Assessment of Germination Response to Salinity Stress in Castor through the Hydrotime Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Material
2.2. Salt Solutions
2.3. Germination Tests
2.4. Radicle Length Measurement
2.5. Calculations and Data Analysis
3. Results
3.1. Cumulative Germination Time Course
3.2. Final Seed Germination Percentage (FGP) under Salt Stress
3.3. Radicle Length Measurements
3.4. Hydrotime Model and Estimated Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate Change and the Need for Agricultural Adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Phour, M.; Sindhu, S.S. Soil Salinity and Climate Change: Microbiome-Based Strategies for Mitigation of Salt Stress to Sustainable Agriculture BT. In Climate Change and Microbiome Dynamics: Carbon Cycle Feedbacks; Parray, J.A., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 191–243. ISBN 978-3-031-21079-2. [Google Scholar]
- Hernández, J.A. Salinity Tolerance in Plants: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef]
- Solis, C.A.; Yong, M.T.; Vinarao, R.; Jena, K.; Holford, P.; Shabala, L.; Chen, Z.H. Back to the Wild: On a Quest for Donors toward Salinity Tolerant Rice. Front. Plant Sci. 2020, 11, 323. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wu, D.; Yang, T.; Sun, C.; Wang, Z.; Han, B.; Wu, S.; Yu, A.; Chapman, M.A.; Muraguri, S.; et al. Genomic Insights into the Origin, Domestication and Genetic Basis of Agronomic Traits of Castor Bean. Genome Biol. 2021, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Cafaro, V.; Calcagno, S.; Patanè, C.; Cosentino, S.L. Effects of Sowing Dates and Genotypes of Castor (Ricinus communis L.) on Seed Yield and Oil Content in the South Mediterranean Basin. Agronomy 2023, 13, 2167. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Ballesteros Plata, D.; Alves Saboya, R.M.; Tavares De Luna, F.M.; Cavalcante, C.L.; Rodríguez-Castellón, E. An Overview of the Biolubricant Production Process: Challenges and Future Perspectives. Processes 2020, 8, 257. [Google Scholar] [CrossRef]
- Patel, V.R.; Dumancas, G.G.; Viswanath, L.C.K.; Maples, R.; Subong, B.J.J. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production. Lipid Insights 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Mubofu, E.B. Castor Oil as a Potential Renewable Resource for the Production of Functional Materials. Sustain. Chem. Process. 2016, 4, 11. [Google Scholar] [CrossRef]
- Organizzazione delle Nazioni Unite. Trasformare Il Nostro Mondo: L’Agenda 2030 per Lo Sviluppo Sostenibile (Agenda2030); Risoluzione adottata dall’Assemblea Gen. 25 settembre 2015; Organizzazione delle Nazioni Unite: San Francisco, CA, USA, 2015; pp. 1–35.
- Wang, Y.; Lin, Q.; Liu, Z.; Liu, K.; Wang, X.; Shang, J. Salt-Affected Marginal Lands: A Solution for Biochar Production. Biochar 2023, 5, 21. [Google Scholar] [CrossRef]
- Cafaro, V.; Alexopoulou, E.; Cosentino, S.L. Germination Response of Different Castor Bean Genotypes to Temperature for Early and Late Sowing Adaptation in the Mediterranean Regions. Agriculture 2023, 13, 1569. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, Y. Insights into Plant Salt Stress Signaling and Tolerance. J. Genet. Genom. 2023; in press. [Google Scholar] [CrossRef]
- Colin, L.; Ruhnow, F.; Zhu, J.K.; Zhao, C.; Zhao, Y.; Persson, S. The Cell Biology of Primary Cell Walls during Salt Stress. Plant Cell 2023, 35, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Li, G.; Yang, J.; Huang, X.; Ji, Q.; Liu, Z.; Ke, W.; Hou, H. Effect of Salt Stress on Growth, Physiological Parameters, and Ionic Concentration of Water Dropwort (Oenanthe javanica) Cultivars. Front. Plant Sci. 2021, 12, 660409. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Cellular Responses, Osmotic Adjustments, and Role of Osmolytes in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. J. Plant Growth Regul. 2023, 42, 539–553. [Google Scholar] [CrossRef]
- ISTA. International Rules for Seed Testing. Seed Sci. Technol. 1996, 24, 336. [Google Scholar]
- Rasband, W.S. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 2007.
- Scott, S.J.; Jones, R.A.; Williams, W.A. Review of Data Analysis Methods for Seed Germination. Crop Sci. 1984, 24, 1192–1199. [Google Scholar] [CrossRef]
- Patanè, C.; Cavallaro, V.; Cosentino, S.L. Germination and Radicle Growth in Unprimed and Primed Seeds of Sweet Sorghum as Affected by Reduced Water Potential in NaCl at Different Temperatures. Ind. Crop. Prod. 2009, 30, 1–8. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S. Hydrotime Analysis of Ethiopian Mustard (Brassica carinata A. Braun) Seed Germination Under Different Temperatures. J. Agron. Crop Sci. 2011, 197, 94–102. [Google Scholar] [CrossRef]
- Windauer, L.B.; Martinez, J.; Rapoport, D.; Wassner, D.; Benech-Arnold, R. Germination Responses to Temperature and Water Potential in Jatropha Curcas Seeds: A Hydrotime Model Explains the Difference between Dormancy Expression and Dormancy Induction at Different Incubation Temperatures. Ann. Bot. 2012, 109, 265–273. [Google Scholar] [CrossRef]
- Bradford, K. Applications of Hydrothermal Time to Quantifying and Modeling Seed Germination and Dormancy. Weed Sci. 2002, 50, 248–260. [Google Scholar] [CrossRef]
- Patanè, C.; Saita, A.; Tubeileh, A.; Cosentino, S.L.; Cavallaro, V. Modeling Seed Germination of Unprimed and Primed Seeds of Sweet Sorghum under PEG-Induced Water Stress through the Hydrotime Analysis. Acta Physiol. Plant. 2016, 38, 115. [Google Scholar] [CrossRef]
- Sarkar, A.K.; Oraon, S.; Mondal, S.; Sadhukhan, S. Effect of Salinity on Seed Germination and Seedling Growth of Bullet Cultivar of Chilli (Capsicum annuum L.). Rev. Bras. Bot. 2023, 46, 513–525. [Google Scholar] [CrossRef]
- Adhikari, B.; Olorunwa, O.J.; Barickman, T.C. Seed Priming Enhances Seed Germination and Morphological Traits of Lactuca sativa L. under Salt Stress. Seeds 2022, 1, 74–86. [Google Scholar] [CrossRef]
- Gairola, K.C.; Nautiyal, a.R.; Dwivedi, a.K. Effect of Temperatures and Germination Media on Seed Germination of Jatropha curcas Linn. Adv. Biores. 2012, 2, 66–71. [Google Scholar]
- Lopes, L.d.S.; Prisco, J.T.; Gomes-Filho, E. Inducing Salt Tolerance in Castor Bean through Seed Priming. Aust. J. Crop Sci. 2018, 12, 943–953. [Google Scholar] [CrossRef]
- Wolny, E.; Betekhtin, A.; Rojek, M.; Braszewska-Zalewska, A.; Lusinska, J.; Hasterok, R. Germination and the Early Stages of Seedling Development in Brachypodium Distachyon. Int. J. Mol. Sci. 2018, 19, 2916. [Google Scholar] [CrossRef]
- Giménez Luque, E.; Delgado Fernández, I.C.; Gómez Mercado, F. Effect of Salinity and Temperature on Seed Germination in Limonium Cossonianum. Botany 2013, 91, 12–16. [Google Scholar] [CrossRef]
- Zheng, J.; Suhono, G.B.F.; Li, Y.; Jiang, M.Y.; Chen, Y.; Siddique, K.H.M. Salt-tolerance in Castor Bean (Ricinus communis L.) Is Associated with Thicker Roots and Better Tissue K+/Na+ Distribution. Agriculture 2021, 11, 821. [Google Scholar] [CrossRef]
- Pinheiro, H.A.; Silva, J.V.; Endres, L.; Ferreira, V.M.; Câmara, C.d.A.; Cabral, F.F.; Oliveira, J.F.; de Carvalho, L.W.T.; dos Santos, J.M.; Filho, B.G.d.S. Leaf Gas Exchange, Chloroplastic Pigments and Dry Matter Accumulation in Castor Bean (Ricinus communis L.) Seedlings Subjected to Salt Stress Conditions. Ind. Crop. Prod. 2008, 27, 385–392. [Google Scholar] [CrossRef]
- Abishek, R.; Santhi, R.; Maragatham, S.; Venkatachalam, S.R.; Uma, D.; Lakshmanan, A. Response of Hybrid Castor under Different Fertility Gradient: Correlation Between Castor Yield and Normalized Difference Vegetation Index (NDVI) under Inductive Cum Targeted Yield Model on an Alfisol. Commun. Soil Sci. Plant Anal. 2023, 54, 1816–1831. [Google Scholar] [CrossRef]
- Thakkar, K.; Kachhwaha, S.S.; Kodgire, P. Enhanced Castor Seed Oil Extraction Assisted by the Synergistic Effect of Ultrasound and Microwave: Impact on Extraction Effectiveness and Oil Quality. Chem. Eng. Process.-Process Intensif. 2023, 185, 109307. [Google Scholar] [CrossRef]
- Cavallaro, V.; Barbera, A.C.; Maucieri, C.; Gimma, G.; Scalisi, C.; Patanè, C. Evaluation of Variability to Drought and Saline Stress through the Germination of Different Ecotypes of Carob (Ceratonia siliqua L.) Using a Hydrotime Model. Ecol. Eng. 2016, 95, 557–566. [Google Scholar] [CrossRef]
- Han, P.; Li, S.; Yao, K.; Geng, H.; Liu, J.; Wang, Y.; Lin, J. Integrated Metabolomic and Transcriptomic Strategies to Reveal Adaptive Mechanisms in Castor Plant during Germination Stage under Alkali Stress. Environ. Exp. Bot. 2022, 203, 105031. [Google Scholar] [CrossRef]
- Dzinyela, R.; Alhassan, A.R.; Suglo, P.; Movahedi, A. Advanced Study of Functional Proteins Involved in Salt Stress Regulatory Pathways in Plants. S. Afr. J. Bot. 2023, 159, 425–438. [Google Scholar] [CrossRef]
- Singh, P.; Choudhary, K.K.; Chaudhary, N.; Gupta, S.; Sahu, M.; Tejaswini, B.; Sarkar, S. Salt Stress Resilience in Plants Mediated through Osmolyte Accumulation and Its Crosstalk Mechanism with Phytohormones. Front. Plant Sci. 2022, 13, 1006617. [Google Scholar] [CrossRef]
- Yildirim, E.; Karlidag, H.; Turan, M. Mitigation of Salt Stress in Strawberry by Foliar K, Ca and Mg Nutrient Supply. Plant Soil Environ. 2009, 55, 213–221. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Migdadi, H.M.; Alghamdi, S.S.; Siddique, K.H.M. Effects, Tolerance Mechanisms and Management of Salt Stress in Grain Legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [Google Scholar] [CrossRef]
- Ullah, A.; Sadaf, S.; Ullah, S.; Alshaya, H.; Okla, M.K.; Alwasel, Y.A.; Tariq, A. Using Halothermal Time Model to Describe Barley (Hordeumvulgare L.) Seed Germination Response to Water Potential and Temperature. Life 2022, 12, 209. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Zeng, Y.; Xiang, L.; Lei, Z.; Huang, Q.; Li, T.; Shen, F.; Cheng, Q. A Salt Tolerance Evaluation Method for Sunflower (Helianthus annuus L.) at the Seed Germination Stage. Sci. Rep. 2020, 10, 10626. [Google Scholar] [CrossRef]
- Tao, Q.; Chen, D.; Bai, M.; Zhang, Y.; Zhang, R.; Chen, X.; Sun, X.; Niu, T.; Nie, Y.; Zhong, S.; et al. Hydrotime Model Parameters Estimate Seed Vigor and Predict Seedling Emergence Performance of Astragalus Sinicus under Various Environmental Conditions. Plants 2023, 12, 1876. [Google Scholar] [CrossRef]
Genotype | (MPa) | (MPa) | (MPa) | R2 | (MPa h) | (MPa h) |
---|---|---|---|---|---|---|
Calculated | Estimated | 1/b ± σ | From Model | |||
Local | −0.92 | −0.91 | 0.35 | 0.71 | 30.6 ± 0.09 | 20.0 |
C856 | −0.55 | −0.75 | 0.22 | 0.91 | 38.1 ± 0.40 | 51.0 |
C857 | −1.07 | −1.23 | 0.42 | 0.74 | 90.5 ± 0.66 | 110.0 |
C1008 | −0.53 | −0.82 | 0.28 | 0.91 | 45.9 ± 0.18 | 60.0 |
C1013 | −0.53 | −0.88 | 0.72 | 0.83 | 87.7 ± 0.07 | 147.5 |
C1019 | −1.19 | −1.39 | 0.55 | 0.87 | 88.6 ± 0.33 | 104.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cafaro, V.; Alexopoulou, E.; Cosentino, S.L.; Patanè, C. Assessment of Germination Response to Salinity Stress in Castor through the Hydrotime Model. Agronomy 2023, 13, 2783. https://doi.org/10.3390/agronomy13112783
Cafaro V, Alexopoulou E, Cosentino SL, Patanè C. Assessment of Germination Response to Salinity Stress in Castor through the Hydrotime Model. Agronomy. 2023; 13(11):2783. https://doi.org/10.3390/agronomy13112783
Chicago/Turabian StyleCafaro, Valeria, Efthymia Alexopoulou, Salvatore Luciano Cosentino, and Cristina Patanè. 2023. "Assessment of Germination Response to Salinity Stress in Castor through the Hydrotime Model" Agronomy 13, no. 11: 2783. https://doi.org/10.3390/agronomy13112783
APA StyleCafaro, V., Alexopoulou, E., Cosentino, S. L., & Patanè, C. (2023). Assessment of Germination Response to Salinity Stress in Castor through the Hydrotime Model. Agronomy, 13(11), 2783. https://doi.org/10.3390/agronomy13112783