Biomass from Allelopathic Agroforestry and Invasive Plant Species as Soil Amendments for Weed Control—A Review
Abstract
:1. Introduction
2. Allelopathy and Allelochemicals
3. Allelopathic Cover Crops for Weed Control
4. Use of Allelopathic Agroforestry and Invasive Plant Species as Soil Amendment for Weed Control
4.1. Acacia spp.
4.2. Ageratina adenophora (Spreng.) R. M. King & H. Rob
4.3. Ailanthus altissima (Mill.) Swingle
4.4. Amaranthus spp.
4.5. Artemisia spp.
4.6. Cassia spp.
4.7. Cistus ladanifer L.
4.8. Cytisus scoparius (L.) Link
4.9. Eucalyptus spp.
4.10. Eupatorium adenophorum Spreng
4.11. Hedera helix L.
4.12. Lantana camara L.
4.13. Leucaena leucocephala (Lam.) de Wit
4.14. Mikania micrantha Kunth
4.15. Parthenium hysterophorus L.
4.16. Pinus spp.
4.17. Robinia pseudoacacia L.
4.18. Rottboellia cochinchinensis (Lour.) W.D. Clayton
4.19. Tropaeolum majus L.
4.20. Ulex europaeus L.
4.21. Aquatic Weeds
4.22. Aromatic Species
5. Benefits and Services Provided by Adopting Plant-Based Approaches in Integrated Weed Management
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Tripathi, S.; Mukherjee, A.K.; Bhattacharyya, A.; Chakrabarti, K. Persistence of the Herbicides Florasulam and Halauxifen-Methyl in Alluvial and Saline Alluvial Soils, and Their Effects on Microbial Indicators of Soil Quality. Eur. J. Soil Biol. 2016, 73, 93–99. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Gill, J.P.K.; Datta, S.; Singh, S.; Dhaka, V.; Kapoor, D.; Wani, A.B.; Dhanjal, D.S.; Kumar, M.; et al. Herbicide Glyphosate: Toxicity and Microbial Degradation. Int. J. Environ. Res. Public Health 2020, 17, 7519. [Google Scholar] [CrossRef] [PubMed]
- Supe Tulcan, R.X.; Ouyang, W.; Gu, X.; Lin, C.; Tysklind, M.; Wang, B. Typical Herbicide Residues, Trophic Transfer, Bioconcentration, and Health Risk of Marine Organisms. Environ. Int. 2021, 152, 106500. [Google Scholar] [CrossRef] [PubMed]
- Neve, P.; Belvaux, X.; Beffa, R.; Matzrafi, M.; Mennan, H.; Salonen, J.; Soukup, J.; Ulber, L.; Andert, S.; Baraibark, B.; et al. Current and Future Glyphosate Use in European Agriculture. Weed Res. 2023, submitted.
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Swanton, C.; Zollinger, R. Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: https://www.weedscience.org (accessed on 23 July 2023).
- Montull, J.M.; Torra, J. Herbicide Resistance Is Increasing in Spain: Concomitant Management and Prevention. Plants 2023, 12, 469. [Google Scholar] [CrossRef]
- He, B.; Hu, Y.; Wang, W.; Yan, W.; Ye, Y. The Progress towards Novel Herbicide Modes of Action and Targeted Herbicide Development. Agronomy 2022, 12, 2792. [Google Scholar] [CrossRef]
- Young, S.L. A unifying approach for IWM. Weed Sci. 2020, 68, 435–436. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Crop Allelopathy for Sustainable Weed Management in Agroecosystems: Knowing the Present with a View to the Future. Agronomy 2021, 11, 2104. [Google Scholar] [CrossRef]
- Scavo, A.; Restuccia, A.; Mauromicale, G. Allelopathy: Principles and Basic Aspects for Agroecosystem Control. In Sustainable Agriculture Reviews, 1st ed.; Gaba, S., Smith, B., Lichtfouse, E., Eds.; Springer: Paris, France, 2018; Volume 28, pp. 47–101. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press Inc.: Orlando, FL, USA, 1984; pp. 1–4. [Google Scholar]
- Macías, F.A.; Mejías, F.J.R.; Molinillo, J.M.G. Recent Advances in Allelopathy for Weed Control: From Knowledge to Applications. Pest. Manag. Sci. 2019, 75, 2413–2436. [Google Scholar] [CrossRef] [PubMed]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdowsk, A. Allelochemicals as Bioherbicides—Present and Perspectives. In Herbicides-Current Research and Case Studies in Use, 1st ed.; Price, A.J., Kelton, J.A., Eds.; InTech: Rijeka, Croatia, 2013; pp. 517–542. [Google Scholar]
- D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Monaco, P.; Zarrelli, A. Low Molecular Weight Phenols from the Bioactive Aqueous Fraction of Cestrum parqui. J. Agric. Food Chem. 2004, 52, 4101–4108. [Google Scholar] [CrossRef] [PubMed]
- Einhellig, F.A.; Galindo, J.C.G.; Molinillo, J.M.G.; Cutler, H.G. Mode of Allelochemical Action of Phenolic Compounds. In Allelopathy: Chemistry and Mode of Action of Allelochemicals, 1st ed.; Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 217–238. [Google Scholar]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Haig, T. Allelochemicals in Plants. In Allelopathy in Sustainable Agriculture and Forestry; Zeng, R.S., Mallik, A.U., Luo, S.M., Eds.; Springer: New York, NY, USA, 2008; pp. 63–104. [Google Scholar]
- Jesudas, P.A.; Kingsley, S.J.; Ignacimuthu, S. Sorgoleone from Sorghum bicolor as a Potent Bioherbicide. Res. J. Recent Sci. 2014, 3, 32–36. [Google Scholar]
- Anh, L.H.; Khanh, T.D.; Xuan, T.D. Biological Roles of Momilactones: Achievements, Challenges, and Promising Approaches to Exploit Their Beneficial Properties. Front. Nat. Prod. 2023, 2, 1245869. [Google Scholar] [CrossRef]
- Kobayashi, K. Factors Affecting Phytotoxic Activity of Allelochemicals in Soil. Weed Biol. Manag. 2004, 4, 1–7. [Google Scholar] [CrossRef]
- Khamare, Y.; Chen, J.; Marble, S.C. Allelopathy and Its Application as a Weed Management Tool: A Review. Front. Plant Sci. 2022, 13, 1034649. [Google Scholar] [CrossRef]
- Vokou, D.; Douvli, P.; Blionis, G.J.; Halley, J.M. Effects of Monoterpenoids, Acting Alone or in Pairs, on Seed Germination and Subsequent Seedling Growth. J. Chem. Ecol. 2003, 29, 2281–2301. [Google Scholar] [CrossRef]
- Kong, C.; Liang, W.; Xu, X.; Hu, F.; Wang, P.; Jiang, Y. Release and Activity of Allelochemicals from Allelopathic Rice Seedlings. J. Agric. Food Chem. 2004, 52, 2861–2865. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; Pedrol, N. Cytisus scoparius and Ulex europaeus Produce Volatile Organic Compounds with Powerful Synergistic Herbicidal Effects. Molecules 2019, 24, 4539. [Google Scholar] [CrossRef]
- Dias, L.S.; Moreira, I. Interaction between Water Soluble and Volatile Compounds of Cistus ladanifer L. Chemoecology 2002, 12, 77–82. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; Pedrol, N. Complex Synergistic Interactions among Volatile and Phenolic Compounds Underlie the Effectiveness of Allelopathic Residues Added to the Soil for Weed Control. Plants 2022, 11, 1114. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Chiapusio, G.; Weston, L.A. Allelopathy and the Role of Allelochemicals in Plant Defence. Adv. Bot. Res. 2017, 82, 19–54. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; Lopez-Nogueira, A.; Cavaleiro, C.; Pedrol, N. On the Bioherbicide Potential of Ulex europaeus and Cytisus scoparius: Profiles of Volatile Organic Compounds and Their Phytotoxic Effects. PLoS ONE 2018, 13, e0205997. [Google Scholar] [CrossRef] [PubMed]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2020; Volume 381, pp. 1–9. [Google Scholar]
- Elfstrand, S.; Hedlund, K.; Mårtensson, A. Soil Enzyme Activities, Microbial Community Composition and Function after 47 Years of Continuous Green Manuring. Appl. Soil Ecol. 2007, 35, 610–621. [Google Scholar] [CrossRef]
- Puig, C.G.; Gonçalves, R.F.; Valentão, P.; Andrade, P.B.; Reigosa, M.J.; Pedrol, N. The Consistency Between Phytotoxic Effects and the Dynamics of Allelochemicals Release from Eucalyptus globulus Leaves Used as Bioherbicide Green Manure. J. Chem. Ecol. 2018, 44, 658–670. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice Residue-Management Options and Effects on Soil Properties and Crop Productivity. J. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Malhi, S.S.; Lemke, R. Tillage, Crop Residue and N Fertilizer Effects on Crop Yield, Nutrient Uptake, Soil Quality and Nitrous Oxide Gas Emissions in a Second 4-Yr Rotation Cycle. Soil Tillage Res. 2007, 96, 269–283. [Google Scholar] [CrossRef]
- Álvarez-Iglesias, L.; Puig, C.G.; Revilla, P.; Reigosa, M.J.; Pedrol, N. Faba Bean as Green Manure for Field Weed Control in Maize. Weed Res. 2018, 58, 437–449. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; Souza-Alonso, P.; Pedrol, N. The Phytotoxic Potential of the Flowering Foliage of Gorse (Ulex europaeus) and Scotch Broom (Cytisus scoparius), as Pre-Emergent Weed Control in Maize in a Glasshouse Pot Experiment. Plants 2020, 9, 203. [Google Scholar] [CrossRef]
- Yenish, J.P.; Worsham, A.D.; Chilton, W.S. Disappearance of DIBOA-Glucoside, DIBOA, and BOA from Rye (Secale cereale L.) Cover Crop Residue. Weed Sci. 1995, 43, 18–20. [Google Scholar] [CrossRef]
- Cipollini, D.; Rigsby, C.M.; Barto, E.K. Microbes as Targets and Mediators of Allelopathy in Plants. J. Chem. Ecol. 2012, 38, 714–727. [Google Scholar] [CrossRef]
- Masilionyte, L.; Maiksteniene, S.; Kriauciuniene, Z.; Jablonskyte-Rasce, D.; Zou, L.; Sarauskis, E. Effect of Cover Crops in Smothering Weeds and Volunteer Plants in Alternative Farming Systems. Crop Prot. 2017, 91, 74–81. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; García-González, I.; Del Monte, J.P.; Quemada, M. Weed Density and Diversity in a Long-Term Cover Crop Experiment Background. Crop Prot. 2018, 112, 103–111. [Google Scholar] [CrossRef]
- Rugare, J.T.; Pieterse, P.J.; Mabasa, S. Allelopathic Potential of Green Manure Cover Crops on Germination and Early Seedling Development of Goose Grass [Eleusine indica (L.) Gaertn] and Blackjack (Bidens pilosa L.). Int. J. Agron. 2021, 2021, 6552928. [Google Scholar] [CrossRef]
- Liu, S.; Ma, Z.; Zhang, Y.; Chen, Z.; Du, X.; Mu, Y. Astragalus sinicus Incorporated as Green Manure for Weed Control in Corn. Front. Plant Sci. 2022, 13, 829421. [Google Scholar] [CrossRef] [PubMed]
- Abou Chehade, L.; Puig, C.G.; Souto, C.; Antichi, D.; Mazzoncini, M.; Pedrol, N. Rye (Secale cereale L.) and Squarrose Clover (Trifolium squarrosum L.) Cover Crops Can Increase Their Allelopathic Potential for Weed Control When Used Mixed as Dead Mulch. Ital. J. Agron. 2021, 16, 1869. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J. Cover Crop Residue Management for Optimizing Weed Control. Plant Soil 2009, 318, 169–184. [Google Scholar] [CrossRef]
- Pedrol, N.; Pardo-Muras, M.; Puig, C.G. Use of Biomass as a Natural Herbicide. Patent ES 2719451 B2, 27 February 2020. (In Spanish). [Google Scholar]
- Lorenzo, P.; Rodríguez-Echeverría, S. Soil Changes Mediated by Invasive Australian Acacias. Ecosistemas 2015, 24, 59–66. [Google Scholar] [CrossRef]
- Kanatas, P. Potential Role of Eucalyptus spp. and Acacia spp. Allelochemicals in Weed Management. Chil. J. Agric. Res. 2020, 80, 452–458. [Google Scholar] [CrossRef]
- Aguilera, N.; Becerra, J.; Guedes, L.M.; Villaseñor-Parada, C.; González, L.; Hernández, V. Allelopathic Effect of the Invasive Acacia dealbata Link (Fabaceae) on Two Native Plant Species in South-Central Chile. Gayana Bot. 2015, 72, 231–239. [Google Scholar] [CrossRef]
- Lorenzo, P.; Palomera-Pérez, A.; Reigosa, M.J.; González, L. Allelopathic Interference of Invasive Acacia dealbata Link on the Physiological Parameters of Native Understory Species. Plant Ecol. 2011, 212, 403–412. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; González, L.; López-Nogueira, A.; Cavaleiro, C.; Pedrol, N. Volatile Organic Compounds of Acacia longifolia and Their Effects on Germination and Early Growth of Species from Invaded Habitats. Chem. Ecol. 2018, 34, 126–145. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Puig, C.G.; Pedrol, N.; Freitas, H.; Rodríguez-Echeverría, S.; Lorenzo, P. Exploring the Use of Residues from the Invasive Acacia sp. For Weed Control. Renew. Agric. Food Syst. 2020, 35, 26–37. [Google Scholar] [CrossRef]
- Lorenzo, P.; Álvarez-Iglesias, L.; González, L.; Revilla, P. Assessment of Acacia dealbata as Green Manure and Weed Control for Maize Crop. Renew. Agric. Food Syst. 2022, 37, 322–336. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Y.; Yuan, L.; Huang, J. Allelopathy of Uncomposted and Composted Invasive Aster (Ageratina denophora) on Ryegrass. J. Hazard. Mater. 2021, 402, 123727. [Google Scholar] [CrossRef]
- Ma, Q.-P.; Cheng, C.-R.; Li, X.-F.; Liang, X.-Y.; Ding, J. Chemistry, Pharmacological Activities and Analysis of Ageratina adenophora. Asian J. Chem. 2015, 27, 4311–4316. [Google Scholar] [CrossRef]
- Bohlmann, F.; Gupta, R.K. Six Cadinene Derivatives from Ageratina adenophora. Phytochemistry 1981, 20, 1432–1433. [Google Scholar] [CrossRef]
- Wan, H.-H.; Liu, W.-X.; Wan, F.-H. Allelopathic Effect of Ageratina adenophora (Spreng.) Leaf Litter on Four Herbaceous Plants in Invaded Regions. Chin. J. Eco-Agric. 2011, 19, 130–134. [Google Scholar] [CrossRef]
- Das, M.B.B.; Acharya, B.D.; Saquib, M.; Chettri, M. Effect of Aqueous Extract and Compost of Invasive Weed Ageratina adenophora on Seed Germination and Seedling Growth of Some Crops and Weeds. J. Biodivers. Conserv. Bioresour. Manag. 2018, 4, 11–20. [Google Scholar] [CrossRef]
- Jiao, Y.; Jia, R.; Sun, Y.; Yang, G.; Li, Y.; Huang, J.; Yuan, L. In Situ Aerobic Composting Eliminates the Toxicity of Ageratina adenophora to Maize and Converts It into a Plant- and Soil-Friendly Organic Fertilizer. J. Hazard. Mater. 2021, 410, 124554. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-Q.; Wan, F.; Liu, W.-X.; Guo, J. Influence of Two Allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR Contents in Roots of Upland Rice Seedlings. Allelopath. J. 2008, 21, 253–262. [Google Scholar]
- Albouchi, F.; Hassen, I.; Casabianca, H.; Hosni, K. Phytochemicals, Antioxidant, Antimicrobial and Phytotoxic Activities of Ailanthus altissima (Mill.) Swingle Leaves. S. Afr. J. Bot. 2013, 87, 164–174. [Google Scholar] [CrossRef]
- El Ayeb-Zakhama, A.; Ben Salem, S.; Sakka-Rouis, L.; Flamini, G.; Ben Jannet, H.; Harzallah-Skhiri, F. Chemical Composition and Phytotoxic Effects of Essential Oils Obtained from Ailanthus altissima (Mill.) Swingle Cultivated in Tunisia. Chem. Biodivers. 2014, 11, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Heisey, R.M. Evidence for Allelopathy by Tree-of-Heaven (Ailanthus altissima). J. Chem. Ecol. 1990, 16, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Heisey, R.M. Identification of an Allelopathic Compound from Ailanthus altissima (Simaroubaceae) and Characterization of Its Herbicidal Activity. Am. J. Bot. 1996, 83, 192–200. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Caldera, F.; Dhakar, N.K.; Trotta, F.; Scariot, V. Activity of Ailanthus altissima (Mill.) Swingle Extract as a Potential Bioherbicide for Sustainable Weed Management in Horticulture. Agronomy 2020, 10, 965. [Google Scholar] [CrossRef]
- Suma, S.; Ambika, S.R.; Kazinczi, G.; Narwal, S.S. Allelopathic plants. 6. Amaranthus spp. Allelopath. J. 2002, 10, 1–12. [Google Scholar]
- Carvalho, M.S.S.; Andrade-Vieira, L.F.; dos Santos, F.E.; Correa, F.F.; das Graças Cardoso, M.; Vilela, L.R. Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Sci. Hortic. 2019, 245, 90–98. [Google Scholar] [CrossRef]
- Bakhshayeshan-Agdam, H.; Salehi-Lisar, S.Y.; Motafakkerazad, R. Allelopathic effects of redroot pigweed (Amaranthus retroflexus L.) aqueous extract on cucumber and wheat. Allelopath. J. 2019, 46, 55–72. [Google Scholar] [CrossRef]
- Prinsloo, G.; Du Plooy, C.P. The allelopathic effects of Amaranthus on seed germination, growth and development of vegetables. Biol. Agric. Hortic. 2018, 34, 268–279. [Google Scholar] [CrossRef]
- Tejeda-Sartorius, O.; Vaquera-Huerta, H.; Cadena-Iñiguez, J. Effect of amaranth residues (Amaranthus hypochondriacus L.) on weed control and yield or radish, onion and carrot. Span. J. Agric. Res. 2011, 9, 284–295. [Google Scholar] [CrossRef]
- Anibogwu, R.; De Jesus, K.; Pradhan, S.; Pashikanti, S.; Mateen, S.; Sharma, K. Extraction, Isolation and Characterization of Bioactive Compounds from Artemisia and Their Biological Significance: A Review. Molecules 2021, 26, 6995. [Google Scholar] [CrossRef] [PubMed]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive Compounds and Health Benefits of Artemisia species. Nat. Prod. Commun. 2019, 14, 1–17. [Google Scholar] [CrossRef]
- Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-based Application Strategies. Molecules 2021, 26, 3061. [Google Scholar] [CrossRef] [PubMed]
- Delabays, N.; Slacanin, I.; Bohren, C. Herbicidal Potential of Artemisinin and Allelopathic Properties of Artemisia annua L.: From the Laboratory to the Field. J. Plant Dis. Protection 2008, 21, 317–322. [Google Scholar]
- Otify, A.M.; Mohamed, O.G.; El-Amier, Y.A.; Saber, F.R.; Tripathi, A.; Younis, I.Y. Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia Species Using UPLC-QTOF-MS/MS and Molecular Networking. Metabolomics 2023, 19, 16. [Google Scholar] [CrossRef]
- Arora, K. Allelopathic Influence of Cassia occidentalis L. on Growth of Zea mays L. Ind. J. Sci. Res. Technol. 2013, 1, 15–17. [Google Scholar]
- Sarkar, E.; Chatterjee, S.N.; Chakraborty, P. Allelopathic Effect of Cassia tora on Seed Germination and Growth of Mustard. Turk. J. Bot. 2012, 36, 488–494. [Google Scholar] [CrossRef]
- Aasifa, G.; Siddiqui, M.B.; Shazia, B. Assessment of Allelopathic Potential of Cassia sophera L. on Seedling Growth and Physiological Basis of Weed Plants. Afr. J. Biotechnol. 2014, 13, 1037–1046. [Google Scholar] [CrossRef]
- Swati, V.; Thengane, R.J.; Ghole, V.S. Allelopathic Effects of Cassia tora and Cassia uniflora on Parthenium hysterophorous L. J. Med. Plant Res. 2014, 8, 194–196. [Google Scholar] [CrossRef]
- Hussain, S.; Siddiqui, S.U.; Khalid, S.; Jamal, A.; Qayyum, A.; Ahmad, Z. Allelopathic Potential of Senna (Cassia angustifolia Vahl.) on Germination and Seedling Characters of Some Major Cereal Crops and Their Associated Grassy Weeds. Pak. J. Bot. 2007, 39, 1145. [Google Scholar]
- Gallego, J.C.A.; Caro, J.G.; Campos, V.H.; Lobón, N.C. Effect of Leaf Litter from Cistus ladanifer L. On the Germination and Growth of Accompanying Shrubland Species. Plants 2020, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Chemical Composition and Herbicidal Activity of the Essential Oil from a Cistus ladanifer L. Population from Spain. Nat. Prod. Res. 2012, 26, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Izquierdo, C.; Serrano-Pérez, P.; Rodríguez-Molina, M. del C. Chemical Composition, Antifungal and Phytotoxic Activities of Cistus ladanifer L. Essential Oil and Hydrolate. Biocatal. Agric. Biotechnol. 2022, 45, 102527. [Google Scholar] [CrossRef]
- Fernández-Arroyo, S.; Barrajón-Catalán, E.; Micol, V.; Seguera-Carretero, A.; Fernández-Gutiérrez, A. High-Performance Liquid Chromatography with Diode Array Detection Coupled to Electrospray Time-of-Flight and Ion-Trap Tandem Mass Spectrometry to Identify Phenolic Compounds from a Cistus ladanifer Aqueous Extract. Phytochem. Anal. 2010, 21, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Verdeguer, S.; Mercedes María, B.; Boira Tortajada, H. Phytotoxic Potential of Lantana camara, Eucalyptus camaldulensis, Eriocephalus africanus, Cistus ladanifer and Artemisia gallica Aqueous Extracts to Control Weeds. J. Allelochem. Interact. 2018, 4, 17–26. [Google Scholar]
- Pardo-Muras, M.; Puig, C.G.; Souto, X.C.; Pedrol, N. Water-Soluble Phenolic Acids and Flavonoids Involved in the Bioherbicidal Potential of Ulex europaeus and Cytisus scoparius. S. Afr. J. Bot. 2020, 133, 201–211. [Google Scholar] [CrossRef]
- Viljoen, B.D.; Stoltsz, C.W. Evaluation of Selected Herbicides for the Control of European Gorse (Ulex europaeus L.) by Cut-Stump and Foliar Treatment. S. Afr. J. Plant Soil 2007, 24, 130–132. [Google Scholar] [CrossRef]
- Mkhize, V.S.; Mhlambi, N.; Nänni, I. Scotch Broom (Cytisus scoparius), a Horticultural Escapee Targeted for Eradication in South Africa. S. Afr. J. Bot. 2013, 86, 178. [Google Scholar] [CrossRef]
- Grove, S.; Haubensak, K.A.; Parker, I.M. Direct and Indirect Effects of Allelopathy in the Soil Legacy of an Exotic Plant Invasion. Plant Ecol. 2012, 213, 1869–1882. [Google Scholar] [CrossRef]
- Zhang, J.; An, M.; Wu, H.; Stanton, R.; Lemerle, D. Chemistry and Bioactivity of Eucalyptus Essential Oils. Allelopath. J. 2010, 25, 313–330. [Google Scholar]
- Dhakad, A.K.; Pandey, V.V.; Beg, S.; Rawat, J.M.; Singh, A. Biological, Medicinal and Toxicological Significance of Eucalyptus Leaf Essential Oil: A Review. J. Sci. Food Agric. 2018, 98, 833–848. [Google Scholar] [CrossRef]
- Shala, A.Y.; Gururani, M.A. Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus globulus Labill.: A Review. Horticulturae 2021, 7, 450. [Google Scholar] [CrossRef]
- Chu, C.; Mortimer, P.E.; Wang, H.; Wang, Y.; Liu, X.; Yu, S. Allelopathic Effects of Eucalyptus on Native and Introduced Tree Species. For. Ecol. Manag. 2014, 323, 79–84. [Google Scholar] [CrossRef]
- Sasikumar, K.; Vijayalakshmi, C.; Parthiban, K.T. Allelopathic Effects of Eucalyptus on Blackgram (Phaseolus mungo L.). Allelopath. J. 2002, 9, 205–214. [Google Scholar]
- El-Rokiek, K.G.; Eid, R.A. Allelopathic Effects of Eucalyptus citriodora on Amaryllis and Associated Grassy Weed. Planta Daninha 2009, 27, 887–899. [Google Scholar] [CrossRef]
- Puig, C.G.; Reigosa, M.J.; Valentão, P.; Andrade, P.B.; Pedrol, N. Unravelling the Bioherbicide Potential of Eucalyptus globulus Labill: Biochemistry and Effects of Its Aqueous Extract. PLoS ONE 2018, 13, e0192872. [Google Scholar] [CrossRef]
- Babu, R.C.; Kandasamy, O.S. Allelopathic Effect of Eucalyptus globulus Labill. on Cyperus rotundus L. and Cynodon dactylon L. Pers. J. Agron. Crop Sci. 1997, 179, 123–126. [Google Scholar] [CrossRef]
- Bagavathy, S.; Xavier, G.S.A. Effects of Aqueous Extract of Eucalyptus globulus on Germination and Seedling Growth of Sorghum. Allelopath. J. 2007, 20, 395–402. [Google Scholar]
- Djanaguiraman, M.; Ravishankar, P.; Bangarusamy, U. Effect of Eucalyptus globulus on Greengram, Blackgram and Cowpea. Allelopath. J. 2002, 10, 157–161. [Google Scholar]
- Padhy, B.; Patnaik, P.K.; Tripathy, A.K. Allelopathic Potential of Eucalyptus Leaf Litter Leachates on Germination and Seedling Growth of Fingermillet. Allelopath. J. 2000, 7, 69–78. [Google Scholar]
- Pawar, K.B.; Chavan, P.D. Influence of Leaf Leachates of Soybean, Moringa, Parthenium and Eucalyptus on Carbohydrate Metabolism in Germinating Seeds of Sorghum bicolor (L.) Moench. Allelopath. J. 2007, 19, 543–548. [Google Scholar]
- Willis, R.J. Research on Allelopathy on Eucalyptus in India and Pakistan. Commonw. For. Rev. 1991, 70, 279–289. [Google Scholar]
- Yamagushi, M.Q.; Gusman, G.S.; Vestena, S. Efeito Alelopático de Extratos Aquosos de Eucalyptus globulus Labill. e de Casearia sylvestris Sw. Sobre Espécies Cultivadas. Semin. Cienc. Agrar. 2011, 32, 1361–1374. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, S. Allelopathic Effects of Leaf Litter and Live Roots Exudates of Eucalyptus Species on Crops. Allelopath. J. 2010, 26, 91–100. [Google Scholar]
- El-Rokiek, K.G.; Messiha, N.K.; El-Masry, R.R.; El-Din, S.S. Evaluating the Leaf Residues of Eucalyptus globulus and Mangifera indica on Growth of Cynodon dactylon and Echinochloa colonum. J. Appl. Sci. Res. 2011, 7, 1793–1799. [Google Scholar]
- Puig, C.G.; Álvarez-Iglesias, L.; Reigosa, M.J.; Pedrol, N. Eucalyptus globulus Leaves Incorporated as Green Manure for Weed Control in Maize. Weed Sci. 2013, 61, 154–161. [Google Scholar] [CrossRef]
- Puig, C.G.; Revilla, P.; Barreal, M.E.; Reigosa, M.J.; Pedrol, N. On the Suitability of Eucalyptus globulus Green Manure for Field Weed Control. Crop Prot. 2019, 121, 57–65. [Google Scholar] [CrossRef]
- Baruah, N.C.; Sarma, J.C.; Sarma, S.; Sharma, R.P. Seed Germination and Growth Inhibitory Cadinenes from Eupatorium adenophorum Spreng. J. Chem. Ecol. 1994, 20, 1885–1892. [Google Scholar] [CrossRef]
- Okyere, S.K.; Wen, J.; Cui, Y.; Xie, L.; Gao, P.; Wang, J.; Wang, S.; Hu, Y. Toxic Mechanisms and Pharmacological Properties of Euptox A, a Toxic Monomer from A. adenophora. Fitoterapia 2021, 155, 105032. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zheng, G.-W.; Niu, X.-M.; Li, W.-Q.; Wang, F.-S.; Li, S.-H. Terpenes from Eupatorium adenophorum and Their Allelopathic Effects on Arabidopsis Seeds Germination. J. Agric. Food Chem. 2009, 57, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yi, Y.; Huang, L.; Zhang, C.; Shao, H. Metabolomics Reveals the Allelopathic Potential of the Invasive Plant Eupatorium adenophorum. Plants 2021, 10, 1473. [Google Scholar] [CrossRef] [PubMed]
- Han, L.-H.; Feng, Y.-L. The Effects of Growth and Development Stage on Allelopathy of Eupatorium adenophorum. Acta Ecol. Sin. 2007, 27, 1185–1191. [Google Scholar]
- Zhu, X.; Zhang, K.; Tang, T.S. Allelopathic Plants 29: Eupatorium adenophorum Sprengel. Allelopath. J. 2021, 53, 15–22. [Google Scholar] [CrossRef]
- Ma, J.; Xing, G.; Yang, W.; Ma, L.; Gao, M.; Wang, Y.; Han, Y. Inhibitory Effects of Leachate from Eupatorium adenophorum on Germination and Growth of Amaranthus retroflexus and Chenopodium glaucum. Acta Ecol. Sin. 2012, 32, 50–56. [Google Scholar] [CrossRef]
- Rawat, L.S.; Maikhuri, R.K.; Bahuguna, Y.M.; Maletha, A.; Phondani, P.C.; Jha, N.K.; Pharswan, D.S. Interference of Eupatorium adenophorum (Spr.) and Its Allelopathic Effect on Growth and Yield Attributes of Traditional Food Crops in Indian Himalayan Region. Ecol. Res. 2019, 34, 587–599. [Google Scholar] [CrossRef]
- Yuanbo, L. Allelopathic Effects of Eupatorium adenophorum on Five Species of the Family Gesneriaceae. Biodivers. Sci. 2007, 15, 486. [Google Scholar] [CrossRef]
- Ma, J.; Yang, W.; Sun, L.; Chen, H.; Zhao, Q.; Yang, X. Physiological Mechanisms of the Allelochemical Stress to Three Weed Species Caused by Eupatorium adenophorum Extracts. Acta Ecol. Sin. 2018, 38, 3514–3523. [Google Scholar] [CrossRef]
- Li, P.; Chang, Q.; Wang, C.; Cao, J.; Zheng, W. Composting of Aerial Parts of Crofton Weed (Eupatorium adenophorum Spreng), the Top Invasive Plant in Southwest China. Compost. Sci. Util. 2014, 22, 132–137. [Google Scholar] [CrossRef]
- Bezruk, I.; Marksa, M.; Georgiyants, V.; Ivanauskas, L.; Raudone, L. Phytogeographical Profiling of Ivy Leaf (Hedera helix L.). Ind. Crop. Prod. 2020, 154, 112713. [Google Scholar] [CrossRef]
- Marian, M.; Voşgan, Z.; Roşca, O.M.; Mihalescu, L. Allelopathy Relationship between Plants and Their Use in Organic Farming. IOP Conf. Ser. Mater Sci. Eng. 2017, 200, 012039. [Google Scholar] [CrossRef]
- Walbott, M.; Gallet, C.; Corcket, E. Germination et Croissance Des Plantules de Hêtre (Fagus sylvatica) Sous Contraintes Climatiques et Allélopathiques. CR Biol. 2018, 341, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Biggerstaff, M.S.; Beck, C.W. Effects of English Ivy (Hedera helix) on Seed Bank Formation and Germination. Am. Midl. Nat. 2007, 157, 250–257. [Google Scholar] [CrossRef]
- Lintz, H.E.; Huso, M.; Stanley, K.C.; Taylor, T. Composting One Invasive Species to Control Another. Restor. Ecol. 2011, 19, 1–4. [Google Scholar] [CrossRef]
- Global Invasive Species Database. Available online: http://www.iucngisd.org/gisd/speciesname/Lantana+camara (accessed on 20 September 2023).
- Khan, M.; Srivastava, S.; Jain, N.; Kv, S.; Jagdishbhai, Y.A. Chemical Composition of Fruit and Stem Essential Oils of Lantana camara from Northern India. Flavour. Fragr. J. 2003, 18, 376–379. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, M.; Ling, B.; Xu, D.; Ye, J. Inhibitory Effects of Lantana camara and its Contained Phenolic Compounds in Eichhornia crassipes Growth. J. Appl. Ecol. 2006, 17, 1637–1640. [Google Scholar]
- Qureshi, H.; Anwar, T.; Ali, Q.; Haider, M.Z.; Habib, N.; Fatima, S.; Waseem, M.; Bibi, Y.; Arshad, M.; Adkins, S.W. Isolation of Natural Herbicidal Compound from Lantana camara. Int. J. Environ. Anal. Chem. 2021, 101, 631–638. [Google Scholar] [CrossRef]
- Zheng, H.-Q.; Wei, N.; Wang, L.-F.; He, P. Effects of Lantana camara Leaf Extract on the Activity of Superoxide Dismutase and Accumulation of H2O2 in Water Hyacinth Leaf. J. Plant Physiol. Mol. Biol. 2006, 32, 189–194. [Google Scholar]
- Gindri, D.M.; Coelho, C.M.M.; Uarrota, V.G. Physiological and Biochemical Effects of Lantana camara L. Allelochemicals on the Seed Germination of Avena sativa L. Pesqui. Agropecu. Trop. 2020, 50, e62546. [Google Scholar] [CrossRef]
- Singh, M.; Tamma, R.V.; Nigg, H.N. HPLC Identification of Allelopathic Compounds from Lantana camara. J. Chem. Ecol. 1989, 15, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Achhireddy, N.R.; Singh, M. Allelopathic Effects of Lantana (Lantana camara) on Milkweedvine (Morrenia odorata). Weed Sci. 1984, 32, 757–761. [Google Scholar] [CrossRef]
- Wang, R.; Kang, X.; Quan, G.; Zhang, J. Influence of Lantana camara on Soil II. Effects of Lantana camara Leaf Litter on Plants and Soil Properties. Allelopath. J. 2015, 35, 207–216. [Google Scholar]
- Sharma, P.; Kaur, A.; Batish, D.R.; Kaur, S.; Chauhan, B.S. Critical Insights Into the Ecological and Invasive Attributes of Leucaena leucocephala, a Tropical Agroforestry Species. Front. Agron. 2022, 4, 890992. [Google Scholar] [CrossRef]
- Chou, C.-H.; Kuo, Y.-L. Allelopathic Research of Subtropical Vegetation in Taiwan: III. Allelopathic Exclusion of Understory by Leucaena leucocephala (Lam.) de Wit. J. Chem. Ecol. 1986, 12, 1431–1448. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy and Allelochemicals of Leucaena leucocephala as an Invasive Plant Species. Plants 2022, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, U.; Upadhyaya, K.; Meitei, C. Allelopathic Effects of Leucaena leucocephala and Tectona grandis on Gerrmnation and Growth of Maize. Allelopath. J. 2007, 20, 135–143. [Google Scholar]
- Pires, N.D.M.; Souza, I.R.P.; Prates, H.T.; De Faria, T.C.L.; Pereira Filho, I.A.; Magalhães, P.C. Efeito Do Extrato Aquoso de Leucena Sobre o Desenvolvimento, Índice Mitótico e Atividade Da Peroxidase Em Plântulas de Milho. Braz. J. Plant Physiol. 2001, 13, 55–65. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Akobundu, I.O.; Sanginga, N.; Jutzi, S.C. Effects of Mulch from 14 Multipurpose Tree Species (MPTs) on Early Growth and Nodulation of Cowpea (Vigna unguiculata L.). J. Agron. Crop Sci. 1999, 182, 127–134. [Google Scholar] [CrossRef]
- de Moura Pires, N.; Prates, H.T.; Pereira Filho, I.A.; de Oliveira, R.S., Jr.; Faria, T.C.L. de Atividade Alelopática Da Leucena Sobre Espécies de Plantas Daninhas. Sci. Agric. 2001, 58, 61–65. [Google Scholar] [CrossRef]
- Mauli, M.M.; Fortes, A.M.T.; Rosa, D.M.; Piccolo, G.; Marques, D.S.; Corsato, J.M.; Leszczynski, R. Alelopatia de Leucena Sobre Soja e Plantas Invasoras. Semin. Cienc. Agrar. 2009, 30, 55–62. [Google Scholar] [CrossRef]
- Safwan Ishak, M.; Ismail, B.S.; Yusoff, N. Allelopathic Potential of Leucaena leucocephala (Lam.) de Wit on the Germination and Seedling Growth of Ageratum conyzoides L., Tridax procumbens L. and Emilia sonchifolia (L.) DC. Allelopath. J. 2016, 37, 109–122. [Google Scholar]
- Shao, H.; Peng, S.; Wei, X.; Zhang, D.; Zhang, C. Potential Allelochemicals from an Invasive Weed Mikania micrantha HBK. J. Chem. Ecol. 2005, 31, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.S.; Mah, L.S. Effects of Mikania micrantha HBK on Germination and Growth of Weed Species. Plant Soil 1993, 157, 107–113. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Y.; Chen, J.; Ji, J.; He, H. Identification and Comparison of Allelopathic Effects from Leaf and Flower Volatiles of the Invasive Plants Mikania micrantha. Chemoecology 2021, 31, 355–365. [Google Scholar] [CrossRef]
- Mersie, W.; Singh, M. Allelopathic Effect of Parthenium (Parthenium hysterophorus L.) Extract and Residue on Some Agronomic Crops and Weeds. J. Chem. Ecol. 1987, 13, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Aneja, K.R. Parthenium Infestation and Yield Losses in Agricultural Crops. Indian J. Weed Sci. 2016, 48, 428–431. [Google Scholar] [CrossRef]
- Tamado, T.; Ohlander, L.; Milberg, P. Interference by the Weed Parthenium hysterophorus L. with Grain Sorghum: Influence of Weed Density and Duration of Competition. Int. J. Pest. Manag. 2002, 48, 183–188. [Google Scholar] [CrossRef]
- Yaacoby, T.; Yaacobi, G.; Rubin, B. The Competitiveness of the Invasive Weed Parthenium hysterophorus with Field Tomato (Lycopersicum esculentum) in Israel. Ecocycles 2023, 9, 25–31. [Google Scholar] [CrossRef]
- Raoof, K.M.A.; Siddiqui, M.B. Allelotoxic Effect of Parthenin on Cytomorphology of Broad Bean (Vicia faba L.). J. Saudi Soc. Agric. Sci. 2013, 12, 143–146. [Google Scholar] [CrossRef]
- Safdar, M.E.; Tanveer, A.; Khaliq, A.; Riaz, M.A. Yield Losses in Maize (Zea mays) Infested with Parthenium Weed (Parthenium hysterophorus L.). Crop Prot. 2015, 70, 77–82. [Google Scholar] [CrossRef]
- Bashar, H.M.K.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Uddin, M.K.; Asib, N.; Anwar, M.P.; Rahaman, F.; Karim, S.M.R.; Haque, M.A.; Berahim, Z.; et al. Determination and Quantification of Phytochemicals from the Leaf Extract of Parthenium hysterophorus L. and Their Physio-Biochemical Responses to Several Crop and Weed Species. Plants 2022, 11, 3209. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.; Wolf, J.; Fleisher, D.H.; Acosta, S.M.; Adkins, S.W.; Bajwa, A.A.; Ziska, L.H. Recent CO2 Levels Promote Increased Production of the Toxin Parthenin in an Invasive Parthenium hysterophorus Biotype. Nat. Plants 2021, 7, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G.; Reinhardt, C.F.; Foxcroft, L.C.; Hurle, K. Residue Allelopathy in Parthenium hysterophorus L.—Does Parthenin Play a Leading Role? Crop Prot. 2007, 26, 237–245. [Google Scholar] [CrossRef]
- Belz, R.G.; van der Laan, M.; Reinhardt, C.F.; Hurle, K. Soil Degradation of Parthenin-Does It Contradict the Role of Allelopathy in the Invasive Weed Parthenium hysterophorus L.? J. Chem. Ecol. 2009, 35, 1137–1150. [Google Scholar] [CrossRef]
- Belz, R.G. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin. J. Chem. Ecol. 2016, 42, 71–83. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Saxena, D.B.; Kaur, S. Allelopathic Effects of Parthenin against Two Weedy Species, Avena fatua and Bidens pilosa. Environ. Exp. Bot. 2002, 47, 149–155. [Google Scholar] [CrossRef]
- Arshad, J.; Sobiya, S.; Shazia, S. Comparison of Trifolium alexandrium L. and Parthenium hysterophorus L. Green Manures in Rice-Wheat Cropping System. Philipp. Agric. Sci. 2009, 92, 110–115. [Google Scholar]
- Kishor, P.; Ghosh, A.K.; Singh, S.; Maurya, B.R. Potential Use of Parthenium (Parthenium hysterophorus L.) in Agriculture. Asian J. Agric. Res. 2010, 4, 220–225. [Google Scholar] [CrossRef]
- Richardson, D.M. Ecology and Biogeography of Pinus; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ormeño, E.; Fernandez, C.; Bousquet-Mélou, A.; Greff, S.; Morin, E.; Robles, C.; Vila, B.; Bonin, G. Monoterpene and Sesquiterpene Emissions of Three Mediterranean Species through Calcareous and Siliceous Soils in Natural Conditions. Atmos. Environ. 2007, 41, 629–639. [Google Scholar] [CrossRef]
- Santonja, M.; Bousquet-Mélou, A.; Greff, S.; Ormeño, E.; Fernandez, C. Allelopathic Effects of Volatile Organic Compounds Released from Pinus halepensis Needles and Roots. Ecol. Evol. 2019, 9, 8201–8213. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Fushimi, Y.; Shigemori, H. An Allelopathic Substance in Red Pine Needles (Pinus densiflora). J. Plant Physiol. 2009, 166, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Willför, S.; Ali, M.; Karonen, M.; Reunanen, M.; Arfan, M.; Harlamow, R. Extractives in Bark of Different Conifer Species Growing in Pakistan. Holzforschung 2009, 63, 551–558. [Google Scholar] [CrossRef]
- Portuguez-García, M.P.; Agüero-Alvarado, R.; González-Lutz, M.I. Efecto Preemergente Del Extracto de Pinus Sp., en Arthraxon quartinianus (A. Rich.), en Invernadero. Agron. Mesoam. 2020, 31, 773–779. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Economou, G.; Avgoulas, C. Allelopathic Effects of Pinus halepensis Needles on Turfgrasses and Biosensor Plants. HortScience 2005, 40, 246–250. [Google Scholar] [CrossRef]
- Cabrera-Pérez, C.; Valencia-Gredilla, F.; Royo-Esnal, A.; Recasens, J. Organic Mulches as an Alternative to Conventional Under-Vine Weed Management in Mediterranean Irrigated Vineyards. Plants 2022, 11, 2785. [Google Scholar] [CrossRef]
- Pedrol, N.; Puig, C.G.; López-Nogueira, A.; Pardo-Muras, M.; González, L.; Souza-Alonso, P. Optimal and Synchronized Germination of Robinia pseudoacacia, Acacia dealbata and Other Woody Fabaceae Using a Handheld Rotary Tool: Concomitant Reduction of Physical and Physiological Seed Dormancy. J. For. Res. 2018, 29, 283–290. [Google Scholar] [CrossRef]
- Bektić, S.; Huseinović, S.; Husanović, J.; Memić, S. Allelopathic Effects of Extract Robinia pseudoacacia L. and Chenopodium album L. on Germination of Tomato (Solanum lycopersicum L.). Curr. J. Appl. Sci. Technol. 2021, 40, 11–18. [Google Scholar] [CrossRef]
- Nasir, H.; Iqbal, Z.; Hiradate, S.; Fujii, Y. Allelopathic Potential of Robinia pseudoacacia L. J. Chem. Ecol. 2005, 31, 2179–2192. [Google Scholar] [CrossRef]
- Bundit, A.; Meksawat, S.; Ullah, H.; Datta, A.; Pornprom, T. Allelopathic Plants: 33. Rottboellia cochinchinensis (Lour.) W.D. Clayton. Allelopath. J. 2022, 56, 133–147. [Google Scholar]
- Bundit, A.; Yamada, K.; Shigemori, H.; Laosripaiboon, W.; Datta, A.; Pornprom, T. Potential of Trans-p-Coumaric Acid Released from Rottboellia cochinchinensis for Weed Control in Vegetable Fields. Allelopath. J. 2019, 46, 41–50. [Google Scholar] [CrossRef]
- Bundit, A.; Yamada, K.; Shigemori, H.; Pornprom, T. Two Fatty Acids Isolated from Itchgrass (Rottboellia cochinchinensis) as Allelochemicals. Allelopath. J. 2021, 54, 25–36. [Google Scholar] [CrossRef]
- Meksawat, S.; Pornprom, T. Allelopathic Effect of Itchgrass (Rottboellia cochinchinensis) on Seed Germination and Plant Growth. Weed Biol. Manag. 2010, 10, 16–24. [Google Scholar] [CrossRef]
- Kobayashi, K.; Itaya, D.; Mahatamnuchoke, P.; Pornprom, T. Allelopathic Potential of Itchgrass (Rottboellia exaltata L. f.) Powder Incorporated into Soil. Weed Biol. Manag. 2008, 8, 64–68. [Google Scholar] [CrossRef]
- Duenas-Lopez, M.A. Tropaeolum Majus (Nasturtium). CABI Compendium 2022. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.54181 (accessed on 5 September 2023).
- Stubing, G.; Perez, P.M. Plantas Medicinales de La Península Ibérica e Islas Baleares, 1st ed.; Jaguar: Madrid, Spain, 2001. [Google Scholar]
- Lykkesfeldt, J.; Moller, B.L. Synthesis of Benzylglucosinolate in Tropaeolum majus L. (Isothiocyanates as Potent Enzyme Inhibitors). Plant Physiol. 1993, 102, 609–613. [Google Scholar] [CrossRef]
- Brown, P.D.; Morra, M.J.; Borek, V. Gas chromatography of allelochemicals produced during glucosinolate degradation in soil. Food Chem. 1994, 42, 2029–2034. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Alderson, P. A New Method for Collecting Isothiocyanates Released from Plant Residues Incorporated in Soil. Ann. Appl. Biol. 2007, 151, 61–65. [Google Scholar] [CrossRef]
- Golian, J.; Anyszka, Z.; Kwiatkowska, J. Multifunctional Living Mulches for Weeds Control in Organic Apple Orchards. Acta Sci. Pol. Hortorum Cultus 2023, 22, 73–84. [Google Scholar] [CrossRef]
- Boissard, C.; Cao, X.L.; Juan, C.Y.; Hewitt, C.N.; Gallagher, M. Seasonal Variations in VOC Emission Rates from Gorse (Ulex europaeus). Atmos. Environ. 2001, 35, 917–927. [Google Scholar] [CrossRef]
- López-Hortas, L.; Conde, E.; Falqué, E.; Domínguez, H. Flowers of Ulex europaeus L.-Comparing Two Extraction Techniques (MHG and Distillation). C. R. Chim. 2016, 19, 718–725. [Google Scholar] [CrossRef]
- Briones-Rizo, M.; Pérez-Corona, M.E.; Medina-Villar, S. The Other Way around: The Utility of a Plant Invader. Renew. Agric. Food Syst. 2023, 38, e8. [Google Scholar] [CrossRef]
- Katoch, R.; Singh, A.; Thakur, N. Effect of Weed Residues on The Physiology of Common Cereal Crops. Int. J. Eng. Res. Appl. 2012, 2, 828–834. [Google Scholar]
- Manandhar, S.; Shrestha, B.B.; Lekhak, H.D. Weeds of Paddy Field at Kirtipur, Kathmandu. Sci. World J. 1970, 5, 100–106. [Google Scholar] [CrossRef]
- Elakovich, S.D. Allelopathic Aquatic Plants for Aquatic Weed Management. Biol. Plant 1989, 31, 479–486. [Google Scholar] [CrossRef]
- Abbas, T.; Tanveer, A.; Khaliq, A.; Ehsan Safdar, M.; Nadeem, M.A. Allelopathic Effects of Aquatic Weed on Germination and Seedling Growth of Wheat. Herbologia 2014, 2, 11–25. [Google Scholar] [CrossRef]
- Dhole, J.A.; Bodke, S.S.; Dhole, N.A. Allelopathic Effect of Aqueous Extract of Five Selected Weed Species on Seed Mycoflora, Seed Germination and Seedling Growth of Sorghum vulgare Pers. (Jawar). Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 142–148. [Google Scholar]
- Maurya, P.; Mazeed, A.; Kumar, D.; Ahmad, Z.; Suryavanshi, P. Medicinal and Aromatic Plants as an Emerging Source of Bioherbicides. Curr. Sci. 2022, 122, 258. [Google Scholar] [CrossRef]
- Dhima, K.V.; Vasilakoglou, I.B.; Gatsis, T.D.; Panou-Philotheou, E.; Eleftherohorinos, I.G. Effects of Aromatic Plants Incorporated as Green Manure on Weed and Maize Development. Field Crop. Res. 2009, 110, 235–241. [Google Scholar] [CrossRef]
- Popescu, V.; Ciocarlan, A.; Dragalin, I.; Lungu, L.; Aricu, A. Chemical composition of essential oil of Dill (Anethum graveolens L.) Growing in Republic of Moldova. In Proceedings of the New Frontiers in Natural Product Chemistry, Online Scientific Seminar, Chisinau, Moldova, 4 June 2021; p. 35. [Google Scholar] [CrossRef]
- Ortan, A.; Popescu, M.; Gaită, A.; Dinu-Pîrvu, C.E.; Câmpeanu, G. Contributions to the pharmacognostical study on Anethum graveolens, Dill (Apiaceae). Rom. Biotechnol. Lett. 2009, 14, 4342–4348. [Google Scholar]
- Al-Khayri, J.M.; Banadka, A.; Nandhini, M.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M. Essential Oil from Coriandrum sativum: A review on Its Phytochemistry and Biological Activity. Molecules 2023, 28, 696. [Google Scholar] [CrossRef]
- Khammassi, M.; Habiba, K.; Mighri, H.; Mouna, S.; Oumayma, K.; Seçer, E.; Yassine, M. Phytochemical Screening of Essential Oils and Methanol Extract Constituents of Wild Foeniculum vulgare Mill.: A Potential Natural Source for Bioactive Molecules. Chem. Afr. 2023, 6, 1227–1240. [Google Scholar] [CrossRef]
- Popova, A.; Dalemska, Z.; Mihaylova, D.; Hristova, I.; Alexieva, I. Melissa officinalis L.—GC profile and antioxidant activity. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 634–638. [Google Scholar]
- Islam, A.M.; Suttiyut, T.; Anwar, M.P.; Juraimi, A.S.; Kato-Noguchi, H. Allelopathic properties of Lamiaceae species: Prospects and challenges to use in agriculture. Plants 2022, 11, 1478. [Google Scholar] [CrossRef]
- Sbai, H.; Saad, I.; Ghezal, N.; Della Greca, M.; Haouala, R. Bioactive compounds isolated from Petroselinum crispum L. leaves using bioguided fractionation. Ind. Crop. Prod. 2016, 89, 207–214. [Google Scholar] [CrossRef]
- Puig, C.G.; Valencia-Gredilla, F.; Pardo-Muras, M.; Souto, X.C.; Recasens i Guinjuan, J.; Pedrol, N. Predictive phytotoxic value of water-soluble allelochemicals in plant extracts for choosing a cover crop or mulch for specific weed control. Ital. J. Agron. 2021, 16, 1872. [Google Scholar] [CrossRef]
- El-Rokiek, K.G.; Ibrahim, M.E.; El-Din, S.A.S.; El-Sawi, S.A. Using anise (Pimpinella anisum L.) essential oils as natural herbicide. J. Mater. Environ. Sci. 2020, 11, 1689–1698. [Google Scholar]
- Singh, A.; Singh, M.; Singh, S. Effective Utilization of Distillation Waste as Organic Mulch for Weed Management in the Aromatic Grass Citronella java. Int. J. Pest. Manag. 2001, 47, 253–257. [Google Scholar] [CrossRef]
- Batish, D.R.; Kaur, M.; Singh, H.P.; Kohli, R.K. Phytotoxicity of a Medicinal Plant, Anisomeles indica, against Phalaris minor and Its Potential Use as Natural Herbicide in Wheat Fields. Crop Prot. 2007, 26, 948–952. [Google Scholar] [CrossRef]
- Chalkos, D.; Kadoglidou, K.; Karamanoli, K.; Fotiou, C.; Pavlatou-Ve, A.S.; Eleftherohorinos, I.G.; Constantinidou, H.I.A.; Vokou, D. Mentha spicata and Salvia fruticosa Composts as Soil Amendments in Tomato Cultivation. Plant Soil 2010, 332, 495–509. [Google Scholar] [CrossRef]
- Bàrberi, P.; Bocci, G.; Carlesi, S.; Armengot, L.; Blanco-Moreno, J.M.; Sans, F.X. Linking species traits to agroecosystem services: A functional analysis of weed communities. Weed Res. 2018, 58, 76–88. [Google Scholar] [CrossRef]
- Merfield, C.N. Redefining Weeds for the Post-herbicide Era. Weed Res. 2022, 62, 263–267. [Google Scholar] [CrossRef]
- Marshall, E.J.P. Weed Research reaches Volume 50! Looking back and looking forward. Weed Res. 2009, 50, 1–3. [Google Scholar] [CrossRef]
- Liebman, M.; Gallandt, E.R. Many little hammers: Ecological management of crop-weed interactions. In Ecology in Agriculture; Jackson, L.E., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 291–343. [Google Scholar] [CrossRef]
Species Assayed as a Soil Amendment for Weed Control | Family | Susceptible Weed and Crop Species | Allelopathic Compounds Potentially Involved | Refs. |
---|---|---|---|---|
Acacia dealbata | Fabaceae | Amaranthus retroflexus Convolvulus arvensis Cyperus sp. Portulaca oleracea | maculosin methyl cinnamate moretenone resorcinol | [48,52,53] |
Ageratina adenophora | Asteraceae | Lolium perenne | bornyl acetate cadinane p-cymene 4,7-dimethyl-1-(propan-2-ylidene)-1,4,4a,8a-tetrahydronaphthalene-2,6(1H,7H)-dione (DTD) 6-hydroxy-5-isopropyl-3,8-dimethyl-4a,5,6,7,8,8a-hexahydronaphthalene-2(1H)-one (HHO) 6-hydroxykaempferol-7-β-O-glucoside 6-methoxygenkwanin 6-methoxykaempferol 7-methyl ether 3-β-O-glucoside quercetagetin 7-O-glucoside quercetagetin 4′-methyl ether 7-β-O-glucoside | [54,55,56] |
Ailanthus altissima | Simaroubaceae | Lepidium sativum | ailanthone caryophyllene oxide chlorogenic acid docosane epicatechin gallic acid galloyl-hexahydroxydiphenoyl (HHDP)-glucose heneicosane hyperoside tetradecanol tricosane rutin | [61,62,63] |
Amaranthus hypochondriacus | Amaranthaceae | Cynodon dactylon Eleusine indica Pennisetum clandestinum Simsia amplexicaulis | p-coumaric acid ferulic acid | [70] and the literature cited in |
Amaranthus palmeri | Amaranthaceae | Allium cepa Amaranthus palmeri Daucus carota Sorghum spp. | chondrillasterol 2,6-dimethoxy-benzoquinone 2-heptanol 2-heptanone 3-methoxy-4-hydroxy-nitrobenzene phytol vanillin | [66] and the literature cited in |
Artemisia annua | Asteraceae | Zea mays | arteannuin B artemisia ketone artemisinic acid artemisinin camphor eucalyptol α-pinene trans-sabinyl acetate | [74] and the literature cited in |
Cassia angustifolia | Fabaceae | Avena fatua Dactyloctenium aegyptium Echinochloa colona Oryza sativa Phalaris minor Sorghum bicolor Sorghum halepense Triticum aestivum Zea mays | sennoside A sennoside B | [75,80] |
Cistus ladanifer | Cistaceae | Cistus salviifolius Cytisus multiflorus Lavandula stoechas | apigenin camphene ellagic acid gallic acid kaempferol ledol oxocativol α-pinene quercetin viridiflorol | [81,82,83,84] |
Cytisus scoparius | Fabaceae | Amaranthus retroflexus Convolvulus arvensis Digitaria sanguinalis Portulaca oleracea | caffeic acid p-coumaric acid ferulic acid linalool terpinen-4-ol α-terpineol trans-cinnamic acid verbenone | [30,37,86] |
Eucalyptus globulus | Myrtaceae | Amaranthus retroflexus Cynodon dactylon Digitaria sanguinalis Echinochloa colonum Echinochloa crus-galli Solanum nigrum | chlorogenic acid ellagic acid eucalyptol hyperoside rutine | [33,105,106,107] |
Eucalyptus urophylla | Myrtaceae | Acmena acuminatissima Cryptocarya concinna Pterospermum lanceifolium | eucalyptol γ-terpinene | [91,93] |
Eupatorium adenophorum | Asteraceae | Amaranthus caudatus Vigna unguiculata | candinene euptox A 9-oxo-10,11-dehydroageraphorone (ODA) | [108,109,110,115] |
Hedera helix | Araliaceae | Geranium robertianum | caffeic acid 3,5-caffeoylquinic acid chlorogenic acid cinnamic acid gallic acid hederacoside C hederacoside D hederasaponin B α-hederin hyperoside isoquercitrin kaempferol neochlorogenic acid quercetin rutin | [119,123] |
Lantana camara | Verbenaceae | Bidens bipinnata Bidens pilosa Lactuca sativa Morrenia odorata Raphanus sativus Urena lobata | α-cadinol coumarin eugenol geraniol germacrene D p-hydroxybenzoic acid linalool palmitic acid α-pinene salicylic acid stearic acid vitexin | [125,126,127,131,132] |
Leucaena leucocephala | Fabaceae | Acacia confusa Alnus formosana Casuarina glauca Liquidambar formosana Mimosa pudica Vigna unguiculata | epicatechin epigallocatechin gallic acid gallocatechin p-hydroxybenzoic acid p-hydroxycinnamic acid p-hydroxyphenylacetic acid mimosine protocatechuic acid quercetin vanillic acid | [134,135,138] |
Mikania micrantha | Asteraceae | Asystasia intrusa Chrysopogon aciculatus Paspalum conjugatum | β-caryophyllene deoxymikanolide dihydromikanolide 2,3-epoxy-1-hydroxy-4,9-germacradiene-12,8:15,6-diolide β-myrcene β-ocimene α-pinene α-terpineol | [142,143,144] |
Parthenium hysterophorus | Asteraceae | weed population in rice fields | p-anisic acid caffeic acid chlorogenic acid ferulic acid parthenin quinic acid vanillic acid | [151,158] and the literature cited in |
Pinus halepensis | Pinaceae | Avena sativa Cynodon dactylon Festuca arundinacea Lemna minor | β-caryophyllene α-humulene myrcene α-pinene δ-terpinene | [160,161,165] |
Pinus sylvestris | Pinaceae | weed population in vineyards | β-caryophyllene α-humulene myrcene α-pinene sabinene | [166] |
Robinia pseudoacacia | Fabaceae | Brassica rapa Echinochloa crus-galli Lactuca sativa Trifolium repens | myricetin quercetin robinetin | [169] |
Rottboellia cochinchinensis | Poaceae | Ageratum conyzoides Bidens pilosa Echinochloa crus-galli | 9,12-octadecadienoic acid 9,12,15-octadecatrienoic acid trans-p-coumaric acid | [170,171,172,174] |
Tropaeolum majus | Tropaeolaceae | Capsella bursa-pastoris Echinochloa crus-galli Galinsoga parviflora Poa annua Stellaria media | chlorogenic acid glucotropaeloside malic acid | [176,177,180] |
Ulex europaeus | Fabaceae | Amaranthus retroflexus Digitaria sanguinalis Lolium rigidum Portulaca oleracea | caffeic acid camphene p-coumaric acid ellagic acid eugenol isoprene kaempferol limonene myrcene α-pinene β-pinene sabinene α-terpinene trans-ocimene | [30,37,86,182,183] |
Alternanthera philoxeroides | Amaranthaceae | Triticum aestivum | 4-hydroxy-3-methoxybenzoic acid m-coumaric acid p-coumaric acid | [187] |
Alternanthera sessilis | Amaranthaceae | Triticum aestivum | chlorogenic acid ferulic acid gallic acid vanilic acid | [187] |
Conyza stricta | Asteraceae | Triticum aestivum | chlorogenic acid ferulic acid m-coumaric acid | [187] |
Polygonum barbatum | Polygonaceae | Triticum aestivum | m-coumaric acid p-coumaric acid vanilic acid | [187] |
Echinochloa crus-galli | Poaceae | Triticum aestivum | caffeic acid chlorogenic acid m-coumaric acid p-coumaric acid | [187] |
Anethum graveolens | Apiaceae | Chenopodium album Portulaca oleracea Tribulus terrestris | caffeic acid carvone chlorogenic acid germacrene D D-limonene α-phellandrene quercetin rutin | [190,191,192] |
Anisomeles indica | Lamiaceae | Phalaris minor | apigenin isoovatodiolide ovatodiolide β-sitosterol stigmasterol | [201] and the literature cited in |
Calamintha nepeta | Lamiaceae | Chenopodium album Lactuca sativa Sinapis alba | caffeic acid gallic acid vanillic acid carvone camphor gallic acid isomenthone menthol trans-menthone piperitone pulegone rosmarinic acid | [196] and the literature cited in |
Coriandrum sativum | Apiaceae | Chenopodium album Tribulus terrestris | camphene camphor p-cymene geraniol geranyl acetate limonene linalool linalyl acetate myrcene α-pinene terpinen-4-ol γ-terpinene α-terpineol | [190,193] and the literature cited in |
Cymbopogon winterianus | Poaceae | Weed flora dominated by: Chenopodium album Cynodon dactylon Digitaria sanguinalis Gnaphalium indicum | citronellal citronellol geraniol | [200] |
Foeniculum vulgare | Apiaceae | Chenopodium album Portulaca oleracea Tribulus terrestris | apigenin apigenin-7-O-glucoside caffeic acid 4-O-caffeoylquinic acid cirsiliol chlorogenic acid p-coumaric acid epicatechin naringenin protocatechulic acid quercetin quinic acid rutin salviolinic acid syringic acid trans-ferulic acid | [190,194] |
Melissa officinalis | Lamiaceae | Echinochloa crus-galli | α-cadinol camphene β-caryophyllene citronellal β-citronellol α-elemol geraniol germacrene D limonene linalool α-pinene β -pinene | [190,195] |
Mentha piperita | Lamiaceae | Weed flora dominated by Hypochaeris radicata | cis-ocimene p-cymene eucalyptol limonene β-myrcene α-pinene β-pinene sabinene trans-ocimene | [180] and the literature cited in |
Mentha spicata | Lamiaceae | Weed flora dominated by: Amaranthus retroflexus Chenopodium album Cynodon dactylon Datura stramonium Portulaca oleracea Sorghum halepense | β-bourbonene carvone β-caryophyllene eucalyptol limonene pulegone trans-piperitone oxide | [202] and the literature cited in |
Mentha x verticillata | Lamiaceae | Chenopodium album Tribulus terrestris | [190] | |
Ocimum basilicum | Lamiaceae | Chenopodium album Echinochloa crus-galli Tribulus terrestris | chloramben-methyl elaidic acid methyl ester linoleic acid methyl ester methyl linolelaidate 9,12-octadecadienoic acid squalene 2,5,5-trimethyl-2-cyclopentenone | [190,196] and the literature cited in |
Origanum vulgare | Lamiaceae | Chenopodium album Echinochloa crus-galli | apioline α-cadinol carvacrol β-caryophyllene caryophyllene oxide methyleugenol myristicin γ-terpinene thymol | [190,196] and the literature cited in |
Petroselinum crispum | Apiaceae | Chenopodium album | oxypeucedanin oxypeucedanin hydrate pabulenol N-(2′-phenylethyl)-hexanamide | [190,197] |
Phacelia tanacetifolia | Boraginaceae | Chenopodium album Echinochloa crus-galli Tribulus terrestris | chlorogenic derivative ellagitannin eriodictyol p-hydroxybenzoic acid luteolin derivative | [190,198] |
Pimpinella anisum | Apiaceae | Chenopodium album Echinochloa crus-galli Tribulus terrestris | estragole eugenyl acetate α-humulene β-humulene limonene linalool trans-anethole | [190,199] |
Salvia officinalis | Lamiaceae | Lycopersicon esculentum Panicum maximum | camphor β-caryophyllene eucalyptol α-humulene trans-thujone viridiflorol | [196] and the literature cited in |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiño, A.; Pardo-Muras, M.; Puig, C.G.; López-Periago, J.E.; Pedrol, N. Biomass from Allelopathic Agroforestry and Invasive Plant Species as Soil Amendments for Weed Control—A Review. Agronomy 2023, 13, 2880. https://doi.org/10.3390/agronomy13122880
Valiño A, Pardo-Muras M, Puig CG, López-Periago JE, Pedrol N. Biomass from Allelopathic Agroforestry and Invasive Plant Species as Soil Amendments for Weed Control—A Review. Agronomy. 2023; 13(12):2880. https://doi.org/10.3390/agronomy13122880
Chicago/Turabian StyleValiño, Antía, María Pardo-Muras, Carolina G. Puig, J. Eugenio López-Periago, and Nuria Pedrol. 2023. "Biomass from Allelopathic Agroforestry and Invasive Plant Species as Soil Amendments for Weed Control—A Review" Agronomy 13, no. 12: 2880. https://doi.org/10.3390/agronomy13122880
APA StyleValiño, A., Pardo-Muras, M., Puig, C. G., López-Periago, J. E., & Pedrol, N. (2023). Biomass from Allelopathic Agroforestry and Invasive Plant Species as Soil Amendments for Weed Control—A Review. Agronomy, 13(12), 2880. https://doi.org/10.3390/agronomy13122880