Landscape and Micronutrient Fertilizer Effect on Agro-Fortified Wheat and Teff Grain Nutrient Concentration in Western Amhara
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Test Sites Agroecological Characteristics
2.3. Experimental Procedure
2.4. Implementation in the Field
2.5. Grain Quality Analysis
2.6. Analysis of Data
3. Results
3.1. Wheat Grain Zn Concentration
3.2. Teff Grain Zn Concentration
3.3. Wheat Grain Se Concentration
3.4. Teff Grain Se Concentration
4. Discussion
4.1. Micro- and Macronutrient Fertilizer Effect on Grain Nutritional Composition
4.2. Landscape and G × E effect in Agronomic Biofortification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, G.A.; Ty, B.; Mbuya, M.N.N.; Luo, H.; Neufeld, L.M.; Global Micronutrient Deficiencies Research Group. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32, S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Manzeke, G.M.; Mtambanengwe, F.; Nezomba, H.; Mapfumo, P. Zinc fertilization influence on maize productivity and grain nutritional quality under Integrated Soil Fertility Management in Zimbabwe. Field Crops Res. 2014, 166, 128–136. [Google Scholar] [CrossRef]
- Manzeke-Kangara, M.G.; Joy, E.J.M.; Mtambanengwe, F.; Chopera, P.; Watts, M.J.; Broadley, M.R.; Mapfumo, P. Good soil management can reduce dietary zinc deficiency in Zimbabwe. CABI Agric. Biosci. 2021, 2, 36. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Bryson, R.J.; Meacham, M.C.; Bowen, H.C.; Johnson, S.E.; Hawkesford, M.J.; McGrath, S.P.; Zhao, F.J.; Breward, N.; et al. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 2006, 65, 169–181. [Google Scholar] [CrossRef]
- Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; McGrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H.E. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 2848–2853. [Google Scholar] [CrossRef] [PubMed]
- Mutonhodza, B.; Chagumaira, C.; Dembedza, M.P.; Joy, E.J.M.; Manzeke-Kangara, M.G.; Njovo, H.; Nyadzayo, T.K.; Lark, R.M.; Kalimbira, A.A.; Bailey, E.H.; et al. A pilot survey of selenium status and its geospatial variation among children and women in three rural districts of Zimbabwe. Front. Nutr. 2023, 10, 1235113. [Google Scholar] [CrossRef] [PubMed]
- Guardiola-Márquez, C.E.; Santos-Ramírez, M.T.; Segura-Jiménez, M.E.; Figueroa-Montes, M.L.; Jacobo-Velázquez, D.A. Fighting Obesity-Related Micronutrient Deficiencies through Biofortification of Agri-Food Crops with Sustainable Fertilization Practices. Plants 2022, 11, 3477. [Google Scholar] [CrossRef] [PubMed]
- Manzeke, M.G.; Mtambanengwe, F.; Watts, M.J.; Hamilton, E.M.; Lark, R.M.; Broadley, M.R.; Mapfumo, P. Fertilizer management and soil type influence grain zinc and iron concentration under contrasting smallholder cropping systems in Zimbabwe. Sci. Rep. 2019, 9, 6445. [Google Scholar] [CrossRef]
- Wood, S.A.; Tirfessa, D.; Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 2018, 266, 100–108. [Google Scholar] [CrossRef]
- Ramkissoon, C.; Degryse, F.; Young, S.; Bailey, E.H.; McLaughlin, M.J. Using 77Se-labelled foliar fertilisers to determine how Se transfers within wheat over time. Front. Nutr. 2021, 8, 732409. [Google Scholar] [CrossRef] [PubMed]
- Gashu, D.; Nalivata, P.C.; Amede, T.; Ander, E.L.; Bailey, E.H.; Botoman, L.; Chagumaira, C.; Gameda, S.; Haefele, S.M.; Hailu, K.; et al. The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature 2021, 594, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.H.; Ahmed, I.; Bailey, E.H.; Lark, R.M.; Young, S.D.; Lowe, N.M.; Joy, E.J.M.; Wilson, L.; Zaman, M.; Broadley, M.R. Site-specific factors influence the field performance of a Zn-biofortified wheat variety. Front. Sustain. Food Syst. 2020, 4, 135. [Google Scholar] [CrossRef]
- Hafeez, M.B.; Ramzan, Y.; Khan, S.; Ibrar, D.; Bashir, S.; Zahra, N.; Rashid, N.; Nadeem, M.; Rahman, S.; Shair, H.; et al. Application of zinc and iron-based fertilizers improves the growth attributes, productivity, and grain quality of two wheat (Triticum aestivum) cultivars. Front. Nutr. 2021, 8, 779595. [Google Scholar] [CrossRef]
- Joy, E.J.M.; Stein, A.J.; Young, S.D.; Ander, E.L.; Watts, M.J.; Broadley, M.R. Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 2015, 389, 1–24. [Google Scholar] [CrossRef]
- Zou, C.; Du, Y.; Rashid, A.; Ram, H.; Savasli, E.; Pieterse, P.J.; Ortiz-Monasterio, I.; Yazici, A.; Kaur, C.; Mahmood, K.; et al. Simultaneous biofortification of wheat withzinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J. Agric. Food Chem. 2019, 67, 8096–8106. [Google Scholar] [CrossRef]
- Manzeke-Kangara, M.G.; Mtambanengwe, F.; Watts, M.J.; Broadley, M.R.; Lark, R.M.; Mapfumo, P. Can nitrogen fertilizer management improve grain iron concentration of agro-biofortified crops in Zimbabwe? Agronomy 2021, 11, 124. [Google Scholar] [CrossRef]
- Joy, E.J.M.; Kalimbira, A.A.; Gashu, D.; Ferguson, E.L.; Sturgess, J.; Dangour, A.D.; Banda, L.; Chiutsi-Phiri, G.; Bailey, E.H.; Langley-Evans, S.C.; et al. Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial. Trials 2019, 20, 795. [Google Scholar] [CrossRef]
- Chilimba, A.D.C.; Young, S.D.; Black, C.R.; Meacham, M.C.; Lammel, J.; Broadley, M.R. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Res. 2012, 125, 118–128. [Google Scholar] [CrossRef]
- Liu, R.; Pan, Y.; Bao, H.; Liang, S.; Jiang, Y.; Tu, H.; Nong, J.; Huang, W. Variations in soil physico-chemical properties along slope position gradient in secondary vegetation of the hilly region, Guilin, southwest China. Sustainability 2020, 12, 1303. [Google Scholar] [CrossRef]
- Amede, T.; Gashaw, T.; Legesse, G.; Tamene, L.; Mekonen, K.; Thorne, P.; Schultz, S. Landscape positions dictating crop fertilizer responses in wheat-based farming systems of East African Highlands. Renew. Agric. Food Syst. 2022, 37, 1–13. [Google Scholar] [CrossRef]
- Botoman, L.; Chagumaira, C.; Mossa, A.-W.; Amede, T.; Ander, E.L.; Bailey, E.H.; Chimungu, J.G.; Gameda, S.; Gashu, D.; Haefele, S.M.; et al. Soil and landscape factors influence geospatial variation in maize grain zinc concentration in Malawi. Sci. Rep. 2022, 12, 7986. [Google Scholar] [CrossRef] [PubMed]
- Abera, E.A.; Abegaz, W.B. Seasonal and Annual Rainfall Trend Detection in Eastern Amhara, Ethiopia. J. Climatol. Weather. Forecast. 2020, 8, 264. [Google Scholar]
- MoA (Ministry of Agriculture). Agro-Ecological Zones of Ethiopia. Natural Resources Management and Regulatory Department. With Support of German Agency for Technical Cooperation (GTZ); MOA: Addis Ababa, Ethiopia, 1998.
- Desta, G.; Amede, T.; Gashaw, T.; Legesse, G.; Agegnehu, G.; Mekonnen, K.; Whitbread, A. Sorghum yield response to NPKS and NPZn nutrients along sorghum-growing landscapes. Exp. Agric. 2022, 58, E10. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 December 2022).
- Desta, M.K.; Broadley, M.R.; McGrath, S.P.; Hernandez-Allica, J.; Hassall, K.L.; Gameda, S.; Amede, T.; Haefele, S.M. Plant available zinc is influenced by landscape position in the Amhara Region, Ethiopia. Plants 2021, 10, 254. [Google Scholar] [CrossRef]
- Singmann, H.; Bolker, B.; Westfall, J.; Aust, F.; Ben-Shachar, M.S. afex: Analysis of Factorial Experiments. R Package Version 1.0-1. 2021. Available online: https://CRAN.R-project.org/package=afex (accessed on 15 December 2022).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-fffects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kenward, M.G.; Roger, J.H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef]
- Manzeke, M.G.; Mtambanengwe, F.; Watts, M.J.; Broadley, M.R.; Lark, R.M.; Mapfumo, P. Nitrogen effect on zinc biofortification of maize and cowpea in Zimbabwean smallholder farms. Agron. J. 2020, 112, 2256–2274. [Google Scholar] [CrossRef]
- Botoman, L.; Chimungu, J.G.; Bailey, E.H.; Munthali, M.W.; Ander, E.L.; Mossa, A.-W.; Young, S.D.; Broadley, M.R.; Lark, R.M.; Nalivata, P.C. Agronomic biofortification increases grain zinc concentration of maize grown under contrasting soil types in Malawi. Plant Direct 2022, 6, e458. [Google Scholar] [CrossRef]
- Zhao, A.-Q.; Tian, X.-H.; Cao, Y.-X.; Lu, X.-C.; Liu, T. Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils. J. Sci. Food Agric. 2014, 94, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Saha, S.; Chakraborty, M.; Sarkar, D.; Batabyal, K.; Mandal, B.; Murmu, S.; Padhan, D.; Hazra, G.C.; Bell, R.W. Rescheduling zinc fertilization and cultivar choice improve zinc sequestration and its bioavailability in wheat grains and flour. Field Crops Res. 2017, 200, 10–17. [Google Scholar] [CrossRef]
- Tanner, P.D. The Effectiveness of Zinc Fertilizers. Annual Report; Chemistry and Soil Research Institute: Harare, Zimbabwe, 1975.
- Ligowe, I.S.; Young, S.D.; Ander, E.L.; Kabambe, V.; Chilimba, A.D.C.; Bailey, E.H.; Lark, R.M.; Nalivata, P.C. Selenium biofortification of crops on a Malawi Alfisol under conservation agriculture. Geoderma 2020, 369, 114315. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, Z.; Li, Y.; Li, H.; Wang, L.; Zang, Z.; Liao, X.; Zhang, R. Distribution of selenium and zinc in soil-crop system and their relationship with environmental factors. Chemosphere 2020, 242, 125289. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Ligowe, I.S.; Young, S.D.; Ander, E.L.; Kabambe, V.; Chilimba, A.D.C.; Bailey, E.H.; Lark, R.M.; Nalivata, P.C. Agronomic biofortification of leafy vegetables grown in an Oxisol, Alfisol and Vertisol with isotopically labelled selenium (77Se). Geoderma 2020, 361, 114106. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in Soils and Crop Nutrition, 2nd ed.; International Zinc Association (IZA): Durham, NC, USA; International Fertilizer Association (IFA): Brussels, Belgium; Paris, France, 2008. [Google Scholar]
- Qin, H.B.; Zhu, J.M.; Su, H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere 2012, 86, 626–633. [Google Scholar] [CrossRef]
- Manzeke, M.G.; Mtambanengwe, F.; Nezomba, H.; Watts, M.J.; Broadley, M.R.; Mapfumo, P. Zinc fertilization increases productivity and grain nutritional quality of cowpea (Vigna unguiculata [L.] Walp.) under Integrated Soil Fertility Management. Field Crops Res. 2017, 213, 231–244. [Google Scholar] [CrossRef]
Site | Crops | Elevation Range in the Landscape (masl) | Landscape Length (m) | Agro-Ecological Zones |
---|---|---|---|---|
Debre-mewi (Yilmana Densa) | Teff and Wheat | 2197–2287 | 2380 | Tepid moist mid-highlands |
Markuma (Wonberima) | Wheat | 2052–2081 | 720 | Tepid sub-humid-mid-highlands |
Abagerima (Bahir Dar Zuria) | Teff | 1899–1994 | 3405 | Tepid moist mid-highlands |
Location | Crop | Landscape Position | pH 1 | Total N 2 | SOC 2 | Clay 3 | Olsen P | Total Zn 4 | Available Zn 5 | eCEC 6 |
---|---|---|---|---|---|---|---|---|---|---|
(%) | (mg kg−1) | (cmol c kg−1) | ||||||||
Aba Gerima | Teff | Hillslope | 6.0 | 0.11 | 1.34 | 38 | 4.2 | 94 | 1.15 | 29.8 |
Mid-slope | 5.8 | 0.08 | 0.94 | 36 | 3.2 | 114 | 0.98 | 27.8 | ||
Footslope | 4.9 | 0.13 | 1.41 | 50 | 5.4 | 96 | 1.13 | 13.0 | ||
Debre Mewi | Teff and Wheat | Hillslope | 5.1 | 0.17 | 1.90 | 50 | 5.0 | 101 | 2.24 | 17.0 |
Mid-slope | 5.6 | 0.12 | 1.37 | 57 | 3.2 | 91 | 0.96 | 25.8 | ||
Footslope | 6.2 | 0.12 | 1.51 | 70 | 3.3 | 99 | 1.64 | 37.3 | ||
Markuma | Wheat | Hillslope | 4.8 | 0.18 | 2.44 | 39 | 3.9 | 55 | 0.66 | 12.7 |
Mid-slope | 4.9 | 0.17 | 2.27 | 42 | 2.5 | 54 | 0.56 | 13.0 | ||
Footslope | 4.9 | 0.15 | 2.09 | 44 | 2.0 | 59 | 0.30 | 12.5 |
Treatment Label | Harvest Season | |||
---|---|---|---|---|
2018 | Nutrient Amount (kg ha−1) | 2019 | Nutrient Amount (kg ha−1) | |
Treatment 1 | NPSKB + urea “control” | 138 kg N + 92 kg P2O5 + 16.96 kg SO3 + 40 K2O + 0.24 kg B | NPSBK + urea “control” | 138 kg N + 92 kg P2O5 + 16.96 kg SO3 + 40 K2O + 0.24 kg B |
Treatment 2 | Control + basal Zn | Treatment 1 + 8.25 kg basal Zn | Control + basal Zn | Treatment 1 + 8.25 kg basal Zn |
Treatment 3 | Control + basal Zn+foliar Zn and Se | Treatment 1 + 8.25 kg basal Zn + 4.13 kg foliar Zn + 20 g sodium selenate (Na2SeO4) | Control + basal Zn+foliar Zn | Treatment 1 + 8.25 kg basal Zn + 4.13 kg foliar Zn |
Treatment 4 | Control + basal Zn+side Zn | Treatment 1 + 8.25 kg basal Zn + 4.13 kg side Zn | Control + basal Zn + side Zn + foliar Se | Treatment 1 + 8.25 kg basal Zn + 4.13 kg side Zn + 20 g sodium selenate (Na2SeO4) |
Treatment 5 | ⅓ control rate | 0.33 × (138 kg N + 92 kg P2O5 + 16.96 kg SO3 + 40 K2O + 0.24 kg B) | ⅓ control rate | 0.33 × (138 kg N + 92 kg P2O5 + 16.96 kg SO3 + 40 K2O + 0.24 kg B) |
Treatment Label | Nitisols | Vertisols * | |
---|---|---|---|
2018 | Nutrient Amount (kg ha−1) | Nutrient Amount (kg ha−1) | |
Treatment 1 | NPSKB + urea “control” | 40 kg N + 60 kg P2O5 + 11.06 kg SO3 + 40 K2O + 0.16 kg B | 80 kg N + 46 kg P2O5 + 8.48 kg SO3 + 40 K2O + 0.12 kg B |
Treatment 2 | Control + basal Zn | Treatment 1 + 8.25 kg basal Zn | Treatment 1 + 8.25 kg basal Zn |
Treatment 3 | Control + basal Zn + foliar Zn and Se | Treatment 1 + 8.25 kg basal Zn + 4.13 kg foliar Zn + 20 g sodium selenate (Na2SeO4) | Treatment 1 + 8.25 kg basal Zn + 4.13 kg foliar Zn + 20 g sodium selenate (Na2SeO4) |
Treatment 4 | Control + basal Zn + side Zn | Treatment 1 + 8.25 kg basal Zn + 4.13 kg side Zn | Treatment 1 + 8.25 kg basal Zn + 4.13 kg side Zn |
Treatment 5 | ⅓ control rate | 0.33 × (40 kg N + 60 kg P2O5 + 11.06 kg SO3 + 40 K2O + 0.16 kg B) | 0.33 × (80 kg N + 46 kg P2O5 + 8.48 kg SO3 + 40 K2O + 0.12 kg B) |
Treatment Label | Nitisols | Vertisols * | |
2019 | Nutrient Amount (kg ha−1) | Nutrient Amount (kg ha−1) | |
Treatment 1 | NPSBK + urea “control” | 40 kg N + 60 kg P2O5 + 11.06 kg SO3 + 40 K2O + 0.16 kg B | 80 kg N + 46 kg P2O5 + 8.48 kg SO3 + 40 K2O + 0.12 kg B |
Treatment 2 | Control + basal Zn | Treatment 1 + 8.25 kg basal Zn | Treatment 1 + 8.25 kg basal Zn |
Treatment 3 | Control + basal Zn + foliar Zn | Treatment 1 + 8.25 kg basal Zn + 4.13 kg foliar Zn | Treatment 1 + 8.25 kg basal Zn + 4.13 kg foliar Zn |
Treatment 4 | Control + basal Zn + side Zn + foliar Se | Treatment 1 + 8.25 kg basal Zn + 4.13 kg side Zn + 20 g sodium selenate (Na2SeO4) | Treatment 1 + 8.25 kg basal Zn + 4.13 kg side Zn + 20 g sodium selenate (Na2SeO4) |
Treatment 5 | ⅓ control rate | 0.33 × (40 kg N + 60 kg P2O5 + 11.06 kg SO3 + 40 K2O + 0.16 kg B) | 0.33 × (80 kg N + 46 kg P2O5 + 8.48 kg SO3 + 40 K2O + 0.12 kg B) |
Harvest Season | ||
---|---|---|
2018 | 2019 | |
TR1 | * NPSKB + urea “control” (Treatment 1) | NPSBK + urea “control” (Treatment 1) |
TR2 | ⅓ control rate (Treatment 5) | ⅓ control rate (Treatment 5) |
TR3 | Control + basal Zn + side Zn (Treatment 4) | Control + basal Zn + foliar Zn (Treatment 3) |
TR4 | Control + basal Zn + foliar Zn and Se (Treatment 3) | Control + basal Zn + side Zn + foliar Se (Treatment 4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzeke-Kangara, M.G.; Amede, T.; Bailey, E.H.; Wilson, L.; Mossa, A.W.; Tirfessa, D.; Desta, M.K.; Asrat, T.G.; Agegnehu, G.; Sida, T.S.; et al. Landscape and Micronutrient Fertilizer Effect on Agro-Fortified Wheat and Teff Grain Nutrient Concentration in Western Amhara. Agronomy 2023, 13, 2598. https://doi.org/10.3390/agronomy13102598
Manzeke-Kangara MG, Amede T, Bailey EH, Wilson L, Mossa AW, Tirfessa D, Desta MK, Asrat TG, Agegnehu G, Sida TS, et al. Landscape and Micronutrient Fertilizer Effect on Agro-Fortified Wheat and Teff Grain Nutrient Concentration in Western Amhara. Agronomy. 2023; 13(10):2598. https://doi.org/10.3390/agronomy13102598
Chicago/Turabian StyleManzeke-Kangara, Muneta G., Tilahun Amede, Elizabeth H. Bailey, Lolita Wilson, Abdul W. Mossa, Dereje Tirfessa, Mesfin K. Desta, Tadesse G. Asrat, Getachew Agegnehu, Tesfaye S. Sida, and et al. 2023. "Landscape and Micronutrient Fertilizer Effect on Agro-Fortified Wheat and Teff Grain Nutrient Concentration in Western Amhara" Agronomy 13, no. 10: 2598. https://doi.org/10.3390/agronomy13102598
APA StyleManzeke-Kangara, M. G., Amede, T., Bailey, E. H., Wilson, L., Mossa, A. W., Tirfessa, D., Desta, M. K., Asrat, T. G., Agegnehu, G., Sida, T. S., Desta, G., Amare, T., Alemayehu, B., Haefele, S. M., Lark, R. M., Broadley, M. R., & Gameda, S. (2023). Landscape and Micronutrient Fertilizer Effect on Agro-Fortified Wheat and Teff Grain Nutrient Concentration in Western Amhara. Agronomy, 13(10), 2598. https://doi.org/10.3390/agronomy13102598