Alfalfa Stem Cell Wall Digestibility: Current Knowledge and Future Research Directions
Abstract
:1. Introduction
2. Fiber Digestibility
3. Cell Wall Biochemistry
3.1. Cellulose
3.2. Hemicellulose
3.3. Lignin
3.4. Pectin
4. Alfalfa Morphology, Stem Tissue Development, and Lignification
5. Methods to Increase Alfalfa Digestibility
6. Future Prospective to Improve Alfalfa Digestibility
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Undersander, D. Economic Importance, Practical Limitations to Production, Management, and Breeding Targets of Alfalfa. In The Alfalfa Genome. Compendium of Plant Genomes; Yu, L.X., Kole, C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Barrett, B.; Brummer, E.C.; Bernadette Julier, B.; Marshall, A.H. Achievements and Challenges in Improving Temperate Perennial Forage Legume. Crit. Rev. Plant Sci. 2015, 34, 327–380. [Google Scholar] [CrossRef]
- Tesfaye, M.; Silverstein, K.A.T.; Bucciarelli, B.; Samac, D.A.; Vance, C.P.; Tesfaye, M.; Silverstein, K.A.T.; Bucciarelli, B.; Samac, D.A.; Vance, C.P. The Affymetrix Medicago GeneChip® Array Is Applicable for Transcript Analysis of Alfalfa (Medicago sativa). Funct. Plant Biol. 2006, 33, 783–788. [Google Scholar] [CrossRef] [PubMed]
- USDA National Agricultural Statistics Service. Available online: https://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS (accessed on 1 September 2023).
- Fernandez, A.; Sheaffer, C.; Tautges, N.; Putnam, D. Alfalfa, Wildlife & the Environment, 2nd ed.; National Alfalfa and Forage Alliance: St. Paul, MN, USA, 2019. [Google Scholar]
- Barnes, R.; Collins, M. Forages: An Introduction to Grassland Agriculture; Iowa State Press: Ames, IA, USA, 2003. [Google Scholar]
- Bhandari, K.B.; West, C.P.; Acosta-Martinez, V. Assessing the role of interseeding alfalfa into grass on improving pasture soil health in semi-arid Texas High Plains. Appl. Soil Ecol. 2020, 147, 103399. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Guldan, S.J.; Martin, C.A. Evaluation of irrigated tall fescue-legume communities in the steppe of the southern Rocky Mountains: Years five to eight. Agron. J. 2003, 95, 1497–1503. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Guldan, S.J.; Martin, C.A.; VanLeeuwen, D.M. Performance of Irrigated Tall Fescue-Legume Communities under Two Grazing Frequencies in the Southern Rocky Mountains, USA. Crop Sci. 2006, 46, 330–336. [Google Scholar] [CrossRef]
- Sheaffer, C.C.; Tanner, C.B.; Kirkham, M.B. Alfalfa water relations and irrigation. In Alfalfa and Alfalfa Improvement; Agronomy Monograph No. 29; Hanson, A., Barnes, D.K., Hill, R.R., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1988; pp. 373–409. [Google Scholar]
- Ottman, M.J.; Tickes, B.R.; Roth, R.L. Alfalfa yield and stand response to irrigation termination in an arid environment. Agron. J. 1996, 88, 44–48. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Marsalis, M.A.; Contreras-Govea, F.; Angadi, S. Circular 646, Managing Alfalfa during Drought; Agricultural Experiment Station and Cooperative Extension Service, New Mexico State University: Las Cruces, Mexico, 2009; Available online: https://aces.nmsu.edu/pubs/_circulars/CR646.pdf (accessed on 1 September 2023).
- Cassida, K.A.; Stewart, C.B.; Haby, V.A.; Gunter, S.A. Alfalfa as an alternative to bermudagrass for pastured stocker cattle systems in the Southern USA. Agron. J. 2006, 98, 705–713. [Google Scholar] [CrossRef]
- Heuschele, D.J.; Gamble, J.; Vetsch, J.A.; Shaeffer, C.C.; Coulter, J.A.; Kaiser, D.E.; Lamb, J.A.; Lamb, J.A.F.; Samac, D.A. Influence of potassium fertilization on alfalfa leaf and stem yield, forage quality, nutrient removal, and plant health. Agrosyst. Geosci. Environ. 2023, 6, e20346. [Google Scholar] [CrossRef]
- Wilman, D.; Altimimi, M.A.K. The In-Vitro Digestibility and Chemical Composition of Plant Parts in White Clover, Red Clover and Lucerne during Primary Growth. J. Sci. Food Agric. 1984, 35, 133–138. [Google Scholar] [CrossRef]
- de Ondarza, M.; Tricarico, J. Review: Advantages and Limitations of Dairy Efficiency Measures and the Effects of Nutrition and Feeding Management Interventions. Prof. Anim. Sci. 2017, 33, 393–400. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Evaluation of the Importance of the Digestibility of Neutral Detergent Fiber from Forage: Effects on Dry Matter Intake and Milk Yield of Dairy Cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Buxton, D.R.; Russell, J.R. Lignin constituents and cell-wall digestibility of grass and legume stems. Crop Sci. 1988, 28, 553–558. [Google Scholar] [CrossRef]
- Jung, H.G.; Engels, F.M. Alfalfa Stem Tissues: Rate and Extent of Cell-Wall Thinning during Ruminal Degradation. Neth. J. Agric. Sci. 2001, 49, 3–13. [Google Scholar] [CrossRef]
- Mowat, D.N.; Fulkerson, R.S.; Tossell, W.E.; Winch, J.E. The in vitro digestibility and protein content of leaf and stem portions of foragers. Can. J. Plant Sci. 1965, 45, 321–331. [Google Scholar] [CrossRef]
- Hatfield, R.D.; Ralph, J.; Grabber, J.H. Cell Wall Structural Foundations: Molecular Basis for Improving Forage Digestibilities. Crop Sci. 1999, 39, 27–37. [Google Scholar] [CrossRef]
- Engels, F.M.; Jung, H.G. Alfalfa Stem Tissues: Cell-Wall Development and Lignification. Ann. Bot. 1998, 82, 561–568. [Google Scholar] [CrossRef]
- Sheaffer, C.C.; Martin, N.P.; Lamb, J.A.F.S.; Cuomo, G.R.; Grimsbo Jewett, J.; Quering, S.R. Leaf and Stem Properties of Alfalfa Entries. Agron. J. 2000, 92, 733–739. [Google Scholar] [CrossRef]
- Kephart, K.D.; Buxton, D.R.; Hill, R.R. Digestibility and Cell-Wall Components of Alfalfa Following Selection for Divergent Herbage Lignin Concentration. Crop Sci. 1990, 30, 207–212. [Google Scholar] [CrossRef]
- Xu, Z.; Heuschele, D.J.; Lamb, J.A.F.S.; Jung, H.J.G.; Samac, D.A. Improved Forage Quality in Alfalfa (Medicago sativa L.) via Selection for Increased Stem Fiber Digestibility. Agronomy 2023, 13, 770. [Google Scholar] [CrossRef]
- Lamb, J.A.F.S.; Jung, H.J.G.; Samac, D.A. Environmental Variability and/or Stability of Stem Fiber Content and Digestibility in Alfalfa. Crop Sci. 2014, 54, 2854–2863. [Google Scholar] [CrossRef]
- Duceppe, M.O.; Bertrand, A.; Pattathil, S.; Miller, J.; Castonguay, Y.; Hahn, M.G.; Michaud, R.; Dubé, M.P. Assessment of Genetic Variability of Cell Wall Degradability for the Selection of Alfalfa with Improved Saccharification Efficiency. Bioenergy Res. 2012, 5, 904–914. [Google Scholar] [CrossRef]
- Guo, D.; Chen, F.; Wheeler, J.; Winder, J.; Selman, S.; Peterson, M.; Dixon, R.A. Improvement of In-Rumen Digestibility of Alfalfa Forage by Genetic Manipulation of Lignin O-Methyltransferases. Transgenic Res. 2001, 10, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Mertens, D.R.; McCaslin, M. Evaluation of alfalfa hays with down-regulated lignin 270 biosynthesis. J. Dairy Sci. 2008, 91, 170. [Google Scholar]
- Jung, H.G.; Lamb, J.F.S. Stem Morphological and Cell Wall Traits Associated with Divergent In Vitro Neutral Detergent Fiber Digestibility in Alfalfa Clones. Crop Sci. 2006, 46, 2054–2061. [Google Scholar] [CrossRef]
- Buxton, D.R.; Redfearn, D.D. Plant limitations to fiber digestion and utilization. J. Nutr. 1997, 127, 814S–818S. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Allen, M. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 1995, 73, 2774–2790. [Google Scholar] [CrossRef]
- Smith, L.W.; Goering, H.K.; Gordon, C.H. Relationships of Forage Compositions with Rates of Cell Wall Digestion and Indigestibility of Cell Walls. J. Dairy Sci. 1972, 55, 1140–1147. [Google Scholar] [CrossRef]
- Morrison, I.M. Carbohydrate Chemistry and Rumen Digestion. Proc. Nutr. Soc. 1979, 38, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R. Organization of Forage Plant Tissues. In Forage Cell Wall Structure and Digestibility; Jung, H.G., Buxton, D.R., Hatfield, R.D., Ralph, J., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1993; pp. 1–32. [Google Scholar]
- Engels, F.M.; Schuurmans, J.L.L. Relationship between Structural Development of Cell Walls and Degradation of Tissues in Maize Stems. J. Sci. Food Agric. 1992, 59, 45–51. [Google Scholar] [CrossRef]
- Wilson, J.R. Influence of Plant Anatomy on Digestion and Fibre Breakdown. In Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants; Akin, D.E., Ljungdahl, L.G., Wilson, J.R., Hams, P.J., Eds.; Elsevier: New York, NY, USA, 1990; pp. 99–117. [Google Scholar]
- Chesson, A.; Stewart, C.S.; Dalgarno, K.; King, T.P. Degradation of isolated grass mesophyll, epidermis and fibre cell walls in the rumen and by cellulolytic rumen bacteria in axenic culture. J. Appl. Bacteriol. 1986, 60, 327–336. [Google Scholar] [CrossRef]
- Van Soest, P.J. The Detergent System for Analysis of Foods and Feeds; Cornell University: Ithaca, NY, USA, 2015; p. 176. [Google Scholar]
- Jung, H.G.; Engels, F.M. Alfalfa Stem Tissues: Cell Wall Deposition, Composition, and Degradability. Crop Sci. 2002, 42, 524–534. [Google Scholar] [CrossRef]
- Jung, H.J.; Samac, D.A.; Sarath, G. Modifying crops to increase cell wall digestibility. Plant Sci. 2012, 185–186, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.G.; Casler, M.D. Relationship of Lignin and Esterified Phenolics to Fermentation of Smooth Bromegrass Fibre. Anim. Feed Sci. Technol. 1991, 32, 63–68. [Google Scholar] [CrossRef]
- Moraes, L.E.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Chang. Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef]
- Moe, P.W.; Tyrrell, H.F. Methane production in dairy cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Primavesi, O.; Frighetto, R.T.S.; Pedreira, M.S.; Lima, M.A.; Berchielli, T.T.; Rodrigues, A.A. Low-fiber sugarcane to improve meat production with less methane emission in tropical dry season. In Proceedings of the 3rd International Methane and Nitrous Oxide Mitigation Conference, Beijing, China, 14–19 September 2003; pp. 185–189. [Google Scholar]
- Aguerre, M.J.; Wattiaux, M.A.; Powell, J.M.; Broderick, G.A.; Arndt, C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef]
- Hammond, K.J.; Crompton, L.A.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.R.; O’Kiely, P.; Kebreab, E.; Eugène, M.A.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef]
- Santander, D.; Clariget, J.; Banchero, G.; Alecrim, F.; Simon Zinno, C.; Mariotta, J.; Gere, J.; Ciganda, V.S. Beef Steers and Enteric Methane: Reducing Emissions by Managing Forage Diet Fiber Content. Animals 2023, 13, 1177. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, T.H.; Lee, J.; Jeon, S.J.; Lee, J.H.; Lee, M.K.; Chen, H.; Yun, J.; Oh, S.Y.; Wen, X.; et al. A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis. Cell 2018, 173, 1468–1480. [Google Scholar] [CrossRef]
- Dehority, B.A.; Johnson, R.R. Effect of Particle Size upon the in Vitro Cellulose Digestibility of Forages by Rumen Bacteria. J. Dairy Sci. 1961, 44, 2242–2249. [Google Scholar] [CrossRef]
- Delmer, D.P.; Amor, Y. Cellulose biosynthesis. Plant Cell 1995, 7, 987–1000. [Google Scholar] [PubMed]
- Avgerinos, G.C.; Wang, D.I. Selective solvent delignification for fermentation enhancement. Biotechnol. Bioeng. 1983, 25, 67–83. [Google Scholar] [CrossRef]
- Jung, H.G.; Jorgensen, M.A.; Linn, J.G.; Engels, F.M. Impact of Accessibility and Chemical Composition on Cell Wall Polysaccharide Degradability of Maize and Lucerne Stems. J. Sci. Food Agric. 2000, 80, 419–427. [Google Scholar] [CrossRef]
- Bajpai, P. Pretreatment of lignocellulosic biomass for biofuel production. In Green Chemistry for Sustainability; Sharma, S.K., Ed.; Springer briefs in molecular science; Springer: Jaipur, India, 2016; pp. 7–12. [Google Scholar] [CrossRef]
- Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Photosynthetic Stages and Light-Absorbing Pigments. In Molecular Cell Biology, 4th ed.; Freeman, W.H., Ed.; References-Scientific Research Publishing: New York, NY, USA, 2000; Available online: https://scirp.org/reference/referencespapers.aspx?referenceid=2396444 (accessed on 14 September 2023).
- McLeod, M.N.; Minson, D.J. Predicting dry matter digestibility from acid detergent fibre levels in grasses as affected by a pretreatment with neutral detergent. J. Sci. Food Agric. 1974, 25, 913–917. [Google Scholar] [CrossRef]
- Mohnen, D.; Keegstra, K.; Pauly, M. Pectin Structure and Biosynthesis This Review Comes from a Themed Issue on Physiology and Metabolism Edited. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.G.; Vogel, K.P. Influence of Lignin on Digestibility of Forage Cell Wall Material. J. Anim. Sci. 1986, 62, 1703–1712. [Google Scholar] [CrossRef]
- Wedig, C.L.; Jaster, E.H.; Moore, K.J. Hemicellulose Monosaccharide Composition and in Vitro Disappearance of Orchard Grass and Alfalfa Hay. J. Agric. Food Chem. 1987, 35, 214–218. [Google Scholar] [CrossRef]
- Hatfield, R.D.; Weimer, P.J. Degradation Characteristics of Isolated and in Situ Cell Wall Lucerne Pectic Polysaccharides by Mixed Ruminal Microbes. J. Sci. Food Agric. 1995, 69, 185–196. [Google Scholar] [CrossRef]
- Nordkvist, E.; Åman, P. Changes during Growth in Anatomical and Chemical Composition and In-Vitro Degradability of Lucerne. J. Sci. Food Agric. 1986, 37, 1–7. [Google Scholar] [CrossRef]
- Ben-Ghedalia, D.; Miron, J. The digestion of total and cell wall monosaccharides of alfalfa by sheep. J. Nutr. 1984, 114, 880–887. [Google Scholar] [CrossRef]
- Albrecht, K.A.; Wedin, W.F.; Buxton, D.R. Cell-wall composition and digestibility of lucerne stems and leaves. Crop Sci. 1987, 27, 735–741. [Google Scholar] [CrossRef]
- Fukushima, R.S.; Kerley, M.S.; Ramos, M.H.; Porter, J.H.; Kallenbach, R.L. Comparison of Acetyl Bromide Lignin with Acid Detergent Lignin and Klason Lignin and Correlation with in Vitro Forage Degradability. Anim. Feed Sci. Technol. 2015, 201, 25–37. [Google Scholar] [CrossRef]
- Jung, H.G.; Deetz, D.A. Chapter 13 Cell Wall Lignification and Degradability. In Forage Cell Wall Structure and Digestibility; ASA-CSSA-SSSA: Madison, WI, USA, 1993. [Google Scholar] [CrossRef]
- Jung, H.G.; Fahey, G.C. Nutritional Implications of Phenolic Monomers and Lignin: A Review. J. Anim. Sci. 1983, 57, 206–219. [Google Scholar] [CrossRef]
- Lawoko, M.; Henriksson, G.; Gellerstedt, G. Structural Differences between the Lignin-Carbohydrate Complexes Present in Wood and in Chemical Pulps. Biomacromolecules 2005, 6, 3467–3473. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Harvey, I.; Hartley, R.D.; Harris, P.J.; Curzon, E.H. Linkage of p-coumaroyl and feruloy groups to cell-wall polysaccharides of barley straw. Carbohydr. Res. 1986, 148, 71–85. [Google Scholar] [CrossRef]
- Bailey, R.W. Structural carbohydrates. In Chemistry and Biochemistry of Herbage; Butler, G.W., Bailey, R.W., Eds.; Academic Press: New York, NY, USA, 1973; Volume 1, pp. 157–211. [Google Scholar]
- Jung, H.G. Forage Lignins and Their Effects on Fiber Digestibility. Agron. J. 1989, 81, 33–38. [Google Scholar] [CrossRef]
- Morrison, I.M. Structural Investigations on the Lignin–Carbohydrate Complexes of Lolium perenne. Biochem. J. 1974, 139, 197. [Google Scholar] [CrossRef]
- Grabber, J.H.; Ralph, J.; Hatfield, R.D.; Quideau, S. P-Hydroxyphenyl, Guaiacyl, and Syringyl Lignins Have Similar Inhibitory Effects on Wall Degradability. J. Agric. Food Chem. 1997, 45, 2530–2532. [Google Scholar] [CrossRef]
- Jung, H.-J.G.; Fahey, G.C. Interactions Among Phenolic Monomers and In Vitro Fermentation. J. Dairy Sci. 1983, 66, 1255–1263. [Google Scholar] [CrossRef]
- Akin, D.E.; Rigsby, L.L. Influence of phenolic acids on rumen fungi. Agron. J. 1985, 77, 180–182. [Google Scholar] [CrossRef]
- Arora, D.S.; Sharma, R.K. Enhancement in in vitro digestibility of wheat straw obtained from different geographical regions during solid state fermentation by white rot fungi. Bioresources 2009, 4, 909–920. [Google Scholar] [CrossRef]
- Falcón, M.A.; Rodríguez, A.; Carnicero, A.; Regalado, V.; Perestelo, F.; Milstein, O.; De la Fuente, G. Isolation of Microorganisms with Lignin Transformation Potential from Soil of Tenerife Island. Soil Biol. Biochem. 1995, 27, 121–126. [Google Scholar] [CrossRef]
- Kara, E.; Sürmen, M. The Effects of Secondary Metabolites of Rangeland and Pasture Plants on the Animal Health in Mediterranean Ecological Conditions. J. US China Med. Sci. 2019, 16, 63–72. [Google Scholar] [CrossRef]
- Li, X.; Kellaway, R.C.; Ison, R.L.; Annison, G. Chemical composition and nutritive value of mature annual legumes for sheep. Anim. Feed Sci. Technol. 1992, 37, 221–231. [Google Scholar] [CrossRef]
- van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W. Fungal Treatment of Lignocellulosic Biomass: Importance of Fungal Species, Colonization and Time on Chemical Composition and in Vitro Rumen Degradability. Anim. Feed Sci. Technol. 2015, 209, 40–50. [Google Scholar] [CrossRef]
- Fahey, G.C.; McLaren, G.A.; Williams, J.E. Lignin Digestibility by Lambs Fed Both Low Quality and High Quality Roughages. J. Anim. Sci. 1979, 48, 941–946. [Google Scholar] [CrossRef]
- Bayané, A.; Guiot, S.R. Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev. Environ. Sci. Bio/Technol. 2011, 10, 43–62. [Google Scholar] [CrossRef]
- Lapierre, C. Application of New Methods for the Investigation of Lignin Structure. In ASA, CSSA, and SSSA Books; Wiley Online Library: Hoboken, NJ, USA, 1993; Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/1993.foragecellwall.c6 (accessed on 14 September 2023).
- Theander, O.; Aman, P. Anatomical and chemical characteristics. In Straw and Other Fibrous By-Products as Feed; Sundstol, F., Owen, E., Eds.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 45–78. [Google Scholar]
- Ralph, J.; Helm, R.F. Lignin/Hydroxycinnamic Acid/Polysaccharide Complexes: Synthetic Models for Regiochemical Characterization. In Forage Cell Wall Structure and Digestibility; ASA-CSSA-SSSA: Madison, WI, USA, 2015; pp. 201–246. [Google Scholar] [CrossRef]
- Ganewatta, M.S.; Lokupitiya, H.N.; Tang, C. Lignin Biopolymers in the Age of Controlled Polymerization. Polymers 2019, 11, 1176. [Google Scholar] [CrossRef]
- Van Soest, P.J. Limiting Factors in Plant Residues of Low Biodegradability. Agric. Environ. 1981, 6, 135–143. [Google Scholar] [CrossRef]
- Grabber, J.H. How Do Lignin Composition, Structure, and Cross-Linking Affect Degradability? A Review of Cell Wall Model Studies. Crop Sci. 2005, 45, 820–831. [Google Scholar] [CrossRef]
- Hatfield, R.D.; Jung, H.J.; Broderick, G.; Jenkins, T. Nutritional Chemistry of Forages. In Forages, the Science of Grassland Agriculture; Barnes, R.F., Ed.; Blackwell Pub.: Ames, IA, USA, 2007. [Google Scholar]
- Martin, N.P.; Mertens, D.R. Reinventing alfalfa for dairy cattle and novel uses. In Proceedings of the California Alfalfa and Forage Symposium, Visalia, CA, USA, 12–14 December 2005. [Google Scholar]
- Kondo, T.; Mizuno, K.; Kato, T. Some Characteristics of Forage Plant Lignin. Jpn. Agric. Res. Q. 1987, 21, 47–52. [Google Scholar]
- Hatfield, R.D. Cell wall polysaccharide interactions and degradability. In Forage Cell Wall Structure and Digestibility; Jung, H.G., Buxton, D.R., Hatfield, R.D., Ralph, J., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1993; pp. 286–313. [Google Scholar]
- Jung, H.J.G. Analysis of Forage Fiber and Cell Walls in Ruminant Nutrition. J. Nutr. 1997, 127, 810S–813S. [Google Scholar] [CrossRef] [PubMed]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: II. Carbohydrate and Protein Availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. What constitutes alfalfa quality: New considerations. In Proceedings of the 25th National Alfalfa Symposium, Liverpool, NY, USA, 27–28 February 1995; pp. 1–15. [Google Scholar]
- Viands, D.R. What breeding objectives really will improve forage quality of alfalfa? In Proceedings of the 25th National Alfalfa Symposium, Liverpool, NY, USA, 27–28 February 1995; pp. 24–28. [Google Scholar]
- McCormick, M.E.; Redfearn, D.D.; Ward, J.D.; Blouin, D.C. Effect of Protein Source and Soluble Carbohydrate Addition on Rumen Fermentation and Lactation Performance of Holstein Cows. J. Dairy Sci. 2001, 84, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Lewis, B.; Soest, P.V.; Chase, L. A Simple Method for Estimation of Neutral Detergent-Soluble Fibre. J. Sci. Food Agric. 1997, 74, 441–449. [Google Scholar] [CrossRef]
- Ben-Ghedalia, D.; Yosef, E.; Miron, J.; Est, Y. The effects of starch- and pectin-rich diets on quantitative aspects of digestion in sheep. Anim. Feed Sci. Technol. 1989, 24, 289–298. [Google Scholar] [CrossRef]
- Strobel, H.J.; Russell, J.B. Effect of pH and Energy Spilling on Bacterial Protein Synthesis by Carbohydrate-Limited Cultures of Mixed Rumen Bacteria. J. Dairy Sci. 1986, 69, 2941–2947. [Google Scholar] [CrossRef]
- Hall, M.B.; Hoover, W.H.; Jennings, J.P.; Webster, T.K.M. A method for partitioning neutral detergent soluble carbohydrates. J. Sci. Food Agric. 1999, 79, 2079–2086. [Google Scholar] [CrossRef]
- Fonseca, C.E.L.; Viands, D.R.; Hansen, J.L.; Pell, A.N. Associations among Forage Quality Traits, Vigor, and Disease Resistance in Alfalfa. Crop Sci. 1999, 39, 1271–1276. [Google Scholar] [CrossRef]
- Fonseca, C.E.L.; Hansen, J.L.; Thomas, E.M.; Pell, A.N.; Viands, D.R. Near Infrared Reflectance Spectroscopy Prediction and Heritability of Neutral Detergent-Soluble Fiber in Alfalfa. Crop Sci. 1999, 39, 1265–1270. [Google Scholar] [CrossRef]
- Tecle, I.Y.; Viands, D.R.; Hansen, J.L.; Pell, A.N. Response from Selection for Pectin Concentration and Indirect Response in Digestibility of Alfalfa. Crop Sci. 2006, 46, 1081–1087. [Google Scholar] [CrossRef]
- Buxton, D.R.; Marten, G.C.; Hornstein, J.S. Genetic variation for forage quality of alfalfa stems. Can. J. Plant Sci. 1987, 67, 057–1067. [Google Scholar] [CrossRef]
- Damiran, D.; Biligetu, B.; Pearce, L.; Lardner, H. PSXI-15 Evaluation of low-lignin alfalfa Hi-Gest® 3600 on the Canadian prairies: Productivity, nutrient profile, and rumen degradation kinetics. J. Anim. Sci. 2021, 99, 348. [Google Scholar] [CrossRef]
- Jungers, J.; Cherney, J.; Martinson, K.; Jaqueth, A.; Sheaffer, C. Forage Nutritive Value of Modern Alfalfa Cultivars. Crop Forage Turfgrass Manag. 2020, 6, e20076. [Google Scholar] [CrossRef]
- Bertrand, A.; Claessens, A.; Thivierge, M.; Rocher, S.; Lajeunesse, J.; Castonguay, Y.; Seguin, P. Field Assessment of Alfalfa Populations Recurrently Selected for Stem Cell Wall Digestibility. Crop Sci. 2018, 58, 1632–1643. [Google Scholar] [CrossRef]
- Grev, A.M.; Scott Wells, M.; Samac, D.A.; Martinson, K.L.; Sheaffer, C.C. Forage Accumulation and Nutritive Value of Reduced Lignin and Reference Alfalfa Cultivars. Agron. J. 2017, 109, 2749–2761. [Google Scholar] [CrossRef]
- Grev, A.M.; Wells, M.S.; Catalano, D.N.; Martinson, K.L.; Jungers, J.M.; Sheaffer, C.C. Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa. Agron. J. 2020, 112, 406–417. [Google Scholar] [CrossRef]
- Arnold, A.M.; Cassida, K.A.; Albrecht, K.A.; Hall, M.H.; Min, D.; Xu, X.; Orloff, S.; Undersander, D.J.; Santen, E.; Sulc, R.M. Multistate Evaluation of Reduced-Lignin Alfalfa Harvested at Different Intervals. Crop Sci. 2019, 59, 1799–1807. [Google Scholar] [CrossRef]
- Milić, D.; Karagić, D.; Vasiljević, S.; Mikić, A.; Milošević, B.; Katić, S. Breeding and Improvement of Quality Traits in Alfalfa (Medicago sativa ssp Sativa L.). Genet.-Belgrade 2014, 46, 11–18. [Google Scholar] [CrossRef]
- Wang, Z.; Qiang, H.; Zhao, H.; Xu, R.; Zhang, Z.; Gao, H.; Wang, X.; Liu, G.; Zhang, Y. Association Mapping for Fiber-Related Traits and Digestibility in Alfalfa (Medicago sativa). Front. Plant Sci. 2016, 7, 177320. [Google Scholar] [CrossRef]
- Barry, T.N.; McNabb, W.C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 1999, 81, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Cherney, J.H. Normal and brown-midrib mutations in relation to improved lignocellulose utilization. In Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants; Akin, D.E., Ed.; Elsevier: New York, NY, USA, 1990; pp. 205–214. [Google Scholar]
- Sinz, S.; Marquardt, S.; Soliva, C.R.; Braun, U.; Liesegang, A.; Kreuzer, M. Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation. Asian-Australas. J. Anim. Sci. 2019, 32, 966. [Google Scholar] [CrossRef]
- Jung, H.J.G.; Lamb, J.A.F.S. Identification of Lucerne Stem Cell Wall Traits Related to in vitro Neutral Detergent Fibre Digestibility. Anim. Feed Sci. Technol. 2003, 110, 17–29. [Google Scholar] [CrossRef]
- Britto, A.F.; Broderick, G.A. Effect of varying dietary ratios of alfalfa to corn silage on production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 3924–3938. [Google Scholar] [CrossRef] [PubMed]
- Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for Degradation of Lignin in Bacteria and Fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. [Google Scholar] [CrossRef]
- Wong, D.W.S. Structure and Action Mechanism of Ligninolytic Enzymes. Appl. Biochem. Biotechnol. 2009, 157, 174–209. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Shotorkhoft, A.; Mohammadabadi, T.; Motamedi, H.; Chaji, M.; Fazaeli, H. Isolation and identification of termite gut symbiotic bacteria with lignocellulose-degrading potential, and their effects on the nutritive value for ruminants of some by-products. Anim. Feed. Sci. Technol. 2016, 221, 234–242. [Google Scholar] [CrossRef]
- Kang, T.W.; Adesogan, A.T.; Kim, S.C.; Lee, S.S. Effects of an esterase-producing inoculant on fermentation, aerobic stability, and neutral detergent fiber digestibility of corn silage. J. Dairy Sci. 2009, 92, 732–738. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; McAllister, T.A. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle. J. Anim. Sci. 2012, 90, 1541–1552. [Google Scholar] [CrossRef]
- Li, F.; Ke, W.; Ding, Z.; Bai, J.; Zhang, Y.; Xu, D.; Li, Z.; Guo, X. Pretreatment of Pennisetum sinese silages with ferulic acid esterase-producing lactic acid bacteria and cellulase at two dry matter contents: Fermentation characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2020, 295, 122261. [Google Scholar] [CrossRef]
- Nsereko, V.L.; Smiley, B.K.; Rutherford, W.M.; Spielbauer, A.; Forrester, K.J.; Hettinger, G.H.; Harman, E.K.; Harman, B.R. Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Anim. Feed Sci. Technol. 2008, 145, 122–135. [Google Scholar] [CrossRef]
- Li, F.H.; Ding, Z.T.; Chen, X.Z.; Zhang, Y.X.; Ke, W.C.; Zhang, X.; Li, Z.; Usman, S.; Guo, X. The effects of Lactobacillus plantarum with feruloyl esterase-producing ability or high antioxidant activity on the fermentation, chemical composition, and antioxidant status of alfalfa silage. Anim. Feed Sci. Technol. 2021, 273, 114835. [Google Scholar] [CrossRef]
- Li, F.; Zhang, B.; Zhang, Y.; Zhang, X.; Usman, S.; Ding, Z.; Hao, L.; Guo, X. Probiotic effect of ferulic acid esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Anim. Nutr. 2022, 11, 38–41. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, K.B.; Rusch, H.L.; Heuschele, D.J. Alfalfa Stem Cell Wall Digestibility: Current Knowledge and Future Research Directions. Agronomy 2023, 13, 2875. https://doi.org/10.3390/agronomy13122875
Bhandari KB, Rusch HL, Heuschele DJ. Alfalfa Stem Cell Wall Digestibility: Current Knowledge and Future Research Directions. Agronomy. 2023; 13(12):2875. https://doi.org/10.3390/agronomy13122875
Chicago/Turabian StyleBhandari, Krishna B., Hannah L. Rusch, and Deborah J. Heuschele. 2023. "Alfalfa Stem Cell Wall Digestibility: Current Knowledge and Future Research Directions" Agronomy 13, no. 12: 2875. https://doi.org/10.3390/agronomy13122875
APA StyleBhandari, K. B., Rusch, H. L., & Heuschele, D. J. (2023). Alfalfa Stem Cell Wall Digestibility: Current Knowledge and Future Research Directions. Agronomy, 13(12), 2875. https://doi.org/10.3390/agronomy13122875