 2.12 ± 1.62 a | 6.64 ± 6.22 b | 2.52 ± 1.82 b | 27.37 ± 13.51 bc | 2.55 ± 1.21 b | 23.32 ± 11.15 bc | 20.43 ± 15.84 ab | 2.61 ± 1.85 b | 0.84 ± 0.26 b | 338.05 ± 85.06 b |
S4 | 18.53 ± 5.83 c | 1.36 ± 0.64 c | 0.57 ± 0.48 b | 2.27 ± 1.65 c | 0.81 ± 0.42 c | 18.07 ± 7.66 e | 2.15 ± 0.8 c | 16.13 ± 8.47 d | 12.78 ± 11.51 c | 1.3 ± 0.76 c | 0.33 ± 0.10 c | 337.98 ± 89.9 b |
S5 | 19.73 ± 6.62 c | 1.38 ± 0.86 c | 0.75 ± 0.53 b | 2.91 ± 1.6 c | 0.96 ± 0.48 c | 24.23 ± 11.1 cd | 2.04 ± 0.92 cd | 19.73 ± 11.44 cd | 18.91 ± 14.87 abc | 1.44 ± 0.88 c | 0.38 ± 0.13 c | 351.05 ± 149.34 ab |
S6 | 30.14 ± 7.3 b | 1.68 ± 0.91 b | 2.26 ± 1.71 a | 5.41 ± 3.5 b | 1.95 ± 1.03 b | 32.06 ± 17.8 ab | 2.3 ± 1.06 bc | 29.61 ± 13.82 a | 21.61 ± 16.91 a | 2.24 ± 1.47 b | 0.73 ± 0.21 b | 350.06 ± 106.94 ab |
Container | ||||||||||||
C1 | 24.56 ± 9.14 a | 1.52 ± 0.87 b | 1.43 ± 2.88 b | 4 ± 2.52 b | 1.36 ± 1.01 b | 28.57 ± 14.24 b | 2 ± 0.96 c | 24.08 ± 14.29 a | 19.08 ± 15.93 a | 2.03 ± 1.12 b | 0.58 ± 0.29 c | 361.86 ± 86.34 a |
C2 | 25.75 ± 9.2 a | 1.68 ± 1.04 a | 1.98 ± 3.64 a | 5.65 ± 3.98 a | 2.14 ± 2.08 a | 34.34 ± 16.63 a | 2.41 ± 1.01 ab | 24.05 ± 13.78 a | 19.95 ± 15.79 a | 2.56 ± 1.54 a | 0.76 ± 0.38 a | 349.32 ± 135.2 ab |
C3 | 23.94 ± 12.64 a | 1.74 ± 1.03 a | 1.69 ± 3.1 ab | 4.22 ± 2.98 b | 1.55 ± 1.08 b | 19.77 ± 9.84 c | 2.15 ± 0.99 bc | 17.99 ± 8.93 b | 17.5 ± 16.37 a | 1.95 ± 1.04 b | 0.62 ± 0.25 ab | 364.2 ± 95.64 a |
C4 | 26.1 ± 10.05 a | 1.65 ± 0.96 ab | 1.54 ± 2.95 ab | 4.52 ± 2.75 b | 1.68 ± 1.1 b | 20.02 ± 7.46 c | 2.61 ± 1.33 a | 21.66 ± 10.85 ab | 16.53 ± 13.5 a | 1.82 ± 1.08 b | 0.66 ± 0.31 ab | 319.29 ± 103.67 b |
Substrates | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
Porosity % | 57.0 ± 0.02 a | 63.0 ± 0.04 a | 51.0 ± 0.02 a | 61.0 ± 0.01 a | 52.0 ± 0.10 a | 53.0 ± 0.01 a |
Soil Moisture % | 2.54 ± 0.91 a | 0.28 ± 0.13 b | 0.41 ± 0.01 b | 0.63 ± 0.08 b | 1.12 ± 0.07 b | 1.19 ± 0.03 b |
Bulk Density (g/cm3) | 0.24 ± 0.01 e | 1.22 ± 0.04 a | 1.16 ± 0.05 a | 1.02 ± 0.04 b | 0.88 ± 0.04 c | 0.39 ± 0.04 d |
Ec (µs/cm) | 869.00 ± 288.86 b | 2638.33 ± 754.95 ab | 1007.66 ± 156.75 b | 1976.66 ± 60.70 ab | 1991.33 ± 34.04 ab | 3256.66 ± 1145.14 a |
pH | 4.51 ± 0.06 c | 8.37 ± 0.32 a | 6.25 ± 0.02 b | 7.50 ± 0.01 a | 8.02 ± 0.76 a | 5.91 ± 0.31 b |
Na (ppm) | 4.13 ± 1.12 b | 4.36 ± 0.15 b | 4.30 ± 0.88 b | 4.46 ± 0.80 b | 2.53 ± 0.41 b | 14.43 ± 3.46 a |
K (ppm) | 0.63 ± 0.15 a | 1.40 ± 0.05 a | 0.40 ± 0.26 a | 3.70 ± 2.97 a | 1.90 ± 0.79 a | 0.50 ± 0.26 a |
Ca (ppm) | 11.20 ± 1.41 b | 3.63 ± 0.20 c | 4.80 ± 1.69 c | 57.60 ± 9.01 a | 4.66 ± 0.73 c | 16.30 ± 1.96 b |
P2O5 (ppm) | 38.18 ± 3.88 a | 12.08 ± 3.40 bc | 6.21 ± 0.58 c | 20.03 ± 1.23 b | 20.83 ± 5.22 b | 18.92 ± 8.77 bc |
N % | 0.10 ± 0.04 b | 0.24 ± 0.08 b | 0.31 ± 0.11 b | 0.17 ± 0.01 b | 0.29 ± 0.12 b | 0.76 ± 0.07 a |
OM % | 94.37 ± 0.23 a | 8.31 ± 0.31 c | 9.52 ± 0.69 c | 31.62 ± 2.23 b | 13.98 ± 1.85 c | 77.4 ± 0.96 a |
CEC (méq/100 g) | 139.21 ± 12.34 a | 15.53 ± 3.35 c | 21.27 ± 2.62 bc | 16.13 ± 3.94 c | 21.19 ± 1.91 bc | 109.86 ± 11.34 ab |
Na (ppm) | K (ppm) | Ca (ppm) | P (ppm) | N (%) | ||
---|---|---|---|---|---|---|
df | Mean Square | |||||
Shade (SH) | 3 | 429,340.983 *** | 669,064.034 *** | 169,215.003 *** | 48.824 * | 0.135 *** |
Substrate (S) | 5 | 5457.802 ns | 38,782.205 ** | 5936.887 * | 42.358 * | 0.307 *** |
Container (C) | 3 | 34,315.122 *** | 40,883.117 ** | 3329.757 ns | 67.692 ** | 0.219 *** |
SH × S | 15 | 14,047.853 *** | 22,244.416 ** | 4482.085 * | 20.266 ns | 0.077 *** |
SH × C | 9 | 23,310.125 *** | 8137.58 ns | 1039.948 ns | 28.419 * | 0.039 *** |
S × C | 15 | 13,749.4 *** | 13,073.521 ns | 3476.994 ns | 39.703 *** | 0.113 *** |
SH × S × C | 45 | 11,791.162 *** | 18,281.725 ** | 4924.786 *** | 22.208 ** | 0.096 *** |
Na (ppm) | K (ppm) | Ca (ppm) | P (ppm) | N (%) | |
---|---|---|---|---|---|
Shade | |||||
0% | 75.67 ± 25.75 ab | 142.1 ± 22.28 b | 31.66 ± 17.14 b | 5.25 ± 3.54 b | 0.49 ± 0.17 a |
20% | 182.09 ± 23.3 a | 222.89 ± 13.67 a | 104.12 ± 22.98 a | 6.71 ± 2.47 a | 0.41 ± 0.26 c |
40% | 54.69 ± 15.32 b | 49.96 ± 22.95 c | 18.13 ± 9.77 b | 5.16 ± 2.76 b | 0.39 ± 0.12 c |
80% | 30.36 ± 10.54 c | 49.35 ± 25.5 c | 14.57 ± 8.56 b | 6 ± 3.31 ab | 0.43 ± 0.14 b |
Substrate | |||||
S1 | 86.96 ± 14.11 a | 118.57 ± 21.43 ab | 44.43 ± 15.22 ab | 6.39 ± 3.34 ab | 0.48 ± 0.1 b |
S2 | 76.09 ± 15.3 a | 92.18 ± 12.26 b | 51.57 ± 28.85 a | 7.15 ± 4.56 a | 0.36 ± 0.15 d |
S3 | 87.02 ± 13.9 a | 89.44 ± 25.52 b | 44.26 ± 11.42 ab | 5.33 ± 2.78 ab | 0.47 ± 0.05 b |
S4 | 101.28 ± 30.09 a | 150.34 ± 27.12 a | 44.19 ± 15.28 ab | 4.94 ± 2.49 b | 0.32 ± 0.15 e |
S5 | 86.5 ± 15.31 a | 107.55 ± 14.66 ab | 23.35 ± 11.3 c | 5.3 ± 2.08 ab | 0.41 ± 0.23 c |
S6 | 76.35 ± 14.27 a | 138.36 ± 26.28 ab | 44.92 ± 9.89 ab | 5.57 ± 3.17 ab | 0.53 ± 0.26 a |
Container | |||||
C1 | 78.05 ± 11.75 b | 113.33 ± 19.3 b | 47.86 ± 12.41 a | 5.03 ± 1.95 b | 0.5 ± 0.28 a |
C2 | 76.38 ± 16.67 b | 102.68 ± 29.65 b | 46.5 ± 14.49 a | 5.68 ± 2.99 ab | 0.44 ± 0.13 b |
C3 | 74.4 ± 12.51 b | 102.23 ± 24.75 b | 36.49 ± 17.1 a | 6.97 ± 3.97 a | 0.39 ± 0.13 c |
C4 | 113.97 ± 28.93 a | 146.06 ± 26.25 a | 37.63 ± 20.24 a | 5.42 ± 2.8 b | 0.38 ± 0.14 c |
Shoot Length (cm) | Shoot Diameter (mm) | Number of Ramifications | Fresh Shoot Weight (g) | Dry Shoot Weight (g) | |||
---|---|---|---|---|---|---|---|
Shade 0% | Substrate | S1 | 28.7 ± 9.14 a | 2.75 ± 1.22 a | 3.23 ± 1.27 a | 8.87 ± 4.36 ab | 2.94 ± 1.68 ab |
S2 | 20.4 ± 4.2 bc | 1.61 ± 0.74 d | 0.92 ± 0.31 b | 2.31 ± 1.19 c | 0.89 ± 0.39 cd | ||
S3 | 29.61 ± 9.88 a | 2.49 ± 1.03 ab | 3.57 ± 2.21 a | 11.78 ± 6.01 a | 4.29 ± 2.55 a | ||
S4 | 19.21 ± 5.54 c | 1.67 ± 0.72 d | 0.92 ± 0.55 b | 2.68 ± 1.88 cd | 0.74 ± 0.4 d | ||
S5 | 19.18 ± 8.18 c | 1.95 ± 1.29 cd | 1.46 ± 0.84 b | 3.17 ± 1.92 cd | 0.79 ± 0.34 cd | ||
S6 | 27.25 ± 7.79 ab | 2.32 ± 1.03 bc | 3.78 ± 1.76 a | 6.26 ± 3.96 bc | 2.28 ± 1.29 bc | ||
Container | C1 | 25.87 ± 11.34 a | 2.11 ± 1.02 a | 2.23 ± 1.14 a | 5.7 ± 3.63 ab | 1.88 ± 1.1 ab | |
C2 | 23.18 ± 9.06 a | 2.06 ± 1.12 a | 2.52 ± 1.48 a | 7.45 ± 4.62 a | 2.81 ± 2.03 a | ||
C3 | 21.97 ± 6.95 a | 2.3 ± 1.24 a | 2.28 ± 1.37 a | 4.21 ± 2.57 b | 1.34 ± 0.98 b | ||
C4 | 25.2 ± 7.01 a | 2.15 ± 1.04 a | 2.4 ± 1.89 a | 6.01 ± 3.71 ab | 1.93 ± 1.08 ab | ||
Shade 20% | Substrate | S1 | 29.93 ± 10.4 a | 1.92 ± 1.07 a | 2.94 ± 3.65 a | 8.28 ± 5.57 a | 3.13 ± 2.22 a |
S2 | 18.67 ± 7.12 b | 1.19 ± 0.45 bc | 0.32 ± 0.14 c | 1.73 ± 1.33 c | 0.62 ± 0.15 c | ||
S3 | 25.93 ± 16.82 ab | 1.54 ± 0.87 b | 2 ± 1.59 ab | 6.14 ± 4.88 ab | 2.65 ± 1.47 ab | ||
S4 | 18.49 ± 5.74 b | 1.34 ± 0.64 bc | 0.51 ± 0.22 bc | 1.92 ± 1.21 c | 0.75 ± 0.43 c | ||
S5 | 18.85 ± 4.66 b | 1.11 ± 0.31 c | 0.31 ± 0.12 c | 3.08 ± 1.74 c | 1.1 ± 0.57 c | ||
S6 | 27.18 ± 6.96 a | 1.35 ± 0.63 bc | 2.15 ± 1.49 a | 4.07 ± 2.68 bc | 1.46 ± 1.21 bc | ||
Container | C1 | 22.39 ± 6.39 a | 1.27 ± 0.6 b | 1.5 ± 1.03 a | 2.62 ± 1.69 b | 0.87 ± 0.51 b | |
C2 | 22.76 ± 7.74 a | 1.61 ± 1.02 a | 2.11 ± 1.56 a | 5.36 ± 4.2 a | 2.1 ± 1.25 a | ||
C3 | 24.43 ± 14.63 a | 1.46 ± 0.72 ab | 1.12 ± 1.28 b | 3.77 ± 3.99 ab | 1.35 ± 1.02 ab | ||
C4 | 23.13 ± 11.33 a | 1.52 ± 0.79 ab | 1.96 ± 1.43 a | 5.06 ± 3.5 a | 2.14 ± 1.66 a | ||
Shade 40% | Substrate | S1 | 40.64 ± 8.24 a | 2.11 ± 1.37 a | 3.93 ± 2.4 a | 12.74 ± 4.1 a | 5.11 ± 2.55 a |
S2 | 18.37 ± 7.5 c | 1.22 ± 0.42 bc | 0.46 ± 0.27 b | 1.5 ± 1.07 c | 0.59 ± 0.42 d | ||
S3 | 28 ± 9.84 b | 1.74 ± 0.97 a | 2.34 ± 1.04 ab | 5.53 ± 3.61 ab | 2.19 ± 1.55 bc | ||
S4 | 16.98 ± 6.38 c | 1.11 ± 0.44 c | 0.51 ± 0.26 b | 2.35 ± 2.29 c | 1 ± 0.8 cd | ||
S5 | 17.63 ± 6.98 c | 1.14 ± 0.39 c | 0.6 ± 0.19 b | 2.92 ± 1.2 bc | 1.1 ± 0.41 cd | ||
S6 | 33.56 ± 7.24 b | 1.66 ± 0.89 ab | 2.81 ± 1.65 a | 7.57 ± 3.9 b | 2.84 ± 1.53 b | ||
Container | C1 | 24.18 ± 8.51 a | 1.5 ± 0.9 a | 1.64 ± 0.76 a | 4.5 ± 2.85 a | 1.68 ± 0.41 a | |
C2 | 28.68 ± 8.54 a | 1.64 ± 1.06 a | 2.69 ± 1.88 a | 6.46 ± 3.59 a | 2.49 ± 1.73 a | ||
C3 | 24.26 ± 17.57 a | 1.55 ± 0.83 a | 2.16 ± 1.42 a | 6.13 ± 3.85 a | 2.56 ± 1.88 a | ||
C4 | 26.34 ± 10.28 a | 1.66 ± 1.08 a | 1.98 ± 1.81 a | 4.65 ± 2.93 a | 1.82 ± 0.95 a | ||
Shade 80% | Substrate | S1 | 41.78 ± 10.02 a | 1.41 ± 0.85 a | 0.85 ± 0.45 a | 4.07 ± 1.83 a | 1.47 ± 0.68 a |
S2 | 20.58 ± 4.77 c | 1.05 ± 0.22 c | 0.13 ± 0.02 ab | 1.9 ± 1.27 bc | 0.67 ± 0.37 b | ||
S3 | 25.87 ± 4.94 c | 1.15 ± 0.48 abc | 0.11 ± 0.05 ab | 3.13 ± 2 ab | 0.96 ± 0.44 ab | ||
S4 | 19.44 ± 5.89 c | 1.12 ± 0.43 bc | 0.08 ± 0.04 b | 2.13 ± 0.93 bc | 0.74 ± 0.35 b | ||
S5 | 23.27 ± 5.28 c | 1.13 ± 0.42 abc | 0.34 ± 0.18 ab | 2.46 ± 1.5 ab | 0.85 ± 0.53 b | ||
S6 | 32.56 ± 5.02 b | 1.35 ± 0.7 ab | 0.63 ± 0.36 ab | 3.74 ± 1.65 ab | 1.21 ± 0.54 ab | ||
Container | C1 | 25.82 ± 9.71 a | 1.05 ± 0.29 b | 0.15 ± 0.09 b | 3.18 ± 1.97 a | 1 ± 0.59 a | |
C2 | 28.37 ± 10.13 a | 1.24 ± 0.61 b | 0.34 ± 0.17 b | 3.32 ± 2.06 a | 1.16 ± 0.77 a | ||
C3 | 25.08 ± 9.12 a | 1.45 ± 0.85 a | 1.13 ± 0.62 a | 2.76 ± 1.55 a | 0.96 ± 0.56 a | ||
C4 | 29.72 ± 10.51 a | 1.17 ± 0.47 b | 0.11 ± 0.08 b | 2.36 ± 1.11 a | 0.82 ± 0.42 a |
Root Length (cm) | Root Diameter (mm) | Number of Secondary Root | Number of Tertiary Roots | Fresh Root Weight (g) | Dry Root Weight (g) | |||
---|---|---|---|---|---|---|---|---|
Shade 0% | Substrate | S1 | 34.21 ± 16.62 a | 2.79 ± 1.24 ab | 22.46 ± 15.62 ab | 28.87 ± 21.41 a | 4.01 ± 2.15 a | 1.19 ± 0.75 ab |
S2 | 18.41 ± 10.51 cd | 2.14 ± 0.58 b | 18.74 ± 7.15 ab | 26.54 ± 12.2 a | 1.33 ± 1.34 b | 0.53 ± 0.54 c | ||
S3 | 30.83 ± 9.55 abc | 3.37 ± 1.05 a | 19.89 ± 7.28 ab | 32.61 ± 15.36 a | 4.12 ± 2.55 a | 1.42 ± 0.83 a | ||
S4 | 16.53 ± 8.94 d | 2.36 ± 1.12 b | 17.81 ± 7.9 b | 18.46 ± 12.62 a | 1.63 ± 1.22 b | 0.34 ± 0.17 c | ||
S5 | 21.12 ± 11.69 bcd | 2.72 ± 1.38 ab | 17.5 ± 9.15 b | 26.06 ± 14.41 a | 2.13 ± 1.38 b | 0.45 ± 0.26 c | ||
S6 | 32.01 ± 24.29 ab | 2.07 ± 1.17 b | 30.65 ± 22.31 a | 27.53 ± 22.67 a | 2.31 ± 1.35 b | 0.8 ± 0.58 bc | ||
Container | C1 | 24.86 ± 15.23 ab | 2.31 ± 0.9 bc | 24.26 ± 16.92 a | 29.68 ± 19.11 a | 2.56 ± 1.74 a | 0.73 ± 0.33 a | |
C2 | 33.41 ± 21.69 a | 2.84 ± 1.22 ab | 23.08 ± 16.91 a | 21.52 ± 15.91 a | 2.85 ± 1.89 a | 0.86 ± 0.43 a | ||
C3 | 21.92 ± 12.4 b | 2.02 ± 0.92 c | 16.41 ± 7.51 a | 27.56 ± 17.45 a | 2.45 ± 1.41 a | 0.65 ± 0.21 a | ||
C4 | 21.88 ± 9.75 b | 3.14 ± 1.33 a | 20.95 ± 8.18 a | 27.95 ± 15.4 a | 2.49 ± 1.83 a | 0.92 ± 0.7 a | ||
Shade 20% | Substrate | S1 | 22.84 ± 8.95 ab | 3.37 ± 1.33 a | 21.59 ± 11.7 ab | 16.28 ± 11.38 a | 3.56 ± 2.27 a | 1.28 ± 0.85 a |
S2 | 20.82 ± 11.94 ab | 1.65 ± 0.68 c | 16.66 ± 9.74 b | 7.89 ± 6.11 a | 0.74 ± 0.51 c | 0.24 ± 0.17 b | ||
S3 | 19.48 ± 8.9 bc | 2.36 ± 1.03 bc | 20.46 ± 9.04 b | 12.96 ± 8.44 a | 2.07 ± 1.73 b | 0.74 ± 0.5 ab | ||
S4 | 16.48 ± 3.58 bc | 2.4 ± 0.87 bc | 15.47 ± 7.49 b | 12.56 ± 6 a | 1.47 ± 1.01 ab | 0.36 ± 0.27 ab | ||
S5 | 24.28 ± 7.93 c | 2.13 ± 0.49 bc | 19.43 ± 8.25 b | 16.65 ± 9.39 a | 1.64 ± 1.07 ab | 0.4 ± 0.22 ab | ||
S6 | 28.79 ± 12.48 a | 2.91 ± 1.06 ab | 29.96 ± 11.04 a | 17.25 ± 11.79 a | 2.03 ± 0.89 b | 0.54 ± 0.31 ab | ||
Container | C1 | 26.56 ± 12.99 a | 2.2 ± 0.89 b | 21.07 ± 13.15 a | 15.31 ± 9.33 a | 1.5 ± 1.07 a | 0.41 ± 0.33 b | |
C2 | 26.83 ± 8.69 a | 2.4 ± 0.9 ab | 22.9 ± 9.41 a | 16.64 ± 7.15 a | 2.42 ± 1.25 a | 0.72 ± 0.76 a | ||
C3 | 15.13 ± 4.1 c | 2.37 ± 1 ab | 17.02 ± 7.52 a | 12.1 ± 6.45 a | 1.67 ± 1.09 a | 0.5 ± 0.43 ab | ||
C4 | 19.94 ± 7.06 b | 2.9 ± 1.38 a | 21.4 ± 10.9 a | 11.68 ± 5.38 a | 2.08 ± 1.63 a | 0.74 ± 0.7 a | ||
Shade 40% | Substrate | S1 | 42.37 ± 13.68 | 4.03 ± 1.28 | 28.47 ± 13.81 a | 26.22 ± 16.26 a | 7.54 ± 1.67 a | 2.35 ± 0.63 a |
S2 | 21.96 ± 8.33 | 1.74 ± 0.51 | 19.59 ± 11.37 a | 13.81 ± 10.63 ab | 0.88 ± 0.68 d | 0.34 ± 0.14 c | ||
S3 | 32.73 ± 18.79 | 3.02 ± 1.17 | 28.15 ± 15.31 a | 25.84 ± 17.14 a | 2.93 ± 2.3 bc | 0.94 ± 0.69 b | ||
S4 | 20.64 ± 10.16 | 2.14 ± 0.52 | 18.63 ± 9.53 a | 10.45 ± 6.03 b | 1.48 ± 0.78 cd | 0.4 ± 0.21 c | ||
S5 | 25.38 ± 11.98 | 1.69 ± 0.41 | 22.3 ± 13.26 a | 21.86 ± 10.49 ab | 1.32 ± 0.6 d | 0.4 ± 0.23 c | ||
S6 | 32.37 ± 16.2 | 2.69 ± 0.95 | 29.87 ± 9.45 a | 28.68 ± 16.89 a | 3.62 ± 2.23 b | 1.22 ± 0.82 b | ||
Container | C1 | 34.39 ± 13.76 a | 2.29 ± 1.1 a | 22.94 ± 12.19 ab | 21.61 ± 15.23 a | 2.82 ± 3 b | 0.84 ± 0.83 a | |
C2 | 40.82 ± 16.44 a | 2.65 ± 0.98 a | 30.38 ± 13.67 a | 26.07 ± 17.88 a | 3.99 ± 2.83 a | 1.14 ± 0.81 a | ||
C3 | 21.21 ± 12.1 b | 2.47 ± 1.25 a | 20.9 ± 10.77 b | 19.67 ± 19.5 a | 2.83 ± 2.77 b | 1.01 ± 0.97 a | ||
C4 | 20.55 ± 6.59 b | 2.81 ± 1.38 a | 23.79 ± 13.19 ab | 17.23 ± 13.31 a | 2.21 ± 2.43 b | 0.78 ± 0.94 a | ||
Shade 80% | Substrate | S1 | 29.95 ± 14.3 a | 1.72 ± 0.61 a | 31.14 ± 12.29 a | 16.19 ± 9.08 a | 1.25 ± 0.69 a | 0.45 ± 0.25 a |
S2 | 18.67 ± 6.3 b | 1.35 ± 0.48 a | 12.86 ± 6.08 c | 7.63 ± 4.45 a | 0.46 ± 0.3 a | 0.18 ± 0.1 b | ||
S3 | 26.44 ± 11.52 ab | 1.43 ± 0.54 a | 24.78 ± 10.25 ab | 10.3 ± 5.95 a | 1.32 ± 0.49 a | 0.25 ± 0.18 ab | ||
S4 | 18.64 ± 6.16 b | 1.72 ± 0.37 a | 12.59 ± 8.27 c | 9.65 ± 6.47 a | 0.61 ± 0.35 a | 0.23 ± 0.13 b | ||
S5 | 26.13 ± 12.61 ab | 1.61 ± 0.63 a | 19.68 ± 14.47 bc | 11.08 ± 6.11 a | 0.69 ± 0.5 a | 0.28 ± 0.19 ab | ||
S6 | 35.07 ± 17.35 a | 1.55 ± 0.38 a | 27.93 ± 9.4 ab | 12.97 ± 8.46 a | 1 ± 0.58 a | 0.35 ± 0.18 ab | ||
Container | C1 | 28.45 ± 13.92 b | 1.19 ± 0.3 b | 28.04 ± 14.44 a | 9.73 ± 6.56 a | 1.23 ± 0.81 a | 0.33 ± 0.21 a | |
C2 | 36.31 ± 14.78 a | 1.75 ± 0.54 a | 19.83 ± 12.63 b | 15.56 ± 10.76 a | 1 ± 0.69 ab | 0.31 ± 0.22 a | ||
C3 | 20.82 ± 7.24 c | 1.73 ± 0.56 a | 17.63 ± 9.39 b | 10.67 ± 7.09 a | 0.85 ± 0.51 ab | 0.32 ± 0.22 a | ||
C4 | 17.69 ± 5.66 c | 1.59 ± 0.45 a | 20.5 ± 10.95 b | 9.27 ± 5.85 a | 0.48 ± 0.28 b | 0.21 ± 0.11 a |
Na (ppm) | K (ppm) | Ca (ppm) | P (ppm) | N (%) | |||
---|---|---|---|---|---|---|---|
Shade 0% | Substrate | S1 | 97.81 ± 24.52 a | 194.29 ± 45.81 a | 56.33 ± 18.54 a | 6 ± 1.98 a | 0.46 ± 0.1 cd |
S2 | 82.1 ± 27.99 a | 112.44 ± 36.52 a | 37.99 ± 15.36 ab | 5.84 ± 2.7 a | 0.44 ± 0.16 e | ||
S3 | 58.95 ± 17.37 a | 176.87 ± 30.49 a | 27.27 ± 14.01 ab | 4.67 ± 1.66 a | 0.47 ± 0.03 c | ||
S4 | 79.9 ± 26.87 a | 202.96 ± 53.57 a | 29.66 ± 14.79 ab | 4.89 ± 2.04 a | 0.44 ± 0.03 de | ||
S5 | 48.1 ± 18.75 a | 108.14 ± 37.17 a | 9.6 ± 4.95 b | 4.66 ± 2.09 a | 0.59 ± 0.37 a | ||
S6 | 87.15 ± 33.36 a | 157.88 ± 36.36 a | 29.12 ± 12.87 ab | 5.46 ± 1.57 a | 0.54 ± 0.02 b | ||
Container | C1 | 72.03 ± 27.88 a | 73.22 ± 33.63 a | 42.23 ± 26.94 a | 4.71 ± 2.6 a | 0.63 ± 0.25 a | |
C2 | 61.56 ± 27.01 a | 86.12 ± 23.45 a | 45.03 ± 28.66 a | 4.58 ± 1.38 a | 0.46 ± 0.12 b | ||
C3 | 85.15 ± 23.83 a | 65.89 ± 12.21 a | 18.51 ± 9.86 a | 6.86 ± 3.72 a | 0.45 ± 0.13 bc | ||
C4 | 83.94 ± 24.35 a | 92.01 ± 13.88 a | 20.88 ± 8.6 a | 4.86 ± 1.69 a | 0.43 ± 0.08 c | ||
Shade 20% | Substrate | S1 | 152.38 ± 47.32 ab | 195.4 ± 34.48 a | 95.07 ± 29.94 ab | 5.75 ± 2.04 a | 0.45 ± 0.09 b |
S2 | 152.83 ± 45.55 ab | 196.31 ± 35.8 a | 145.23 ± 35.68 a | 9.44 ± 5.02 a | 0.41 ± 0.18 c | ||
S3 | 208.61 ± 39.78 ab | 230.08 ± 48.72 a | 115.54 ± 29.07 ab | 4.99 ± 1.62 a | 0.46 ± 0.06 b | ||
S4 | 258.23 ± 46.71 a | 275.41 ± 53.53 a | 109.13 ± 36.14 ab | 5.78 ± 0.57 a | 0.2 ± 0.12 e | ||
S5 | 193.95 ± 36.46 ab | 205.53 ± 27.31 a | 53.1 ± 13.37 b | 6.92 ± 2.48 a | 0.33 ± 0.17 d | ||
S6 | 126.57 ± 21.4 c | 274.58 ± 55.29 a | 106.65 ± 26.37 ab | 7.52 ± 5.08 a | 0.58 ± 0.52 a | ||
Container | C1 | 167.27 ± 33.59 b | 219.87 ± 41.31 a | 114.64 ± 27.03 a | 5.42 ± 1.99 b | 0.52 ± 0.43 a | |
C2 | 160.98 ± 28.87 b | 191.55 ± 46.79 a | 105.52 ± 25.77 a | 6.68 ± 3.36 ab | 0.39 ± 0.16 b | ||
C3 | 125.39 ± 12.64 b | 207.34 ± 35.67 a | 97.56 ± 17.92 a | 9.62 ± 4.02 a | 0.36 ± 0.17 c | ||
C4 | 274.73 ± 43.78 a | 272.79 ± 59.73 a | 98.76 ± 14.73 a | 5.1 ± 1.91 b | 0.35 ± 0.18 d | ||
Shade 40% | Substrate | S1 | 80.37 ± 29.73 a | 66.26 ± 19.93 a | 14.66 ± 4.64 a | 5.57 ± 3.68 a | 0.41 ± 0.06 c |
S2 | 36.99 ± 8.46 b | 29.22 ± 16.88 b | 13.79 ± 2.33 a | 5.7 ± 1.19 a | 0.25 ± 0.04 e | ||
S3 | 48.11 ± 21.84 b | 31.61 ± 13.07 b | 16.32 ± 7.82 a | 5.01 ± 1.03 a | 0.47 ± 0.04 b | ||
S4 | 37.79 ± 2.73 b | 18.72 ± 4.11 b | 14.33 ± 3.32 a | 3.88 ± 0.12 a | 0.3 ± 0.12 d | ||
S5 | 65.17 ± 4.77 ab | 75.29 ± 12.53 a | 18.55 ± 9.5 a | 5.76 ± 0.88 a | 0.41 ± 0.1 c | ||
S6 | 59.7 ± 11.15 ab | 78.67 ± 21.03 a | 31.1 ± 15.36 a | 5.02 ± 1.32 a | 0.51 ± 0.05 a | ||
Container | C1 | 47.63 ± 15.1 a | 35.7 ± 19.24 a | 20.49 ± 8.19 a | 5.02 ± 0.91 a | 0.39 ± 0.14 ab | |
C2 | 50.6 ± 11.84 a | 57.19 ± 25.35 a | 21.71 ± 13.32 a | 4.97 ± 2.44 a | 0.46 ± 0.09 a | ||
C3 | 56.28 ± 11.05 a | 48.94 ± 27.24 a | 15.91 ± 9.46 a | 4.67 ± 1.29 a | 0.35 ± 0.07 c | ||
C4 | 64.25 ± 18.08 a | 58.02 ± 24.66 a | 14.4 ± 6.94 a | 5.97 ± 2.14 a | 0.37 ± 0.13 b | ||
Shade 80% | Substrate | S1 | 17.3 ± 1.8 b | 18.33 ± 2.48 b | 11.67 ± 3.43 b | 8.25 ± 4.22 a | 0.61 ± 0.03 a |
S2 | 32.44 ± 1.91 a | 30.75 ± 11.97 b | 9.28 ± 5.43 b | 7.76 ± 5.48 ab | 0.36 ± 0.1 cd | ||
S3 | 32.42 ± 2.67 a | 19.21 ± 8.1 b | 17.92 ± 7.41 ab | 6.65 ± 2.44 abc | 0.49 ± 0.06 b | ||
S4 | 29.19 ± 0.7 ab | 104.28 ± 49.74 a | 23.62 ± 6.62 a | 5.2 ± 1.19 abc | 0.32 ± 0.17 d | ||
S5 | 38.8 ± 8.73 a | 81.24 ± 31.82 a | 12.14 ± 3.37 b | 3.87 ± 2.01 c | 0.31 ± 0.09 d | ||
S6 | 31.99 ± 7.39 a | 42.3 ± 11.47 b | 12.8 ± 4.17 ab | 4.27 ± 1.19 bc | 0.48 ± 0.08 b | ||
Container | C1 | 25.29 ± 7.44 a | 38.44 ± 27.37 b | 14.1 ± 4.91 a | 4.96 ± 2.17 a | 0.47 ± 0.15 a | |
C2 | 32.38 ± 6.75 a | 50.33 ± 14.11 ab | 13.73 ± 5.1 a | 6.55 ± 3.05 a | 0.46 ± 0.13 a | ||
C3 | 30.78 ± 6.99 a | 34.1 ± 16.19 b | 13.97 ± 5.87 a | 6.73 ± 5.5 a | 0.4 ± 0.14 b | ||
C4 | 32.97 ± 8.1 a | 74.55 ± 32.9 a | 16.48 ± 5.3 a | 5.76 ± 1.43 a | 0.38 ± 0.14 b |
SH-0 | ||||
---|---|---|---|---|
Combination (Substrate Container) | S1C2 | S3C2 | S3C4 | S3 |
Cost of plant production (MAD/plant) | 3.98 | 3.82 | 3.29 | 2.46 |
Germination rate (%) | 96.67 | 93.33 | 96.67 | 90.00 |
Number of secondary roots | 35.75 | 16.50 | 23.50 | 22.17 |
Root diameter (cm) | 3.85 | 4.06 | 4.20 | 2.61 |
Number of ramifications | 4.00 | 3.38 | 4.70 | 3.16 |
Fresh Shoot Weight (g) | 10.03 | 22.03 | 10.87 | 10.55 |
Fresh Root Weight (g) | 3.16 | 7.34 | 4.48 | 3.46 |
SH-20 | |||||||
---|---|---|---|---|---|---|---|
Combination (Substrate Container) | S6C1 | S6C4 | S1C2 | S3C2 | S1C4 | S1C3 | S3 |
Cost of plant production (MAD/plant) | 4.52 | 4.12 | 4.10 | 3.94 | 3.50 | 3.49 | 2.58 |
Germination rate (%) | 100.00 | 83.33 | 80.00 | 70.00 | 90.00 | 83.33 | 66.66 |
Number of secondary roots | 40.00 | 32.00 | 29.00 | 28.56 | 28.25 | 18.38 | 18.38 |
Root diameter (cm) | 3.05 | 3.56 | 3.41 | 1.94 | 4.79 | 3.40 | 2.65 |
Number of ramifications | 2.09 | 2.75 | 3.90 | 3.25 | 2.13 | 2.33 | 4.90 |
Fresh Shoot Weight (g) | 3.41 | 7.79 | 10.47 | 14.35 | 10.19 | 11.21 | 7.00 |
Fresh Root Weight (g) | 2.49 | 2.55 | 5.17 | 3.98 | 4.79 | 3.19 | 3.00 |
SH-40 | ||||||
---|---|---|---|---|---|---|
Combination (Substrate Container) | S6C2 | S1C2 | S1C1 | S1C4 | S1C3 | S3 |
Cost of plant production (MAD/plant) | 5.46 | 4.29 | 3.98 | 3.69 | 3.68 | 2.77 |
Germination rate (%) | 80.00 | 93.33 | 70.00 | 76.67 | 73.33 | 86.66 |
Number of secondary roots | 30.00 | 34.50 | 22.17 | 24.75 | 32.50 | 18.38 |
Root diameter (cm) | 3.24 | 3.44 | 3.90 | 5.40 | 3.41 | 3.05 |
Number of ramifications | 4.32 | 4.21 | 3.48 | 3.78 | 4.22 | 3.50 |
Fresh Shoot Weight (g) | 12.09 | 11.51 | 11.18 | 13.94 | 14.37 | 8.00 |
Fresh Root Weight (g) | 6.49 | 7.59 | 7.89 | 7.09 | 7.61 | 3.00 |
SH-80 | ||||||
---|---|---|---|---|---|---|
Combination (Substrate Container) | S6C1 | S1C2 | S1C1 | S3C1 | S1C4 | S3 |
Cost of plant production (MAD/plant) | 4.88 | 4.46 | 4.15 | 4.04 | 3.86 | 2.94 |
Germination rate (%) | 86.67 | 66.67 | 66.67 | 70.00 | 83.33 | 36.66 |
Number of secondary roots | 37.79 | 37.75 | 31.58 | 32.88 | 31.00 | 15.63 |
Root diameter (cm) | 1.22 | 2.05 | 1.18 | 0.83 | 1.76 | 1.25 |
Number of ramifications | 0.04 | 0.80 | 0.46 | 0.26 | 0.13 | 0.00 |
Fresh Shoot Weight (g) | 4.71 | 4.88 | 4.25 | 3.93 | 3.86 | 3.20 |
Fresh Root Weight (g) | 1.43 | 1.87 | 1.18 | 2.98 | 0.94 | 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oumahmoud, M.; Alouani, M.; Elame, F.; Tahiri, A.; Bouharroud, R.; Qessaoui, R.; El Boukhari, A.; Mimouni, A.; Koufan, M. Effect of Shading, Substrate, and Container Size on Argania spinosa Growth and Cost–Benefit Analysis. Agronomy 2023, 13, 2451. https://doi.org/10.3390/agronomy13102451
Oumahmoud M, Alouani M, Elame F, Tahiri A, Bouharroud R, Qessaoui R, El Boukhari A, Mimouni A, Koufan M. Effect of Shading, Substrate, and Container Size on Argania spinosa Growth and Cost–Benefit Analysis. Agronomy. 2023; 13(10):2451. https://doi.org/10.3390/agronomy13102451
Chicago/Turabian StyleOumahmoud, Mouad, Mohamed Alouani, Fouad Elame, Abdelghani Tahiri, Rachid Bouharroud, Redouan Qessaoui, Ali El Boukhari, Abdelaziz Mimouni, and Meriyem Koufan. 2023. "Effect of Shading, Substrate, and Container Size on Argania spinosa Growth and Cost–Benefit Analysis" Agronomy 13, no. 10: 2451. https://doi.org/10.3390/agronomy13102451
APA StyleOumahmoud, M., Alouani, M., Elame, F., Tahiri, A., Bouharroud, R., Qessaoui, R., El Boukhari, A., Mimouni, A., & Koufan, M. (2023). Effect of Shading, Substrate, and Container Size on Argania spinosa Growth and Cost–Benefit Analysis. Agronomy, 13(10), 2451. https://doi.org/10.3390/agronomy13102451