Application of Biostimulants and Herbicides as a Promising Co-Implementation: The Incorporation of a New Cultivation Practice
Abstract
:1. Introduction
2. Biostimulants and Herbicides
2.1. Biostimulant-Herbicides Separate Applications
2.1.1. Interaction Effects on Biostimulant and Herbicidal Efficacy
2.1.2. Effect of Biostimulants on Mitigating Stress from Herbicidal Application on Plants and Soil
Crop | Biostimulant Commercial Name | Biostimulant Content | Herbicide Commercial Name | Herbicide Active Ingredient | Time of Application | Reference |
---|---|---|---|---|---|---|
Wheat | n.d. | Humic and fulvic acids | n.d. | sulfosulfuron | Herbicide was applied at BBCH 32 and biostimulant at BBCH 31, 47 and 71 | [54] |
Wheat | n.d. | Humic acids | Apyros 75 WG | sulfosulfuron | Herbicide was applied at BBCH 31, and biostimulants at BBCH 32, 47, 69 | [55] |
Wheat | Florahumus | Humic and fulvic acids | n.d. | sulfosulfuron | Herbicide was applied at BBCH 31 and biostimulant at BBCH 33, 47, 72 | [42] |
Wheat | n.d. | Beneficial bacteria extracts | Bromoxynil-Octanoate W | bromoxynil | The grains were soaked with biostimulants, and the herbicide was applied 55 days after sowing (vegetation stage) | [51] |
n.d. | Amino acids | |||||
Winter barley | ComCat | Botanical extract | Luximo | cinmethylin | Biostimulant was applied to the seeds, and the herbicide was applied 7 days after sowing | [52] |
Spring wheat | Kelpak SL | Seaweed extract | Chwastox Turbo 340 SL | MCPA + dicamba | Herbicides were applied at BBCH 30, and biostimulants were applied 3 days later | [32] |
Lintur 70 WG | dicamba + triasulfuron | |||||
Asahi SL | Nitrophenolates | Mustang 306 SE | florasulam + 2,4-D | |||
Soybean | Grozyme Z-93 | Beneficial chemical compounds | Roundup Ultra Max | glyphosate | Herbicides were applied at the V4–V5 growth stage, and biostimulant was applied 10 days later | [46] |
Reflex 2LC + Select 2EC | clethodim + fomesafen | |||||
Beans | n.d. | Humic acids | Pestanal | 2,4-dichlorophenoxyacetic acid | Biostimulant was applied to seedlings, and the herbicide was applied on the 3rd–4th leaf stages (2 weeks later) | [56] |
Potato | PlonoStart | Beneficial chemical substances and bacteria | Avatar 293 ZC | clomazone + metribuzin | Herbicide was applied 7 days before plant emergence (BBCH 00–08), and biostimulants were applied at BBCH 13–19 and BBCH 31–35 | [37,38,39,40,41] |
Amino Plant | N-containing substances, amino acids and organic substances | |||||
Agro-Sorb Folium | Beneficial chemical elements and amino acids | |||||
Potato | Kelpak SL | Seaweed extract | Harrier 295 ZC | linuron + clomazone | Herbicide Harrier 295 ZC was applied 7–10 days after planting the tubers and Sencor 70 WG before emergence. Biostimulants were applied at the end of plant emergence and at the coverage of inter-rows between 10–50% | [34] |
Asahi SL | Nitrophenolates | Sencor 70 WG | metribuzin | |||
Potato | Kelpak SL | Seaweed extract | Harrier 295 ZC | linuron + clomazone | Herbicide Harrier 295 ZC was applied 7–10 days after planting tubers and Sencor 70 WG before emergence. Biostimulants were applied at the end of plant emergence and 14–28 days later | [33,35] |
Asahi SL | Nitrophenolates | Sencor 70 WG | metribuzin | |||
Potato | Asahi SL | Nitrophenolates | Plateen 41.5 WG | metribuzin + flufenacet | Biostimulants were applied at BBCH 31–32 and BBCH 51–52. Asahi SL and Tytanit were also applied at BBCH 61–62. | [36] |
Kelpak SL | Seaweed extract | |||||
Aminoplant | N-containing substances, amino acids, and organic substances | |||||
Tytanit | Beneficial chemical element | |||||
Sunflower | Amino Expert Impuls | Amino acids, beneficial chemical compounds and elements, and organic substances | Express 50 WG | tribenuron-methyl | Herbicides were applied in the 4–6th leaf stage (BBCH 14–16) and the biostimulant was applied 4 days later | [48] |
Pulsar Plus | imazamox | |||||
Alfalfa | n.d. | Beneficial bacteria | n.d. | imazethapyr | The seeds were inoculated with biostimulants before cultivation and 1 month after cultivation. The herbicide was applied at the 5–6th leaf stage | [47] |
Buckwheat | Asahi SL | Nitrophenolates | Linurex 500 SC | linuron | Herbicides were applied at stage BBCH 02, and biostimulants were applied at stage BBCH 14 | [50] |
Kelpak SL | Seaweed extract | Metazanex 550 SC and Command 480 EC | metazachlor and clomazone | |||
Bi-Nine 85 SG | Amino acid derivative | |||||
Maize | Naturamin Plus | Amino acids | Pulsar Plus | imazamox | The herbicide was applied at the 7–8th leaf stage and the biostimulants were applied 5 days later | [49] |
Terrasorb | ||||||
Trainer | ||||||
Naturamin WSP | ||||||
Maize | n.d. | Amino acid derivative | n.d. | paraquat | The seeds were soaked in solutions with biostimulant, and herbicide was applied at 5–6th leaf stage | [53] |
2.2. Biostimulant-Herbicides Mixed Tank Applications
2.2.1. Interaction Effects on Biostimulant and Herbicidal Efficacy
2.2.2. Effect of Biostimulants on Mitigating Stress from Herbicidal Application on Plants and Soil
Crop | Biostimulant Commercial Name | Biostimulant Content | Herbicide Commercial Name | Herbicide Active Ingredient | Time of Application | Reference |
---|---|---|---|---|---|---|
Spring wheat | Kelpak SL | Seaweed extract | Chwastox Turbo 340 SL | MCPA + dicamba | Treatments were applied at stage BBCH 30 | [32] |
Asahi SL | Nitrophenolates | Lintur 70 WG | dicamba + triasulfuron | |||
Mustang 306 SE | florasulam + 2,4-D | |||||
Winter wheat | BIO-Don | Humic acids | Granstar Pro | tribenuron-methyl | Treatments were applied in the tillering stage | [11] |
Maize | Megafol | Seaweed extract and amino acids | n.d. | metolachlor | The seeds were sprayed in the pots with the herbicide and the biostimulant. | [44] |
Maize, oats andwinter wheat | Crop Booster | Beneficial chemical compounds | n.d. | glyphosate | n.d. | [59] |
glyphosate + topramezone + atrazine | ||||||
RR SoyBooster | Beneficial chemical compounds | glyphosate + thiencarbazone/tembotrione | ||||
bromoxynil/MCPA | ||||||
Soybean | MC Extra | Seaweed extract | Roundup Transorb | glyphosate | Treatments were applied at V5 growth stage (five trefoils developed) | [57] |
MC Cream | Seaweed extract | |||||
Megafol | Seaweed extract and amino acids | |||||
Soybean | MC Extra | Seaweed extract | Glyphotal | glyphosate | Treatments were applied in the 4 and 7 trifoliate leaf stage | [58] |
Roundup Original | ||||||
Roundup Ready | ||||||
Roundup WG | ||||||
Roundup Transorb | ||||||
Zapp QI | ||||||
White bean | Crop Booster | Beneficial chemical compounds | n.d. | quizalofop-p-ethyl | Treatments were applied in the 1–3 trifoliate leaf stage | [60] |
bentazon | ||||||
fomesafen | ||||||
RR SoyBooster | Beneficial chemical compounds | bentazon + fomesafen | ||||
imazethapyr | ||||||
imazethapyr + bentazon | ||||||
Sunflower | Terra-Sorb | Amino acids | Pulsar 40 | imazamox | Treatments were applied at 47 days after sowing and when the plants had 6 fully expanded mature leaves | [17] |
Sunflower | Terra-Sorb | Amino acids | Pulsar 40 | imazamox | Treatments were applied at 3rd pair leaves | [18] |
3. How the Regulatory Framework Affects Biostimulants and Herbicides Use
4. Challenges and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Li, J.; Van Gerrewey, T.; Geelen, D. A Meta-Analysis of Biostimulant Yield Effectiveness in Field Trials. Front. Plant Sci. 2022, 13, 836702. [Google Scholar] [CrossRef] [PubMed]
- Szczepanek, M.; Jaśkiewicz, B.; Kotwica, K. Response of Barley on Seaweed Biostimulant Application. Res. Rural Dev. 2018, 2, 77–85. [Google Scholar]
- Neshev, N.; Balabanova-Ivanovska, D.; Yanev, M.; Mitkov, A.; Tonev, T. Recovering Effect of Biostimulant Application on Pumpkins (Cucurbita moschata Duchesne Ex Poir.) Treated with Imazamox. In Proceedings of the VIII South-Eastern Europe Symposium on Vegetables and Potatoes, Leuven, Belgium, 8 September 2021; pp. 267–274. [Google Scholar]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef]
- Caradonia, F.; Ronga, D.; Tava, A.; Francia, E. Plant Biostimulants in Sustainable Potato Production: An Overview. Potato Res. 2022, 65, 83–104. [Google Scholar] [CrossRef]
- Chen, J.; Yang, W.; Li, J.; Anwar, S.; Wang, K.; Yang, Z.; Gao, Z. Effects of Herbicides on the Microbial Community and Urease Activity in the Rhizosphere Soil of Maize at Maturity Stage. J. Sens. 2021, 2021, 6649498. [Google Scholar] [CrossRef]
- Yang, F.; Gao, M.; Lu, H.; Wei, Y.; Chi, H.; Yang, T.; Yuan, M.; Fu, H.; Zeng, W.; Liu, C. Effects of Atrazine on Chernozem Microbial Communities Evaluated by Traditional Detection and Modern Sequencing Technology. Microorganisms 2021, 9, 1832. [Google Scholar] [CrossRef]
- Bezuglova, O.S.; Gorovtsov, A.V.; Polienko, E.A.; Zinchenko, V.E.; Grinko, A.V.; Lykhman, V.A.; Dubinina, M.N.; Demidov, A. Effect of Humic Preparation on Winter Wheat Productivity and Rhizosphere Microbial Community under Herbicide-Induced Stress. J. Soils Sediments 2019, 19, 2665–2675. [Google Scholar] [CrossRef]
- Du, Z.; Zhu, Y.; Zhu, L.; Zhang, J.; Li, B.; Wang, J.; Wang, J.; Zhang, C.; Cheng, C. Effects of the Herbicide Mesotrione on Soil Enzyme Activity and Microbial Communities. Ecotoxicol. Environ. Saf. 2018, 164, 571–578. [Google Scholar] [CrossRef]
- Tejada, M.; García-Martínez, A.M.; Gómez, I.; Parrado, J. Application of MCPA Herbicide on Soils Amended with Biostimulants: Short-Time Effects on Soil Biological Properties. Chemosphere 2010, 80, 1088–1094. [Google Scholar] [CrossRef]
- Ortiz-Botella, M.; Gómez, I.; Paneque, P.; Caballero, P.; Parrado, J.; Vera, A.; Bastida, F.; García, C.; Tejada, M. Use of Biostimulants Obtained from Okara in the Bioremediation of Soils Polluted by Imazamox. Bioremediat. J. 2022, 26, 53–63. [Google Scholar] [CrossRef]
- Tejada, M.; García-Martínez, A.M.; Gómez, I.; Parrado, J. Response of Biological Properties to the Application of Banvel® (2,4-D + MCPA + Dicamba) Herbicide in Soils Amended with Biostimulants. In Soil Enzymology in the Recycling of Organic Wastes and Environmental Restoration; Trasar-Cepeda, C., Hernández, T., García, C., Rad, C., González-Carcedo, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 241–253. ISBN 978-3-642-21162-1. [Google Scholar]
- Abu-Qare, A.W.; Duncan, H.J. Herbicide Safeners: Uses, Limitations, Metabolism, and Mechanisms of Action. Chemosphere 2002, 48, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Navarro-León, E.; Borda, E.; Marín, C.; Sierras, N.; Blasco, B.; Ruiz, J.M. Application of an Enzymatic Hydrolysed L-α-Amino Acid Based Biostimulant to Improve Sunflower Tolerance to Imazamox. Plants 2022, 11, 2761. [Google Scholar] [CrossRef] [PubMed]
- Balabanova, D.A.; Paunov, M.; Goltsev, V.; Cuypers, A.; Vangronsveld, J.; Vassilev, A. Photosynthetic Performance of the Imidazolinone Resistant Sunflower Exposed to Single and Combined Treatment by the Herbicide Imazamox and an Amino Acid Extract. Front. Plant Sci. 2016, 7, 1559. [Google Scholar] [CrossRef]
- Ahmadi-Rad, S.; Gholamhoseini, M.; Ghalavand, A.; Asgharzadeh, A.; Dolatabadian, A. Foliar Application of Nitrogen Fixing Bacteria Increases Growth and Yield of Canola Grown under Different Nitrogen Regimes. Rhizosphere 2016, 2, 34–37. [Google Scholar] [CrossRef]
- Madende, M.; Hayes, M. Fish By-Product Use as Biostimulants: An Overview of the Current State of the Art, Including Relevant Legislation and Regulations within the EU and USA. Molecules 2020, 25, 1122. [Google Scholar] [CrossRef]
- Przybysz, A.; Gawrońska, H.; Gajc-Wolska, J. Biological Mode of Action of a Nitrophenolates-Based Biostimulant: Case Study. Front. Plant Sci. 2014, 5, 713. [Google Scholar] [CrossRef]
- Sangiorgio, D.; Cellini, A.; Donati, I.; Pastore, C.; Onofrietti, C.; Spinelli, F. Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. Agronomy 2020, 10, 794. [Google Scholar] [CrossRef]
- Tiryaki, D.; Aydın, İ.; Atıcı, Ö. Psychrotolerant Bacteria Isolated from the Leaf Apoplast of Cold-Adapted Wild Plants Improve the Cold Resistance of Bean (Phaseolus vulgaris L.) under Low Temperature. Cryobiology 2019, 86, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Kasimatis, C.-N.; Kakabouki, I.; Leonidakis, D.; Danalatos, N.; et al. Assessment of Plant Growth Promoting Bacteria Strains on Growth, Yield and Quality of Sweet Corn. Sci. Rep. 2022, 12, 11598. [Google Scholar] [CrossRef] [PubMed]
- Rehim, A.; Amjad Bashir, M.; Raza, Q.-U.-A.; Gallagher, K.; Berlyn, G.P. Yield Enhancement of Biostimulants, Vitamin B12, and CoQ10 Compared to Inorganic Fertilizer in Radish. Agronomy 2021, 11, 697. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Tomkiel, M. Response of Microorganisms and Enzymes to Soil Contamination with a Mixture of Terbuthylazine, Mesotrione, and S-Metolachlor. Environ. Sci. Pollut. Res. 2017, 24, 1910–1925. [Google Scholar] [CrossRef]
- Moretto, J.A.S.; Altarugio, L.M.; Andrade, P.A.; Fachin, A.L.; Andreote, F.D.; Stehling, E.G. Changes in Bacterial Community after Application of Three Different Herbicides. FEMS Microbiol. Lett. 2017, 364, fnx113. [Google Scholar] [CrossRef]
- Zhang, H.; Mu, W.; Hou, Z.; Wu, X.; Zhao, W.; Zhang, X.; Pan, H.; Zhang, S. Biodegradation of Nicosulfuron by the Bacterium Serratia Marcescens N80. J. Environ. Sci. Health Part B 2012, 47, 153–160. [Google Scholar] [CrossRef]
- Bellinaso, M.D.L.; Greer, C.W.; Peralba, M.d.C.; Henriques, J.A.P.; Gaylarde, C.C. Biodegradation of the Herbicide Trifluralin by Bacteria Isolated from Soil. FEMS Microbiol. Ecol. 2003, 43, 191–194. [Google Scholar] [CrossRef]
- Singh, B.; Singh, K. Microbial Degradation of Herbicides. Crit. Rev. Microbiol. 2016, 42, 245–261. [Google Scholar] [CrossRef]
- Matysiak, K.; Miziniak, W.; Kaczmarek, S.; Kierzek, R. Herbicides with Natural and Synthetic Biostimulants in Spring Wheat. Cienc. Rural 2018, 48, e20180405. [Google Scholar] [CrossRef]
- Gugała, M.; Zarzecka, K.; Dołęga, H.; Sikorska, A. Weed Infestation and Yielding of Potato Under Conditions of Varied Use of Herbicides and Bio-Stimulants. J. Ecol. Eng. 2018, 19, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Zarzecka, K.; Gugała, M.; Grzywacz, K.; Sikorska, A. Agricultural and economic effects of the use of biostimulants and herbicides in cultivation of the table potato cultivar Gawin. Acta Sci. Pol. Agric. 2020, 19, 3. [Google Scholar] [CrossRef]
- Gugała, M.; Zarzecka, K.; Dołęga, H.; Niewęgłowski, M.; Sikorska, A. The Effect of Biostimulants and Herbicides on Glycoalkaloid Accumulation in Potato. Plant Soil Environ. 2016, 62, 256–260. [Google Scholar] [CrossRef]
- Kołodziejczyk, M.; Gwóźdź, K. Effect of Plant Growth Regulators on Potato Tuber Yield and Quality. Plant Soil Environ. 2022, 68, 375–381. [Google Scholar] [CrossRef]
- Ginter, A.; Zarzecka, K.; Gugała, M. Effect of Herbicide and Biostimulants on Production and Economic Results of Edible Potato. Agronomy 2022, 12, 1409. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Ginter, A.; Mystkowska, I.; Sikorska, A. The Positive Effects of Mechanical and Chemical Treatments with the Application of Biostimulants in the Cultivation of Solanum tuberosum L. Agriculture 2022, 13, 45. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Ginter, A.; Mystkowska, I.; Domański, Ł.; Sikorska, A. Biostimulants Improves the Content of Polyphenol in the Potato Tubers. Plant Soil Environ. 2023, 69, 118–123. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Mystkowska, I.; Sikorska, A.; Domański, Ł. Glycoalkaloids in Leaves and Potato Tubers Depending on Herbicide Application with Biostimulants. Plant Soil Environ. 2022, 68, 180–185. [Google Scholar] [CrossRef]
- Mystkowska, I.; Zarzecka, K.; Gugała, M.; Sikorska, A. Profitability of Using Herbicide and Herbicide with Biostimulators in Potato Production. J. Ecol. Eng. 2022, 23, 223–227. [Google Scholar] [CrossRef]
- Lozowicka, B.; Iwaniuk, P.; Konecki, R.; Kaczynski, P.; Kuldybayev, N.; Dutbayev, Y. Impact of Diversified Chemical and Biostimulator Protection on Yield, Health Status, Mycotoxin Level, and Economic Profitability in Spring Wheat (Triticum aestivum L.) Cultivation. Agronomy 2022, 12, 258. [Google Scholar] [CrossRef]
- Constantin, J.; Júnior, R.; Gheno, E.; Biffe, D.; Braz, G.; Weber, F.; Takano, H. Prevention of Yield Losses Caused by Glyphosate in Soybeans with Biostimulant. Afr. J. Agric. Res. 2016, 11, 1601–1607. [Google Scholar] [CrossRef]
- Panfili, I.; Bartucca, M.L.; Marrollo, G.; Povero, G.; Del Buono, D. Application of a Plant Biostimulant to Improve Maize (Zea mays) Tolerance to Metolachlor. J. Agric. Food Chem. 2019, 67, 12164–12171. [Google Scholar] [CrossRef] [PubMed]
- Giraldo Acosta, M.; Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Melatonin as a Possible Natural Safener in Crops. Plants 2022, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Means, N.E.; Kremer, R.J.; Ramsier, C. Effects of Glyphosate and Foliar Amendments on Activity of Microorganisms in the Soybean Rhizosphere. J. Environ. Sci. Health Part B 2007, 42, 125–132. [Google Scholar] [CrossRef]
- Motamedi, M.; Zahedi, M.; Karimmojeni, H.; Motamedi, H.; Mastinu, A. Effect of Rhizosphere Bacteria on Antioxidant Enzymes and Some Biochemical Characteristics of Medicago sativa L. Subjected to Herbicide Stress. Acta Physiol. Plant. 2022, 44, 84. [Google Scholar] [CrossRef]
- Neshev, N.; Balabanova, D.; Yanev, M.; Mitkov, A. Is the Plant Biostimulant Application Ameliorative for Herbicide-Damaged Sunflower Hybrids? Ind. Crops Prod. 2022, 182, 114926. [Google Scholar] [CrossRef]
- Balabanova, D.; Neshev, N.; Yanev, M.; Koleva-Valkova, L.; Vassilev, A. Photosynthetic Performance and Productivity of Maize (Zea mays L.), Exposed to Simulated Drift of Imazamox and Subsequent Therapy Application with Protein Hydrolysates. J. Cent. Eur. Agric. 2023, 24, 126–136. [Google Scholar] [CrossRef]
- Krupa, M.; Witkowicz, R. Biostimulants as a Response to the Negative Impact of Agricultural Chemicals on Vegetation Indices and Yield of Common Buckwheat (Fagopyrum esculentum Moench). Agriculture 2023, 13, 825. [Google Scholar] [CrossRef]
- Gaafar, R.M.; Osman, M.E.-A.H.; Abo-Shady, A.M.; Almohisen, I.A.A.; Badawy, G.A.; El-Nagar, M.M.F.; Ismail, G.A. Role of Antioxidant Enzymes and Glutathione S-Transferase in Bromoxynil Herbicide Stress Tolerance in Wheat Plants. Plants 2022, 11, 2679. [Google Scholar] [CrossRef]
- Gerhards, R.; Ouidoh, F.N.; Adjogboto, A.; Avohou, V.A.P.; Dossounon, B.L.S.; Adisso, A.K.D.; Heyn, A.; Messelhäuser, M.; Santel, H.-J.; Oebel, H. Crop Response to Leaf and Seed Applications of the Biostimulant ComCat® under Stress Conditions. Agronomy 2021, 11, 1161. [Google Scholar] [CrossRef]
- Fathi, N.; Kazemeini, S.A.; Alinia, M.; Mastinu, A. The Effect of Seed Priming with Melatonin on Improving the Tolerance of Zea Mays L. Var Saccharata to Paraquat-Induced Oxidative Stress through Photosynthetic Systems and Enzymatic Antioxidant Activities. Physiol. Mol. Plant Pathol. 2023, 124, 101967. [Google Scholar] [CrossRef]
- Iwaniuk, P.; Lozowicka, B.; Kaczynski, P.; Konecki, R. Multifactorial Wheat Response under Fusarium Culmorum, Herbicidal, Fungicidal and Biostimulator Treatments on the Biochemical and Mycotoxins Status of Wheat. J. Saudi Soc. Agric. Sci. 2021, 20, 443–453. [Google Scholar] [CrossRef]
- Iwaniuk, P.; Konecki, R.; Kaczynski, P.; Rysbekova, A.; Lozowicka, B. Influence of Seven Levels of Chemical/Biostimulator Protection on Amino Acid Profile and Yield Traits in Wheat. Crop J. 2022, 10, 1198–1206. [Google Scholar] [CrossRef]
- Aydin, M.; Arslan, E.; Yigider, E.; Taspinar, M.S.; Agar, G. Protection of Phaseolus vulgaris L. from Herbicide 2,4-D Results from Exposing Seeds to Humic Acid. Arab. J. Sci. Eng. 2021, 46, 163–173. [Google Scholar] [CrossRef]
- De Andrade, C.L.L.; Da Silva, A.G.; Melo, G.B.; Ferreira, R.V.; Moura, I.C.S.; Siqueira, G.G. Bioestimulantes Derivados de Ascophyllum Nodosum Associados ao Glyphosate nas Características Agronômicas da Soja RR. Rev. Bras. Herbic. 2018, 17, 592. [Google Scholar] [CrossRef]
- Andrade, C.L.L.D.; Silva, A.G.D.; Braz, G.B.P.; Oliveira Júnior, R.S.D.; Simon, G.A. Performance of soybeans with the application of glyphosate formulations in biostimulant association. Rev. Caatinga 2020, 33, 371–383. [Google Scholar] [CrossRef]
- Soltani, N.; Shropshire, C.; Sikkema, P.H. Effect of Biostimulants Added to Postemergence Herbicides in Corn, Oats and Winter Wheat. Agric. Sci. 2015, 6, 527–534. [Google Scholar] [CrossRef]
- Soltani, N.; Shropshire, C.; Sikkema, P.H. Responses of Dry Bean to Biostimulants Added to Postemergence Herbicides. Agric. Sci. 2015, 6, 1023–1032. [Google Scholar] [CrossRef]
- Chikowo, R.; Faloya, V.; Petit, S.; Munier-Jolain, N.M. Integrated Weed Management Systems Allow Reduced Reliance on Herbicides and Long-Term Weed Control. Agric. Ecosyst. Environ. 2009, 132, 237–242. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Finckh, M.R.; He, M.; Ritsema, C.J.; Harkes, P.; Knuth, D.; Geissen, V. Indirect Effects of the Herbicide Glyphosate on Plant, Animal and Human Health Through Its Effects on Microbial Communities. Front. Environ. Sci. 2021, 9, 763917. [Google Scholar] [CrossRef]
- The 17 Goals. Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 29 May 2023).
- Nations, U. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 31 May 2023).
- A European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 29 May 2023).
- Sustainable Use of Pesticides. Available online: https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides_en (accessed on 31 May 2023).
- Food and Agriculture Organization of the United Nations 10 Elements. Agroecology Knowledge Hub. Available online: http://www.fao.org/agroecology/overview/overview10elements/en/ (accessed on 29 May 2023).
- EBIC—The European Biostimulants Industry Council. 2023. Available online: https://biostimulants.eu/wp-content/uploads/2019/10/EBIC-Brochure-English.pdf (accessed on 8 September 2023).
- Regulation (EU) 2019/1009—Laying Down Rules on the Making Available on the Market of EU Fertilising Products. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/safe-and-effective-fertilising-products-on-the-eu-market.html (accessed on 21 January 2023).
- Pampulha, M.E.; Oliveira, A. Impact of an Herbicide Combination of Bromoxynil and Prosulfuron on Soil Microorganisms. Curr. Microbiol. 2006, 53, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Liu, W.; Ge, L. Plant and Microorganism Combined Degradation of Bensulfuron Herbicide in Eight Different Agricultural Soils. Agronomy 2022, 12, 2989. [Google Scholar] [CrossRef]
- Gómez-Godínez, L.J.; Aguirre-Noyola, J.L.; Martínez-Romero, E.; Arteaga-Garibay, R.I.; Ireta-Moreno, J.; Ruvalcaba-Gómez, J.M. A Look at Plant-Growth-Promoting Bacteria. Plants 2023, 12, 1668. [Google Scholar] [CrossRef] [PubMed]
- Campobenedetto, C.; Grange, E.; Mannino, G.; van Arkel, J.; Beekwilder, J.; Karlova, R.; Garabello, C.; Contartese, V.; Bertea, C.M. A Biostimulant Seed Treatment Improved Heat Stress Tolerance During Cucumber Seed Germination by Acting on the Antioxidant System and Glyoxylate Cycle. Front. Plant Sci. 2020, 11, 836. [Google Scholar] [CrossRef] [PubMed]
- Araújo, V.L.V.P.; Fracetto, G.G.M.; Silva, A.M.M.; Pereira, A.P.d.A.; Freitas, C.C.G.; Barros, F.M.d.R.; Santana, M.C.; Feiler, H.P.; Matteoli, F.P.; Fracetto, F.J.C.; et al. Potential of Growth-Promoting Bacteria in Maize (Zea mays L.) Varies According to Soil Moisture. Microbiol. Res. 2023, 271, 127352. [Google Scholar] [CrossRef] [PubMed]
- Jíménez-Arias, D.; Morales-Sierra, S.; Silva, P.; Carrêlo, H.; Gonçalves, A.; Ganança, J.F.T.; Nunes, N.; Gouveia, C.S.S.; Alves, S.; Borges, J.P.; et al. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. Plants 2022, 12, 55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsenios, N.; Sparangis, P.; Vitsa, S.; Leonidakis, D.; Efthimiadou, A. Application of Biostimulants and Herbicides as a Promising Co-Implementation: The Incorporation of a New Cultivation Practice. Agronomy 2023, 13, 2634. https://doi.org/10.3390/agronomy13102634
Katsenios N, Sparangis P, Vitsa S, Leonidakis D, Efthimiadou A. Application of Biostimulants and Herbicides as a Promising Co-Implementation: The Incorporation of a New Cultivation Practice. Agronomy. 2023; 13(10):2634. https://doi.org/10.3390/agronomy13102634
Chicago/Turabian StyleKatsenios, Nikolaos, Panagiotis Sparangis, Sofia Vitsa, Dimitrios Leonidakis, and Aspasia Efthimiadou. 2023. "Application of Biostimulants and Herbicides as a Promising Co-Implementation: The Incorporation of a New Cultivation Practice" Agronomy 13, no. 10: 2634. https://doi.org/10.3390/agronomy13102634
APA StyleKatsenios, N., Sparangis, P., Vitsa, S., Leonidakis, D., & Efthimiadou, A. (2023). Application of Biostimulants and Herbicides as a Promising Co-Implementation: The Incorporation of a New Cultivation Practice. Agronomy, 13(10), 2634. https://doi.org/10.3390/agronomy13102634