Improving the Prediction of Grain Protein Content in Winter Wheat at the County Level with Multisource Data: A Case Study in Jiangsu Province of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources
2.2.1. Winter Wheat GPC at the County Level
2.2.2. Environmental Data
2.3. Estimation Method
2.3.1. Geographically Weighted Regression
2.3.2. Machine Learning
2.4. Accuracy Evaluation
2.5. Sensitivity Analysis
2.5.1. E-Fast Method
2.5.2. SHAP Method
3. Results
3.1. Relationship between GPC and Latitude
3.2. Accuracy Comparison of Winter Wheat GPC Models Based on Different Methods
3.3. Analysis of the Spatial Heterogeneity of Winter Wheat GPC Based on the GWR Model
3.4. Sensitivity of Factors Affecting Winter Wheat GPC at the County Level
4. Discussion
4.1. Spatial Heterogeneity Analysis of the County-Level Winter Wheat GPC
4.2. Effectiveness of Different Methods to Predict the GPC of Winter Wheat
4.3. Sensitivity Analysis of GPC Predictor Variables for Winter Wheat at the County Level
4.4. Limitations and Future Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, W.; Xiao, J.; Li, M.; Tang, X.; Wen, M.; Cheruiyot, A.K.; Li, Y.; Wang, H.; Wang, X. Fine mapping of wheat powdery mildew resistance gene Pm6 using 2B/2G homoeologous recombinants induced by the ph1b mutant. Theor. Appl. Genet. 2020, 133, 1265–1275. [Google Scholar] [CrossRef]
- Kim, K.-H.; Choi, E.D. Retrospective study on the seasonal forecast-based disease intervention of the wheat blast outbreaks in Bangladesh. Front. Plant Sci. 2020, 11, 570381. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhu, Y.; Cao, W.; Dai, T.; Jiang, D. Predicting the protein content of grain in winter wheat with meteorological and genotypic factors. Plant Prod. Sci. 2006, 9, 323–333. [Google Scholar] [CrossRef]
- Vollmer, E.; Musshoff, O. Average protein content and its variability in winter wheat: A forecast model based on weather parameters. Earth Interact. 2018, 22, 1–24. [Google Scholar] [CrossRef]
- Lee, B.-H.; Kenkel, P.; Brorsen, B.W. Pre-harvest forecasting of county wheat yield and wheat quality using weather information. Agric. For. Meteorol. 2013, 168, 26–35. [Google Scholar] [CrossRef]
- McMillen, D.P. Geographically weighted regression: The analysis of spatially varying relationships. Am. J. Agric. Econ. 2004, 86, 554–556. [Google Scholar] [CrossRef]
- Magney, T.S.; Eitel, J.U.H.; Huggins, D.R.; Vierling, L.A. Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric. For. Meteorol. 2016, 217, 46–60. [Google Scholar] [CrossRef]
- Guo, T.; Dai, L.; Yan, B.; Lan, G.; Li, F.; Li, F.; Pan, F.; Wang, F. Measurements of chemical compositions in corn stover and wheat straw by near-infrared reflectance spectroscopy. Animals 2021, 11, 3328. [Google Scholar] [CrossRef]
- Kandiannan, K.; Karthikeyan, R.; Krishnan, R.; Kailasam, C.; Balasubramanian, T.N. A crop-weather model for prediction of rice (Oryza sativa L.) yield using an empirical-statistical technique. J. Agron. Crop Sci. 2002, 188, 59–62. [Google Scholar] [CrossRef]
- Sun, S.; Yang, X.; Lin, X.; Zhao, J.; Liu, Z.; Zhang, T.; Xie, W. Seasonal variability in potential and actual yields of winter wheat in China. Field Crops Res. 2019, 240, 1–11. [Google Scholar] [CrossRef]
- Shaw, S.; Khan, J.; Paswan, B. Spatial modeling of child malnutrition attributable to drought in India. Int. J. Public Health 2020, 65, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Teng, C.; Zhao, Y.; Du, Y.; Zhao, C.; Yang, G.; Jin, X.; Song, X.; Gu, X.; Casa, R.; et al. Prediction of wheat grain protein by coupling multisource remote sensing imagery and ECMWF data. Remote Sens. 2020, 12, 1349. [Google Scholar] [CrossRef]
- Smith, G.P.; Gooding, M.J. Models of wheat grain quality considering climate, cultivar and nitrogen effects. Agric. For. Meteorol. 1999, 94, 159–170. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Niu, Z.; Zhang, M.; Li, J. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric. For. Meteorol. 2020, 282, 107867. [Google Scholar] [CrossRef]
- Genze, N.; Bharti, R.; Grieb, M.; Schultheiss, S.J.; Grimm, D.G. Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods 2020, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, K.; Schelde, K.; Olesen, J.E. Winter wheat yield response to climate variability in Denmark. J. Agric. Sci. 2011, 149, 33–47. [Google Scholar] [CrossRef]
- Dalla Marta, A.; Grifoni, D.; Mancini, M.; Zipoli, G.; Orlandini, S. The influence of climate on durum wheat quality in Tuscany, Central Italy. Int. J. Biometeorol. 2011, 55, 87–96. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. MGWR: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Woolfolk, C.W.; Raun, W.R.; Johnson, G.V.; Thomason, W.E.; Mullen, R.W.; Wynn, K.J.; Freeman, K.W. Influence of late-season foliar nitrogen applications on yield and grain nitrogen in winter wheat. Agron. J. 2002, 94, 429–434. [Google Scholar] [CrossRef]
- Ruan, G.; Li, X.; Yuan, F.; Cammarano, D.; Ata-Ui-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Improving wheat yield prediction integrating proximal sensing and weather data with machine learning. Comput. Electron. Agric. 2022, 195, 106852. [Google Scholar] [CrossRef]
- Zheng, B.; Jiang, J.; Wang, L.; Huang, M.; Zhou, Q.; Cai, J.; Wang, X.; Dai, T.; Jiang, D. Reducing nitrogen rate and increasing plant density accomplished high yields with satisfied grain quality of soft wheat via modifying the free amino acid supply and storage protein gene expression. J. Agric. Food Chem. 2022, 70, 2146–2159. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhao, J.; Bian, X.; Zhang, W. Spatial distribution and controlling factors of heavy metals contents in paddy soil and crop grains of rice-wheat cropping system along highway in East China. Environ. Geochem. Health 2012, 34, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Yang, S.; Jiang, Z.; Xu, Y.; Jiao, X. Effect of irrigation and fertilizer management on rice yield and nitrogen loss: A meta-analysis. Plants 2022, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, A.; Hassan, A.; Khan, M.A.; Rehman, S.; Tariq, U.; Kadry, S.; Majumdar, A.; Thinnukool, O. A long short-term memory biomarker-based prediction framework for Alzheimer’s disease. Sensors 2022, 22, 1475. [Google Scholar] [CrossRef]
- Osman, R.; Zhu, Y.; Ma, W.; Zhang, D.; Ding, Z.; Liu, L.; Tang, L.; Liu, B.; Cao, W. Comparison of wheat simulation models for impacts of extreme temperature stress on grain quality. Agric. For. Meteorol. 2020, 288, 107995. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Elhani, S.; Martos-Nunez, V.; del Moral, L.F.G. Protein and lysine content, grain yield, and other technological traits in durum wheat under Mediterranean conditions. J. Agric. Food Chem. 2001, 49, 3802–3807. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.; Wang, X.; Yan, R.; Shen, B.; Chen, B.; Xin, X. Estimating grassland carbon stocks in Hulunber China, using Landsat8 oli imagery and regression kriging. Sensors 2019, 19, 5374. [Google Scholar] [CrossRef]
- Liu, S.; Xu, L.; Wu, Y.; Simsek, S.; Rose, D.J. End-use quality of historical and modern winter wheats adapted to the great plains of the United States. Foods 2022, 11, 2975. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- West, D.W.D.; Sawan, S.A.; Mazzulla, M.; Williamson, E.; Moore, D.R. Whey protein supplementation enhances whole body protein metabolism and performance recovery after resistance exercise: A double-blind crossover study. Nutrients 2017, 9, 735. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.; Qiu, X.; Liu, B.; Chang, X.; Liu, L.; Zhang, X.; Cao, W.; Zhu, Y. Impacts of 1.5 and 2.0 degrees C global warming on rice production across China. Agric. For. Meteorol. 2020, 284, 107900. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.; Feng, L.; Yin, H.; Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res. 2013, 144, 135–144. [Google Scholar] [CrossRef]
- Martinez-Fernandez, J.; Chuvieco, E.; Koutsias, N. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat. Hazards Earth Syst. Sci. 2013, 13, 311–327. [Google Scholar] [CrossRef]
- Kang, Y.; Ozdogan, M. Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sens. Environ. 2019, 228, 144–163. [Google Scholar] [CrossRef]
- Li, Z.; Taylor, J.; Yang, H.; Casa, R.; Jin, X.; Li, Z.; Song, X.; Yang, G. A hierarchical interannual wheat yield and grain protein prediction model using spectral vegetative indices and meteorological data. Field Crops Res. 2020, 248, 107711. [Google Scholar] [CrossRef]
- Motzo, R.; Giunta, F.; Deidda, M. Relationships between grain-filling parameters, fertility, earliness and grain protein of durum wheat in a Mediterranean environment. Field Crops Res. 1996, 47, 129–142. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Reddy, D.D. Potassium balance and release kinetics under continuous rice-wheat cropping system in Vertisol. Field Crops Res. 2002, 77, 81–91. [Google Scholar] [CrossRef]
- Ochola, D.; Boekelo, B.; van de Ven, G.W.J.; Taulya, G.; Kubiriba, J.; van Asten, P.J.A.; Giller, K.E. Mapping spatial distribution and geographic shifts of East African highland banana (Musa spp.) in Uganda. PLoS ONE 2022, 17, e0263439. [Google Scholar] [CrossRef]
- Kumar, S.; Lal, R.; Liu, D. A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma 2012, 189, 627–634. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Liu, D.S.; Van Meirvenne, M. Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Q.; Jin, S.; Song, Y.; Xu, S.; Wang, X.; Cai, J.; Zhou, Q.; Ge, Y.; Zhang, R.; et al. Simultaneous prediction of wheat yield and grain protein content using multitask deep learning from time-series proximal sensing. Plant Phenomics 2022, 2022, 9757948. [Google Scholar] [CrossRef] [PubMed]
Description | Abbreviation | Unit |
---|---|---|
Soil nitrogen content | N | g/kg |
Soil potassium content | K | % |
Soil phosphorus content | P | mg/kg |
Soil organic matter content | SOM | % |
Maximum temperature in March | TMAX03 | °C |
Mean sunshine duration in March | MSD03 | h |
Precipitation in March | PRE03 | mm |
Mean temperature in March | MT03 | °C |
Maximum temperature in April | TMAX04 | °C |
Mean sunshine duration in April | MSD04 | h |
Precipitation in April | PRE04 | mm |
Mean temperature in April | MT04 | °C |
Maximum temperature in May | TMAX05 | °C |
Mean sunshine duration in May | MSD05 | h |
Precipitation in May | PRE05 | mm |
Mean temperature in May | MT05 | °C |
Feature Subset | Feature Name | Feature Number |
---|---|---|
1 | N, K, P, SOM, TMAX03, MSD03, PRE03, MT03, TMAX04, MSD04, PRE04, MT04, TMAX05, MSD05, PRE05, MT05 | 16 |
2 | N, K, P, SOM | 4 |
3 | TMAX03, TMAX04, TMAX05 | 3 |
4 | MSD03, MSD04, MSD05 | 3 |
5 | PRE03, PRE04, PRE05 | 3 |
6 | MT03, MT04, MT05 | 3 |
Indicator | RF | BPNN | SVM | LSTM |
---|---|---|---|---|
R2 | 0.62 | 0.28 | 0.32 | 0.27 |
RMSE | 1.33 | 1.24 | 1.26 | 1.18 |
MAE | 1.02 | 1.17 | 1.15 | 0.98 |
MBE | 0.18 | −0.17 | −0.16 | −0.14 |
Variable | GWR | MLR | |||||
---|---|---|---|---|---|---|---|
Min | 1/4 Quantile | Median | 3/4 Quantile | Max | Coefficient | SE | |
Intercept | 0.001 | 10.100 | 16.249 | 23.118 | 34.203 | 17.405 | 1.231 |
N | −1.045 | 0.121 | 0.303 | 0.597 | 1.676 | 0.425 | 0.152 |
K | −1.702 | −0.654 | −0.386 | −0.115 | 0.974 | −0.765 | 0.175 |
P | −0.041 | 0.003 | 0.012 | 0.036 | 0.057 | 0.009 | 0.004 |
SOM | −0.414 | −0.092 | 0.085 | 0.212 | 0.573 | 0.121 | 0.076 |
TMAX03 | −1.126 | −0.670 | −0.449 | −0.289 | 0.688 | −0.494 | 0.042 |
MSD03 | −0.446 | −0.094 | −0.026 | −0.045 | 0.233 | −0.059 | 0.029 |
PRE03 | −0.020 | −0.010 | −0.006 | −0.003 | 0.006 | −0.008 | 0.001 |
MT03 | −0.266 | −0.021 | 0.086 | 0.148 | 0.240 | 0.020 | 0.028 |
TMAX04 | −0.552 | −0.307 | −0.206 | 0.044 | 0.210 | −0.115 | 0.053 |
MSD04 | −0.447 | −0.090 | 0.131 | 0.272 | 0.540 | 0.059 | 0.037 |
PRE04 | −0.005 | −0.001 | 0.006 | 0.011 | 0.020 | 0.003 | 0.001 |
MT04 | 0.478 | −0.245 | −0.095 | −0.038 | 0.175 | −0.150 | 0.030 |
TMAX05 | −0.658 | 0.040 | 0.265 | 0.418 | 0.638 | 0.252 | 0.058 |
MSD05 | −0.322 | −0.088 | 0.032 | 0.140 | 0.442 | 0.064 | 0.045 |
PRE05 | −0.007 | −0.001 | 0.002 | 0.005 | 0.012 | 0.003 | 0.001 |
MT05 | −0.281 | −0.018 | 0.080 | 0.224 | 0.452 | 0.091 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zheng, X.; Chen, X.; Xu, Q.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Improving the Prediction of Grain Protein Content in Winter Wheat at the County Level with Multisource Data: A Case Study in Jiangsu Province of China. Agronomy 2023, 13, 2577. https://doi.org/10.3390/agronomy13102577
Song Y, Zheng X, Chen X, Xu Q, Liu X, Tian Y, Zhu Y, Cao W, Cao Q. Improving the Prediction of Grain Protein Content in Winter Wheat at the County Level with Multisource Data: A Case Study in Jiangsu Province of China. Agronomy. 2023; 13(10):2577. https://doi.org/10.3390/agronomy13102577
Chicago/Turabian StyleSong, Yajing, Xiaoyi Zheng, Xiaotong Chen, Qiwen Xu, Xiaojun Liu, Yongchao Tian, Yan Zhu, Weixing Cao, and Qiang Cao. 2023. "Improving the Prediction of Grain Protein Content in Winter Wheat at the County Level with Multisource Data: A Case Study in Jiangsu Province of China" Agronomy 13, no. 10: 2577. https://doi.org/10.3390/agronomy13102577
APA StyleSong, Y., Zheng, X., Chen, X., Xu, Q., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2023). Improving the Prediction of Grain Protein Content in Winter Wheat at the County Level with Multisource Data: A Case Study in Jiangsu Province of China. Agronomy, 13(10), 2577. https://doi.org/10.3390/agronomy13102577