Can Soil Improvers (Biochar, Compost, Insect Frass, Lime, and Zeolite) Achieve Phytostabilization of Potentially Toxic Elements in Heavily Contaminated Soil with the Use of Purslane (Portulaca oleracea)?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Stabilizing Materials
2.1.1. Soil
2.1.2. Biochar
2.1.3. Compost
2.1.4. Insect Frass
2.1.5. Lime (CaCO3)
2.1.6. Zeolite
2.2. Experimental Design and Analyses
2.3. Secondary Indices
2.4. Statistical Analysis and Data Quality Control
3. Results
3.1. Potentially Toxic Elements in Soil
3.2. Growth of Purslane and Its Contents in Potentially Toxic Elements
3.3. Translocation Factor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Yan, Y.; Yang, J.; Wang, L.; Wan, X.; Zheng, H.; Liao, X.; Lei, M.; Chen, T. Dynamics of multiple stakeholders’ benefits due to mining area environmental remediation based on risk reduction and ecosystem services. J. Clean. Prod. 2023, 419, 138338. [Google Scholar] [CrossRef]
- Apostolopoulos, G. Combined geophysical investigation for the detection of ancient metallurgical installations near Keratea City, Greece. Appl. Geophys. 2014, 104, 17–25. [Google Scholar] [CrossRef]
- Antoniadis, V.; Thalassinos, G.; Levizou, E.; Wang, J.; Wang, S.L.; Shaheen, S.M.; Rinklebe, J. Hazardous enrichment of toxic elements in soils and olives in the urban zone of Lavrio, Greece, a legacy, millennia-old silver/lead mining area and related health risk assessment. J. Hazard. Mater. 2022, 434, 128906. [Google Scholar] [CrossRef]
- Hassan, Z.; Hassan, A.; Riaz, M.; Khan, A.A.; Ul-Allah, S.; Shehzad, U.; Khurshid, M.; Bakhsh, A.; Shah, J.M.; Manzoor, Z. Increased health risk assessment in different vegetables grown under untreated sewerage irrigation regime due to higher heavy metals accumulation. Environ. Sci. Pollut. Res. 2023, 30, 86189–86201. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, M.; Iqbal, S.; Hafeez, M.B.; Baloch, H.; Zahra, N.; Mumtaz, M.; Ahmad, G.; Fatima, E.M.; Raza, S.; Raza, A.; et al. Characterizing of heavy metal accumulation, translocation and yield response traits of Chenopodium quinoa. J. Agric. Food Res. 2023, 14, 100741. [Google Scholar] [CrossRef]
- Osmolovskaya, N.; Dung, V.V.; Kuchaeva, L. The role of organic acids in heavy metal tolerance in plants. Commun. Biol. 2018, 63, 9–16. [Google Scholar] [CrossRef]
- Berni, R.; Luyckx, M.; Xu, X.; Legay, S.; Sergeant, K.; Hausman, J.F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 2019, 161, 98–106. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Zhao, Z.; He, Q.; Wang, S.; Zhu, Y.; Yan, Y.; Liu, X.; Sun, K.; Zhao, Y.; et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 2016, 218, 513–522. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Jatav, H.S.; Rajput, V.D.; Minkina, T.; Singh, S.K.; Chejara, S.; Gorovtsov, A.; Barakhov, A.; Bauer, T.; Sushkova, S.; Mandzhieva, S.; et al. Sustainable approach and safe use of biochar and its possible consequences. Sustainability 2021, 13, 10362. [Google Scholar] [CrossRef]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, L.; He, R.; Zhao, X.; Li, G. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 2017, 241, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Beiyuan, J.; Hu, W.; Zhang, Z.; Duan, C.; Cui, Q.; Zhu, X.; He, H.; Huang, X.; Fang, L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. Chemosphere 2022, 293, 133577. [Google Scholar] [CrossRef]
- Ghosh, D.; Maiti, S.K. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: A review. Int. J. Phytoremediat. 2021, 23, 559–576. [Google Scholar] [CrossRef]
- Li, Y.; Awasthi, M.K.; Sindhu, R.; Binod, P.; Zhang, Z.; Taherzadeh, M.J. Biochar preparation and evaluation of its effect in composting mechanism: A review. Bioresour. Technol. 2023, 384, 129329. [Google Scholar] [CrossRef]
- Thiery, E.; Brunschwig, G.; Veysset, P.; Mosnier, C. Estimation of short- and long-term floor and ceiling prices for manure in a crop and livestock farms exchange. Renew. Agric. Food Syst. 2023, 38, e21. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Bednik, M.; Chohura, P. Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. Int. J. Environ. Res. Public Health 2020, 17, 7861. [Google Scholar] [CrossRef]
- Swati, A.; Hait, S. Fate and bioavailability of heavy metals during vermicomposting of various organic wastes—A review. Process Saf. Environ. Prot. 2017, 109, 30–45. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2016, 182, 247–268. [Google Scholar] [CrossRef]
- Boudabbus, K.; Hammami, S.B.M.; Toukabri, W.; Bouhaouel, I.; Ayed, S.; Fraihi, W.; Gastli, M.; Chaalala, S.; Labidi, S. Black soldier fly (Hermetia illucens) larvae frass organic fertilizer improves soil quality and the productivity of durum wheat. Commun. Soil Sci. Plant Anal. 2023, 18, 2491–2507. [Google Scholar] [CrossRef]
- Bikkinina, L.; Ezhkov, V.; Faizrakhmanov, R.; Gazizov, R.; Ezhkova, A. Effect of zeolites on soil modification and productivity. BIO Web Conf. 2020, 17, 00117. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of zeolites in agriculture and other potential uses: A review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M.; et al. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. J. Chem. Eng. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. J. Clean. Prod. 2021, 311, 127461. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Curtin, D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. Agron. 2003, 78, 215–272. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification—A critical review. Sci. Total Environ. 2017, 582, 601–611. [Google Scholar] [CrossRef]
- Li, Χ.; Zhang, Χ.; Yang, Β. Co-precipitation with CaCO3 to remove heavy metals and significantly reduce the moisture content of filter residue. Chemosphere 2020, 239, 124660. [Google Scholar] [CrossRef]
- Mugwar, A.J.; Harbottle, M.J. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. J. Hazard. Mater. 2016, 314, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kwon, S.; Roh, Y. Effect of divalent cations (Cu, Zn, Pb, Cd, and Sr) on microbially induced calcium carbonate precipitation and mineralogical properties. Front. Microbiol. 2021, 12, 646748. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, N.; Abduolrahimi, S.; Forghani, A.; Farhangi, M.B. Bioremediation of cadmium in a sandy and a clay soil by microbially induced calcium carbonate precipitation after one week incubation. Arid. Land Res. Manag. 2020, 34, 319–335. [Google Scholar] [CrossRef]
- Petropoulos, S.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci. Technol. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Subpiramaniyam, S. Portulaca oleracea L. for phytoremediation and biomonitoring in metal-contaminated environments. Chemosphere 2021, 280, 130784. [Google Scholar] [CrossRef]
- Elshamy, M.; Heikal, Y.M.; Bonanomi, G. Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia District, Egypt. Chemosphere 2019, 225, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.D.; Shaltout, K.H. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int. J. Phytoremediat. 2016, 18, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, K.K.; Dwivedi, S.; Mishra, S.; Srivastava, S.; Tripathi, R.D.; Singh, N.K.; Chakraborty, S. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India. Environ. Monit. Assess. 2008, 147, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, Z.; Babanejad, E.; Mohammadpour, R.; Esbokolaee, H.N. Evaluation of Cd phytoremediation by Portulaca oleracea irrigated by contaminated water. Environ. Health Eng. Manag. 2023, 10, 67–73. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Q.; Wang, X. Identification of weed plants excluding the uptake of heavy metals. Environ. Int. 2005, 31, 829–834. [Google Scholar] [CrossRef]
- Javed, M.T.; Akram, M.S.; Habib, N.; Tanwir, K.; Ali, Q.; Niazi, N.K.; Gul, H.; Iqbal, N. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environ. Sci. Pollut. Res. 2017, 25, 2958–2971. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, I.; Karayannis, A.; Adam, K.; Aravossis, K. Application of risk management techniques for the remediation of an old mining site in Greece. Waste Manag. 2009, 29, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Rowell, D.L. Soil Science: Methods and Applications, 1st ed.; Longman Group UK Ltd.: London, UK, 1994. [Google Scholar]
- Kalderis, D.; Tsuchiya, S.; Phillipou, K.; Paschalidou, P.; Pashalidis, I.; Tashima, D.; Tsubota, T. Utilization of pine tree biochar produced by flame-curtain pyrolysis in two non-agricultural applications. Bioresour. Technol. 2020, 9, 100384. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J.; Panday, V.C. Assessment of herbaceous ornamental plant species as potential remediation agents for cadmium contaminated environments. J. Geochem. Explor. 2023, 256, 107333. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, F.; Liu, J.L.; Wu, H.T.; Yang, H.; Shi, Y.; Liu, J.; Zhang, Y.F.; Luo, Y.R.; Chen, K.M. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Sci. Total Environ. 2022, 809, 151099. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://www.legislation.gov.uk/eur/2006/1881 (accessed on 14 October 2023).
- Commission Regulation (EC) No 629/2008. of 2 July 2008 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:173:0006:0009:EN:PDF (accessed on 14 October 2023).
- National Standard of the People’s Republic of China National Food Safety Standard Maximum Levels of Contaminants in Foods Issued on. November 13, 2012. Available online: https://www.chinesestandard.net/PDF.aspx/GB2762-2012 (accessed on 14 October 2023).
- Li, Q.; Chen, Y.; Fu, H.; Cui, Z.; Shi, L.; Wang, L.; Liu, Z. Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. J. Hazard. Mater. 2012, 227, 148–154. [Google Scholar] [CrossRef]
- Australia New Zealand Food Standards Code—Standard 1.4.1—Contaminants and Natural Toxicants Standard 1.4.1 Contaminants and Natural Toxicants. Available online: https://www.legislation.gov.au/Details/F2011C00542 (accessed on 14 October 2023).
- Codex Alimentarius. General Standard for Contaminants and Toxins in Food and Feed. Amended in 2019. 2019. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 14 October 2023).
- Cui, W.; Li, X.; Duan, W.; Xie, M.; Dong, X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: A review. Environ. Geochem. Health 2023, 45, 4127–4163. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef]
- Watson, C.; Schlösser, C.; Vögerl, J.; Wichern, F. Excellent excrement? Frass impacts on a soil’s microbial community, processes and metal bioavailability. Appl. Soil Ecol. 2021, 168, 104110. [Google Scholar] [CrossRef]
- Hwang, B.C.; Giardina, C.P.; Litton, C.M.; Francisco, K.S.; Pacheco, C.; Thomas, N.; Uehara, T.; Metcalfe, D.B. Impacts of insect frass and cadavers on soil surface litter decomposition along a tropical forest temperature gradient. Ecol. Evol. 2022, 12, 9322. [Google Scholar] [CrossRef]
- Fabian, J.; Zlatanovic, S.; Mutz, M.; Premke, K. Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. ISME J. 2016, 11, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Yu, C.; Berg, B.; Wei, Z.; Wang, L.; Liu, X.; Feng, C.; Wu, Z.; Bai, W.; Zhang, L. Empirical evidence that manganese enrichment accelerates decomposition. Appl. Soil Ecol. 2021, 168, 104148. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M.; Antoniadis, V. The release of Cd, Cu, Fe, Mn, Ni, Pb, and Zn from clay loam and sandy loam soils under the influence of various organic amendments and low-molecular-weight organic acids. J. Hazard. Mater. 2023, 459, 132111. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Robinson, J.S.; Alloway, B.J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 2008, 71, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Thalassinos, G.; Petropoulos, S.A.; Grammenou, A.; Antoniadis, V. Potentially toxic elements: A review on their soil behavior and plant attenuation mechanisms against their toxicity. Agriculture 2023, 13, 1684. [Google Scholar] [CrossRef]
- Tran, H.T.; Bolan, N.S.; Lin, C.; Binh, Q.A.; Nguyen, M.K.; Luu, T.A.; Le, V.G.; Pham, C.Q.; Hoang, H.G.; Vo, D.N. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: A state of art review. J. Environ. Manag. 2023, 342, 118191. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Yang, Z.; Chen, Y.; Shao, W.; Ji, J. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability. Sci. Rep. 2015, 5, 12735. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhang, Z.; Wu, X.; Cui, M.; Zhang, J.; Huang, X. Adsorption of heavy metals on soil collected from lixisol of typical karst areas in the presence of CaCO3 and soil clay and their competition behavior. Sustainability 2020, 12, 7315. [Google Scholar] [CrossRef]
- Cai, B.; Chen, Y.; Du, L.; Liu, Z.; He, L. Spent mushroom compost and calcium carbonate modification enhances phytoremediation potential of Macleaya cordata to lead-zinc mine tailings. J. Environ. Manag. 2021, 294, 113029. [Google Scholar] [CrossRef] [PubMed]
- Zanganeh, F.; Heidari, A.; Sepehr, A.; Rohani, A. Bioaugmentation and bioaugmentation–assisted phytoremediation of heavy metal contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Portulaca oleracea L.). Environ. Sci. Pollut. Res. 2022, 29, 6040–6059. [Google Scholar] [CrossRef]
Cd | Pb | Zn | |
---|---|---|---|
(mg kg−1) | (mg kg−1) | (mg kg−1) | |
Soil | 101.87 | 26,526.44 | 17,652.63 |
Biochar | BDL | BDL | BDL |
Compost | BDL | 14.70 | 202.96 |
Lime | BDL | BDL | BDL |
Frass | BDL | BDL | 70.24 |
Zeolite | BDL | 53.75 | BDL |
Height | Leaf | Stem | Root | |
---|---|---|---|---|
(cm) | (g) | (g) | (g) | |
Control | 20.24 ab | 0.088 a | 0.384 a | 0.124 a |
Biochar 2% | 24.55 b | 0.124 ab | 0.396 a | 0.112 a |
Biochar 4% | 22.33 ab | 0.052 a | 0.336 a | 0.086 a |
Lime 2% | 20.96 ab | 0.080 a | 0.256 ac | 0.076 a |
Lime 4% | 23.47 ab | 0.084 a | 0.400 a | 0.106 a |
Compost 2% | 23.40 ab | 0.112 a | 0.544 b | 0.200 b |
Compost 4% | 22.75 ab | 0.072 a | 0.500 ab | 0.224 b |
Frass 2% | 21.24 ab | 0.216 b | 0.492 ab | 0.124 a |
Frass 4% | 14.58 a | 0.056 a | 0.188 c | 0.058 a |
Zeolite 2% | 22.26 ab | 0.104 a | 0.376 a | 0.088 a |
Zeolite 4% | 23.90 ab | 0.124 ab | 0.428 ab | 0.114 a |
Significance | *** | * | *** | *** |
Cd | Pb | Zn | |
---|---|---|---|
(μg kg−1 FW) | (mg kg−1 FW) | (mg kg−1 FW) | |
Control | 60.5 a | 2.69 a | 9.01 ab |
Biochar 2% | 55.5 a | 2.36 ab | 9.65 ab |
Biochar 4% | 39.2 a | 2.27 ab | 6.43 ac |
Lime 2% | 72.3 a | 1.32 c | 8.21 ab |
Lime 4% | 73.8 a | 1.63 bc | 9.98 b |
Compost 2% | 75.1 a | 1.66 bc | 8.67 ab |
Compost 4% | 30.0 a | 1.82 bc | 8.85 ab |
Frass 2% | 30.6 a | 1.81 bc | 8.41 ab |
Frass 4% | 33.7 a | 1.65 bc | 4.66 c |
Zeolite 2% | 92.5 b | 1.61 bc | 8.95 ab |
Zeolite 4% | 126.9 b | 1.65 cb | 9.37 ab |
Significance | ** | * | * |
Directive EC/1881/2006 [47] | 0.10 | ||
Directive EC/629/2008 [48] | 50 | ||
China (GB2762-2012) (2012) [49] | 50 | 0.10 | 20 ¥ |
Australia (Standard 1.4.1, 2011) [51] | 100 | 0.10 | |
Codex Alimentarius (2019) [52] | 200 | 0.10 |
Cd | Pb | Zn | |
---|---|---|---|
Control | 0.130 | 0.294 ac | 0.549 |
Biochar 2% | 0.119 | 0.174 bc | 0.651 |
Biochar 4% | 0.152 | 0.136 bd | 0.408 |
Lime 2% | 0.279 | 0.178 bc | 0.688 |
Lime 4% | 0.151 | 0.173 bc | 0.939 |
Compost 2% | 0.162 | 0.108 b | 0.500 |
Compost 4% | 0.079 | 0.149 bd | 0.698 |
Frass 2% | 0.125 | 0.248 acd | 0.943 |
Frass 4% | 0.112 | 0.336 a | 0.299 |
Zeolite 2% | 0.221 | 0.089 b | 0.341 |
Zeolite 4% | 0.309 | 0.142 bc | 0.788 |
Significance | NS | ** | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thalassinos, G.; Levizou, E.; Antoniadis, V. Can Soil Improvers (Biochar, Compost, Insect Frass, Lime, and Zeolite) Achieve Phytostabilization of Potentially Toxic Elements in Heavily Contaminated Soil with the Use of Purslane (Portulaca oleracea)? Agronomy 2023, 13, 2827. https://doi.org/10.3390/agronomy13112827
Thalassinos G, Levizou E, Antoniadis V. Can Soil Improvers (Biochar, Compost, Insect Frass, Lime, and Zeolite) Achieve Phytostabilization of Potentially Toxic Elements in Heavily Contaminated Soil with the Use of Purslane (Portulaca oleracea)? Agronomy. 2023; 13(11):2827. https://doi.org/10.3390/agronomy13112827
Chicago/Turabian StyleThalassinos, Giorgos, Efi Levizou, and Vasileios Antoniadis. 2023. "Can Soil Improvers (Biochar, Compost, Insect Frass, Lime, and Zeolite) Achieve Phytostabilization of Potentially Toxic Elements in Heavily Contaminated Soil with the Use of Purslane (Portulaca oleracea)?" Agronomy 13, no. 11: 2827. https://doi.org/10.3390/agronomy13112827
APA StyleThalassinos, G., Levizou, E., & Antoniadis, V. (2023). Can Soil Improvers (Biochar, Compost, Insect Frass, Lime, and Zeolite) Achieve Phytostabilization of Potentially Toxic Elements in Heavily Contaminated Soil with the Use of Purslane (Portulaca oleracea)? Agronomy, 13(11), 2827. https://doi.org/10.3390/agronomy13112827