Fine-Root C:N:P Stoichiometry and Its Driving Factors Are Different between Arbuscular and Ectomycorrhizal Plants in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Compilation
2.2. Statistical Analysis
3. Results
3.1. Differences in AM and ECM Plants’ Fine-Root C:N:P Stoichiometry
3.2. Fine-Root C:N:P Stoichiometry in AM and ECM Plants Was Different under Different Life Forms
3.3. Relative Effects of Climate, Soil, and Plant Types on the AM and ECM Fine-Root C:N:P Stoichiometry
3.4. Climate and Soil Environment’s Influences on AM and ECM Plants’ Fine-Root C:N:P Stoichiometry
3.5. Stepwise Regression Analysis of Fine-Root C, N, P and Climate and Soil Environment in AM and ECM Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Sperfeld, E.; Wagner, N.D.; Halvorson, H.M. Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct. Ecol. 2017, 3, 286–296. [Google Scholar] [CrossRef]
- Zeng, Q.; Lal, R.; Chen, Y. Soil, leaf and root ecological stoichiometry of Caragana korshinskii on the Loess Plateau of China in relation to plantation age. PLoS ONE 2017, 12, e0168890. [Google Scholar] [CrossRef]
- Jing, M.M.; Shi, Z.Y.; Zhang, M.G.; Zhang, M.H.; Wang, X.H. Nitrogen and Phosphorus of Plants associated with Arbuscular and Ectomycorrhizas Are Differentially Influenced by Drought. Plants 2022, 11, 2429. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef]
- Wu, S.W.; Shi, Z.Y.; Huang, M.; Yang, S.; Yang, W.Y.; Li, Y.J. Influence of Mycorrhiza on C:N:P Stoichiometry in Senesced Leaves. J. Fungi 2023, 9, 588. [Google Scholar] [CrossRef]
- Tian, D.S.; Reich, P.B.; Chen, H.Y.H.; Xiang, Y.Z.; Luo, Y.Q.; Shen, Y.; Meng, C.; Han, W.X.; Niu, S. Global changes alter plant multi-element stoichiometric coupling. New Phytol. 2018, 221, 807–817. [Google Scholar] [CrossRef]
- Li, M.; Huang, C.H.; Yang, T.X.; Drosos, M.; Wang, J.Z.; Kang, X.M.; Liu, F.L.; Xi, B.D.; Hu, Z.Y. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots. Plant Soil 2019, 445, 231–242. [Google Scholar] [CrossRef]
- Fu, X.F.; Xu, C.H.; Geng, Q.H.; Ma, X.C.; Zhang, H.G.; Cai, B. Effects of nitrogen application on the decomposition of fine roots in temperate forests: A meta-analysis. Plant Soil 2022, 472, 77–89. [Google Scholar] [CrossRef]
- Guo, R.Q.; Xiong, D.C.; Song, T.T.; Cai, Y.Y.; Chen, T.T.; Chen, W.Y.; Zheng, X.; Chen, G.S. Effect of simulated nitrogen deposition on stoichiometry of fine roots on Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecol. Sin. 2018, 38, 6101–6110. [Google Scholar]
- Reich, P.B. Global biogeography of plant chemistry: Filling in the blanks. New Phytol. 2005, 168, 263–266. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M. Strategy-shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitat. Funct. Ecol. 2001, 15, 423–434. [Google Scholar] [CrossRef]
- Xia, C.; Yu, D.; Wang, Z.; Xie, D. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China. Ecol. Eng. 2014, 70, 406–413. [Google Scholar] [CrossRef]
- Sardans, J.; Grau, O.; Chen, H.Y.H.; Janssens, I.A.; Ciais, P.; Piao, S.L.; Penuelas, J. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Chang. Biol. 2017, 23, 3849–3856. [Google Scholar] [CrossRef]
- Chen, X.P.; Guo, B.Q.; Zhong, Q.L.; Wang, M.T.; Li, M.; Yang, F.C.; Cheng, D.L. Response of fine root carbon, nitrogen and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi mountains. Acta Ecol. Sin. 2018, 38, 273–281. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Averill, C.; Bhatnagar, J.M.; Dietze, M.C.; Pearse, W.D.; Kivlin, S.N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. USA 2019, 116, 23163–23168. [Google Scholar] [CrossRef]
- Sizonenko, T.A.; Dubrovskiy, Y.A.; Novakovskiy, A.B. Changes in mycorrhizal status and type in plant communities along altitudinal and ecological gradientsa case study from the Northern Urals (Russia). Mycorrhiza 2020, 30, 445–454. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Martin, F.M.; Selosse, M.A.; Sanders, T.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Lu, X.T.; Hartmann, H.; Kelle, A.; Han, X.G.; Trumbore, S.; Phillips, R. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Glob. Ecol. Biogeogr. 2018, 27, 875–885. [Google Scholar] [CrossRef]
- Phillips, R.P.; Brzostek, E.; Midgley, M.G. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 2013, 199, 41–51. [Google Scholar] [CrossRef]
- Liu, X.Y.; Hu, Y.K. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of typical forest swamps in the Greater Khingan Mountains. Chin. J. Appl. Ecol. 2020, 31, 3385–3394. [Google Scholar] [CrossRef]
- Fang, J.Y.; Song, Y.C.; Liu, H.Y.; Piao, S.L. Vegetation–Cclimate relationship and its application in the division of vegetation zone in China. Acta Bot. Sin. 2002, 44, 1105–1122. [Google Scholar]
- Han, W.X.; Fang, J.Y.; Guo, D.L.; Zhang, Y. leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Lv, S.Q.; Song, H.; Wang, M.C.; Zhao, Q.; Huang, H.; Niklas, J.K. Plant type dominates fine-root C:N:P stoichiometry across China: A meta-analysis. J. Biogeogr. 2019, 47, 1019–1029. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef]
- Hempel, S.; Götzenberger, L.; Kühn, I.; Michalski Stefan, G.; Rillig Matthias, C.; Zobel, M.; Moora, M. Mycorrhizas in the central European flora: Relationships with plant life history traits and ecology. Ecology 2013, 94, 1389–1399. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Li, K.; Zhu, X.Y.; Wang, F.Y. The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecol. 2020, 43, 100877. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, M.L.; Shi, Z.Y.; Yang, S.; Zhang, M.G.; Sun, L.R.; Gao, J.K.; Wang, X.G. The variations of leaf δ13C and its response to environmental changes of arbuscular and ectomycorrhizal plants depend on life forms. Plants 2022, 11, 3236. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Wang, F.Y.; Miao, Y.F. Responses of forest net primary productivity to climate change in different mycorrhizal types. Chin. J. Plant Ecol. 2012, 36, 1165–1171. [Google Scholar] [CrossRef]
- Vargas, R.; Baldocchi, D.D.; Querejeta, J.I.; Curtis, P.S.; Hasselquist, N.J.; Janssens, I.A.; Allen, M.F.; Montagnani, L. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytol. 2010, 185, 226–236. [Google Scholar] [CrossRef]
- Ning, Z.Y.; Li, Y.L.; Yang, H.L.; Sun, D.C.; Bi, J.D. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chin. J. Plant Ecol. 2017, 41, 1069–1080. [Google Scholar] [CrossRef][Green Version]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; Flexas, J.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Yan, Z.B.; Fang, J.Y. Plant ecological stoichiometry and its main hypotheses. Chin. J. Plant Ecol. 2021, 45, 682–713. [Google Scholar] [CrossRef]
- Gusewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Chen, H.Y.H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob. Ecol. Biogeogr. 2009, 18, 11–18. [Google Scholar] [CrossRef]
- Ågren, G.I. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 153–170. [Google Scholar] [CrossRef]
- Pate, J.S.; Stewart, G.R.; Unukovich, M. 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilisation, life form, mycorrhizal status and N2-fixing abilities of component species. Plant Cell Environ. 1993, 16, 365–373. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Hou, X.G.; Chen, Y.L.; Wang, F.Y.; Miao, Y.F. Foliar stoichiometry under different mycorrhizal types in relation to temperature and precipitation in grassland. J. Plant Ecol. 2012, 6, 270–276. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Xu, S.X.; Yang, M.; Zhang, M.G.; Lu, S.C.; Chang, H.Q.; Wang, X.G.; Chen, X.N. Leaf Nitrogen and Phosphorus Stoichiometry are Closely Linked with Mycorrhizal Type Traits of Legume Species. Legume Res. 2021, 44, 81–87. [Google Scholar] [CrossRef]
- Sun, J.; Liu, B.Y.; You, Y.; Li, W.P.; Liu, M.; Shang, H.; He, J.S. Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau. Agric. For. Meteorol. 2019, 271, 92–101. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zhong, Q.L.; Jin, B.J.; Lu, H.D.; Guo, B.Q.; Zheng, Y.; Li, M.; Cheng, D.L. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chin. J. Plant Ecol. 2015, 39, 159–166. [Google Scholar]
- Lv, S.C.; Shi, Z.Y.; Zhang, M.G.; Yang, M.; Wang, X.G.; Xu, X.F. Differences of ash content in leaves of different mycorrhizal types and their responses to climate change. Ecol. Environ. Sci. 2020, 29, 35–40. [Google Scholar] [CrossRef]
- Broadley, M.R.; Willey, N.J.; Wilkins, J.C.; Baker, A.J.M.; Mead, A.; White, P.J. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol. 2001, 152, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Bunn, R.A.; Simpson, D.T.; Bullington, L.S.; Lekberg, Y.; Janos, D.P. Revisiting the “direct mineral cycling” hypothesis: Arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME J. 2019, 13, 1891–1898. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Aerts, R.; Cerabolini, B.; Werger, M.; van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 2001, 129, 611–619. [Google Scholar] [CrossRef]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystem-a journey towards relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef]
- Han, W.X.; Fang, J.Y.; Reich, P.B.; Woodward, F.I.; Wang, Z.H. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 2011, 8, 788–796. [Google Scholar] [CrossRef]
- Bennett, J.A.; Maherali, H.; Reinhart, K.O.; Lekberg, Y.; Hart, M.M.; Klironomos, J. Plant soil feedbacks and mycorrhizal type 467 influence temperate forest population dynamics. Science 2017, 355, 181–184. [Google Scholar] [CrossRef]
- Sardans, J.; Penuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef]
Contribution of Predictor (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Fine-Root Elements | Mycorrhizae | MAT | MAP | Soil pH | Soil C | Soil N | Soil P | Significance | R2 |
C | AM | - | 49.74 | 50.26 | - | - | - | *** | 0.129 |
ECM | 25.95 | 33.87 | 35.27 | - | - | 1.30 | ns | 0.105 | |
N | AM | 30.27 | 52.90 | 16.73 | - | - | - | *** | 0.086 |
ECM | 25.11 | 47.76 | 22.58 | 4.55 | - | - | * | 0.187 | |
P | AM | - | 37.22 | - | - | 27.26 | 35.51 | *** | 0.186 |
ECM | 43.41 | 19.82 | 32.77 | - | - | 3.40 | *** | 0.464 | |
C:N | AM | 37.18 | 62.82 | - | - | - | - | *** | 0.099 |
ECM | 31.20 | 48.71 | 18.45 | - | - | 1.44 | *** | 0.316 | |
C:P | AM | - | 42.72 | - | - | 24.65 | 32.62 | *** | 0.178 |
ECM | 67.91 | 3.40 | 12.48 | - | - | 16.21 | *** | 0.455 | |
N:P | AM | 31.40 | - | - | - | 32.88 | 35.73 | *** | 0.135 |
ECM | 59.82 | 23.02 | 9.82 | - | - | 7.34 | * | 0.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, M.; Shi, Z.; Gao, X.; Gao, J.; Wu, S.; Xu, X.; Xu, S. Fine-Root C:N:P Stoichiometry and Its Driving Factors Are Different between Arbuscular and Ectomycorrhizal Plants in China. Agronomy 2023, 13, 2512. https://doi.org/10.3390/agronomy13102512
Jing M, Shi Z, Gao X, Gao J, Wu S, Xu X, Xu S. Fine-Root C:N:P Stoichiometry and Its Driving Factors Are Different between Arbuscular and Ectomycorrhizal Plants in China. Agronomy. 2023; 13(10):2512. https://doi.org/10.3390/agronomy13102512
Chicago/Turabian StyleJing, Manman, Zhaoyong Shi, Xushuo Gao, Jiakai Gao, Shanwei Wu, Xiaofeng Xu, and Shouxiao Xu. 2023. "Fine-Root C:N:P Stoichiometry and Its Driving Factors Are Different between Arbuscular and Ectomycorrhizal Plants in China" Agronomy 13, no. 10: 2512. https://doi.org/10.3390/agronomy13102512
APA StyleJing, M., Shi, Z., Gao, X., Gao, J., Wu, S., Xu, X., & Xu, S. (2023). Fine-Root C:N:P Stoichiometry and Its Driving Factors Are Different between Arbuscular and Ectomycorrhizal Plants in China. Agronomy, 13(10), 2512. https://doi.org/10.3390/agronomy13102512