Optimal Planting Density and Nutrient Application of Soybeans: A Case Study in Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Field Experimental Design
2.3. Collection of Basic Data
3. Data Analysis and Processing Results
3.1. Single-Factor Regression Design Implementation Data
3.2. Data Processing and Model Optimization in Single-Factor Regression Experiments
3.2.1. Data Processing and Model Optimization in Regression Experiments on Planting Density Effects
3.2.2. Data Processing and Model Optimization in Regression Experiments on Nitrogen (N) Efficiency
3.2.3. Data Processing and Model Optimization in Regression Experiments on Phosphorus (P) Efficiency
3.2.4. Data Processing and Model Optimization in Regression Experiments on Potassium (K) Efficiency
3.3. Second-Order Orthogonal Rotational Composite Design
3.3.1. Data from the First Set of Experimental Implementations in a Second-Order Orthogonal Rotational Composite Design
3.3.2. Processing and Model Optimization of the First Set of Experimental Data in a Second-Order Orthogonal Rotatable Design
3.3.3. Data from the Second Set of Experimental Implementations in a Second-Order Orthogonal Rotational Composite Design
3.3.4. Processing and Model Optimization of the Second Set of Experimental Data in a Second-Order Orthogonal Rotatable Design
3.4. Implementation Data for D-Optimal Regression Experimental Design
3.5. Data Processing and Model Optimization in D-Optimal Regression Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Ying, H.; Chen, M.; Bai, J.; Xue, Y.; Yin, Y.; Batchelor, W.D.; Yang, Y.; Bai, Z.; Du, M.; et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2021, 2, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.; Usman, K.; Malik, M.W.I.; Saad, M.; Ghulam, S.; Khan, Z.; Ullah, A. Response of quinoa genotypes to sowing dates and sowing methods under the agroclimatic condition of Dera Ismail Khan, KP Pakistan. Arch. Agron. Soil Sci. 2021, 11, 1903–1913. [Google Scholar] [CrossRef]
- Drastig, K.; Kreidenweis, U.; Meyer-Aurich, A.; Ammon, C.; Prochnow, A. Case Study of Effects of Mineral N Fertilization Amounts on Water Productivity in Rainfed Winter Rapeseed Cultivation on a Sandy Soil in Brandenburg (Germany) over Three Years. Water 2021, 13, 1958. [Google Scholar] [CrossRef]
- Dai, J.; Gui, H.L.; Shen, F.; Liu, Y.Y.; Bai, M.S.; Yang, J.F.; Liu, H.J.; Luo, P.Y.; Han, X.R.; Siddique, K.H.M. Fertilizer N-15 balance in a soybean-maize-maize rotation system based on a 41-year long-term experiment in Northeast China. Front. Plant Sci. 2023, 14, 11. [Google Scholar] [CrossRef]
- Tian, S.Y.; Zhu, B.J.; Yin, R.; Wang, M.W.; Jiang, Y.J.; Zhang, C.Z.; Li, D.M.; Chen, X.Y.; Kardol, P.; Liu, M.Q. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biol. Biochem. 2022, 165, 10. [Google Scholar] [CrossRef]
- Geng, H.T.; Wang, X.D.; Shi, S.B.; Ye, Z.Q.; Zhou, W.J. Fertilization makes strong associations between organic carbon composition and microbial properties in paddy soil. J. Environ. Manag. 2023, 325, 9. [Google Scholar] [CrossRef]
- Cai, S.Y.; Zhao, X.; Pittelkow, C.M.; Fan, M.S.; Zhang, X.; Yan, X.Y. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 2023, 615, 73. [Google Scholar] [CrossRef]
- Koppensteiner, L.J.; Kaul, H.P.; Piepho, H.P.; Barta, N.; Euteneuer, P.; Bernas, J.; Klimek-Kopyra, A.; Gronauer, A.; Neugschwandtner, R.W. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. Eur. J. Agron. 2022, 140, 10. [Google Scholar] [CrossRef]
- Yan, X.Y.; Xia, L.L.; Ti, C.P. Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environ. Pollut. 2022, 293, 9. [Google Scholar] [CrossRef]
- Wang, F.H.; Chen, S.M.; Wang, Y.Y.; Zhang, Y.M.; Hui, C.S.; Liu, B.B. Long-Term Nitrogen Fertilization Elevates the Activity and Abundance of Nitrifying and Denitrifying Microbial Communities in an Upland Soil: Implications for Nitrogen Loss from Intensive Agricultural Systems. Front. Microbiol. 2018, 9, 12. [Google Scholar] [CrossRef]
- Ai, C.; Zhang, S.Q.; Zhang, X.; Guo, D.D.; Zhou, W.; Huang, S.M. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Te, X.; Din, A.M.U.; Cui, K.S.; Raza, M.A.; Ali, M.F.; Xiao, J.H.; Yang, W.Y. Inter-specific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Res. 2023, 291, 17. [Google Scholar] [CrossRef]
- Liang, B.; Ma, Y.W.; Shi, K.; Chen, G.P.; Chen, H.; Hu, Y.; Chen, P.; Pu, T.; Wu, Y.S.; Sun, X.; et al. Appropriate bandwidth achieves a high yield by reducing maize intraspecific competition in additive maize-soybean strip intercropping. Eur. J. Agron. 2023, 142, 10. [Google Scholar] [CrossRef]
- Oz, M. Nitrogen rate and plant population effects on yield and yield components in soybean. Afr. J. Biotechnol. 2008, 7, 4464–4470. [Google Scholar]
- Goncalves, R.J.D.; Abreu, A.D.B.; Ramalho, M.A.P.; Bruzi, A.T. Strategies for recommendation of common bean lines tested for value of cultivation and use in different environments. Crop Breed. Appl. Biotechnol. 2009, 9, 132–139. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Balbinot, A.A.; Werner, F.; Zucareli, C.; Franchini, J.C.; Debiasi, H. Plant density and mineral nitrogen fertilization influencing yield, yield components and concentration of oil and protein in soybean grains. Bragantia 2016, 75, 362–370. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Balbinot, A.A.; Werner, F.; Franchini, J.C.; Zucareli, C. Soybean agronomic performance in response to seeding rate and phosphate and potassium fertilization. Rev. Bras. Eng. Agric. Ambient. 2018, 22, 151–157. [Google Scholar] [CrossRef]
- Xu, C.L.; Li, R.D.; Song, W.W.; Wu, T.T.; Sun, S.; Han, T.F.; Wu, C.X. High Density and Uniform Plant Distribution Improve Soybean Yield by Regulating Population Uniformity and Canopy Light Interception. Agronomy 2021, 11, 18. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Magnano, L.; Ortez, O.; Enrico, J.; Barraco, M.; Barbagelata, P.; Condori, A.; Di Mauro, G.; Manlla, A.; Rotundo, J.; et al. Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean. Eur. J. Agron. 2021, 127, 126289. [Google Scholar] [CrossRef]
- Xiao, Y.T.; Chu, L.; Zhang, Y.M.; Bian, Y.T.; Xiao, J.H.; Xu, D.Q. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. Front. Plant Sci. 2022, 12, 11. [Google Scholar] [CrossRef]
- Xu, H.; Guo, Y.; Qiu, L.J.; Ran, Y.D. Progress in Soybean Genetic Transformation over the Last Decade. Front. Plant Sci. 2022, 13, 33. [Google Scholar] [CrossRef]
- Nasar, J.; Zhao, C.J.; Khan, R.; Gul, H.; Gitari, H.; Shao, Z.Q.; Abbas, G.; Haider, I.; Iqbal, Z.; Ahmed, W.; et al. Maize-soybean intercropping at optimal N fertilization increases the N uptake, N yield and N use efficiency of maize crop by regulating the N assimilatory enzymes. Front. Plant Sci. 2023, 13, 15. [Google Scholar] [CrossRef]
- Te, X.; Hassan, M.J.; Cui, K.S.; Xiao, J.H.; Aslam, M.N.; Saeed, A.; Yang, W.Y.; Ali, S. Effect of different planting pattern arrangements on soil organic matter and soil nitrogen content under a maize/soybean strip relay intercropping system. Front. Plant Sci. 2022, 13, 12. [Google Scholar] [CrossRef]
- Cheriere, T.; Lorin, M.; Corre-Hellou, G. Choosing the right associated crop species in soybean-based intercropping systems: Using a functional approach to understand crop growth dynamics. Field Crops Res. 2023, 298, 10. [Google Scholar] [CrossRef]
- Niether, W.; Macholdt, J.; Schulz, F.; Gattinger, A. Yield dynamics of crop rotations respond to farming type and tillage intensity in an organic agricultural long-term experiment over 24 years. Field Crops Res. 2023, 303, 109131. [Google Scholar] [CrossRef]
- Gabhane, V.V.; Ramteke, P.; Chary, G.R.; Patode, R.S.; Ganvir, M.M.; Chorey, A.; Tupe, A.R. Effects of long-term nutrient management in semi-arid Vertisols on soil quality and crop productivity in a cotton-greengram intercropping system. Field Crops Res. 2023, 303, 109115. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Y.; Zheng, H.; Olesen, J.E.; Rees, R.M.; Zou, J.; Zhang, L.; Hu, S.; Qiao, B.; Wang, X.; et al. Excessive N applications reduces yield and biological N fixation of summer-peanut in the North China Plain. Field Crops Res. 2023, 302, 109021. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.L.; Wang, X.H.; Lobell, D.B.; Huang, Y.; Huang, M.T.; Yao, Y.T.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wang, X.H.; Smith, P.; Fan, J.L.; Lu, Y.L.; Emmett, B.; Li, R.; Dorling, S.; Chen, H.Q.; Liu, S.G.; et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Chang. 2022, 12, 574–580. [Google Scholar] [CrossRef]
- Hu, X.J.; Gu, H.D.; Liu, J.J.; Wei, D.; Zhu, P.; Cui, X.A.; Zhou, B.K.; Chen, X.L.; Jin, J.; Liu, X.B.; et al. Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region. Geoderma 2022, 418, 10. [Google Scholar] [CrossRef]
- Malone, L.C.; Ruark, M.D.; Kucharik, C.J.; Whitman, T.; Conley, S.P. Linking soil health indicators to management history and soybean yield. Field Crops Res. 2023, 297, 11. [Google Scholar] [CrossRef]
- de Souza, R.R.; Toebe, M.; Marchioro, V.S.; Cargnelutti, A.; Bittencourt, K.C.; Mello, A.C.; Paraginski, J.A. Sample size and modeling of plant variability using precision statistics in soybean counting traits. Field Crops Res. 2023, 291, 20. [Google Scholar] [CrossRef]
- Workneh, F.; Tylka, G.L.; Yang, X.B.; Faghihi, J.; Ferris, J.M. Regional Assessment of Soybean Brown Stem Rot, Phytophthora sojae, and Heterodera glycines Using Area-Frame Sampling: Prevalence and Effects of Tillage. Phytopathology 1999, 89, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.M.; Zhao, L.; Wu, X.D.; Fang, H.B.; Zhao, Y.H.; Hu, G.J.; Yu, G.Y.; Sheng, Y.; Wu, J.C.; Chen, J.; et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Sci. Total Environ. 2018, 622, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Matias, L.; Castro, J.; Zamora, R. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Glob. Chang. Biol. 2011, 17, 1646–1657. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef]
- Yang, F.; Liao, D.P.; Wu, X.L.; Gao, R.C.; Fan, Y.F.; Raza, M.A.; Wang, X.C.; Yong, T.W.; Liu, W.G.; Liu, J.; et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 2017, 203, 16–23. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Cho, G.; Lee, S.; Adeyemi, K.A.; Choi, K.S. Modeling the Influence of Seasonal Climate Variability on Soybean Yield in a Temperate Environment: South Korea as a Case Study. Int. J. Plant Prod. 2022, 16, 209–222. [Google Scholar] [CrossRef]
- Reis, L.; Silva, C.; Bezerra, B.; Mutti, P.; Spyrides, M.H.; Silva, P.; Magalhaes, T.; Ferreira, R.; Rodrigues, D.; Andrade, L. Influence of Climate Variability on Soybean Yield in MATOPIBA, Brazil. Atmosphere 2020, 11, 24. [Google Scholar] [CrossRef]
- Penalba, O.C.; Bettolli, M.L.; Vargas, W.M. The impact of climate variability on soybean yields in Argentina. Multivariate regression. Meteorol. Appl. 2007, 14, 3–14. [Google Scholar] [CrossRef]
- Tang, R.X.; Seguin, P.; Morrison, M.J.; Fan, S.M. Temperature and precipitation at specific growth stages influence soybean tocopherol and lutein concentrations. J. Agron. Crop Sci. 2021, 207, 754–767. [Google Scholar] [CrossRef]
- Zien, A.; Zimmer, R.; Lengauer, T. A simple iterative approach to parameter optimization. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2000, 7, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Mensah, A.A.; Holmstrom, E.; Nystrom, K.; Nilsson, U. Modelling potential yield capacity in conifers using Swedish long-term experiments. For. Ecol. Manag. 2022, 512, 21. [Google Scholar] [CrossRef]
- Park, A.R.; Mancenido, M.V.; Montgomery, D.C. Separation in D-optimal experimental designs for the logistic regression model. Qual. Reliab. Eng. Int. 2019, 35, 776–787. [Google Scholar] [CrossRef]
- Freise, F.; Grasshoff, U.; Rottger, F.; Schwabe, R. D-optimal designs for Poisson regression with synergetic interaction effect. Test 2021, 30, 1004–1025. [Google Scholar] [CrossRef]
- Gao, L.L.; Zhou, J.L. Minimax D-optimal designs for multivariate regression models with multi-factors. J. Stat. Plan. Infer. 2020, 209, 160–173. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, M.; Guan, D.; Jiang, X.; Zhang, N.; Shu, F.; Kong, Y.; Li, J. Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China. Sci. Rep. 2021, 11, 6303. [Google Scholar] [CrossRef]
Experimental Field Dimensional Parameters | Experimental Field | Trial Plot | Aisle | Plantation Conservation |
---|---|---|---|---|
Area | 4587 m2 | 4 × 3.3 = 13.2 m2 | ||
Length | 139 m | 4 m | ||
Width | 33 m | 1.1 m × 3 ridge = 3.3 m | 1.1 m | 1.1 m × 1 row = 1.1 m |
Residential Area Configuration | Number of ridges | Width of ridges | Number of Rows on the Ridge | Row Spacing |
3 | 1.1 m | 3 rows | 0.25 m |
Test Number | Planting Density (104 plants/ha) | Seed Interval (cm) | Row Interval (m) | Urea (kg/ha) | Diammonium Phosphate (kg/ha) | Potassium Sulfate (kg/ha) |
---|---|---|---|---|---|---|
88 | 35 | 7.8 | 0.25 | 139.36 | 147.45 | 12.85 |
89 | 35 | 7.8 | 0.25 | 57.91 | 137.24 | 25.72 |
90 | 35 | 7.8 | 0.25 | 21.62 | 98.92 | 12.85 |
Source | DF | Sum of Squares | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 2 | 58,690.851 | 29,345.425 | 55.41 | 5.112 × 10−5 | Significant |
Error | 7 | 3707.219 | 529.603 | |||
Total | 9 | 62,398.07 |
R | R-Square | Adj. R-Square |
---|---|---|
0.97 | 0.941 | 0.924 |
Non-Standardized Coefficients | t-Value | Prob > |t| | ||
---|---|---|---|---|
Value | Standard Error | |||
37.01 | 3.924 | 9.432 | 3.14 × 10−5 | |
−0.40 | 0.046 | −8.613 | 5.673 × 10−5 | |
Intercept | 2045.19 | 78.744 | 25.973 | 3.208 × 10−5 |
Source | DF | Sum of Squares | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 2 | 309,809.7 | 154,904.851 | 83.793 | 1.289 × 10−5 | Significant |
Error | 7 | 12,940.62 | 1848.66 | |||
Total | 9 | 322,750.3 |
R | R-Square | Adj. R-Square |
---|---|---|
0.98 | 0.960 | 0.948 |
Non-Standardized Coefficients | t-Value | Prob > |t| | ||
---|---|---|---|---|
Value | Standard Error | |||
624.65 | 51.624 | 12.1 | 6.014 × 10−6 | |
−4.47 | 0.377 | −11.881 | 6.8 × 10−6 | |
Intercept | −18,647.34 | 1760.135 | −10.594 | 1.46 × 10−5 |
Source | DF | Sum of Squares | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 2 | 195,752.45 | 97,876.226 | 36.555 | 1.972 × 10−4 | Significant |
Error | 7 | 18,742.52 | 2677.503 | |||
Total | 9 | 214,494.97 |
R | R-Square | Adj. R-Square |
---|---|---|
0.955 | 0.913 | 0.888 |
Non-Standardized Coefficients | t-Value | Prob > |t| | ||
---|---|---|---|---|
Value | Standard Error | |||
5.34 | 0.701 | 7.621 | 1.241 × 10−4 | |
−0.02 | 0.003 | −6.103 | 4.896 × 10−4 | |
Intercept | 2520.03 | 42.989 | 58.62 | 1.103 × 10−10 |
Source | DF | Sum of Squares | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 2 | 1,169,660.934 | 584,830.467 | 41.407 | 1.322 × 10−4 | Significant |
Error | 7 | 98,868.068 | 14,124.01 | |||
Total | 9 | 1,268,529.002 |
R | R-Square | Adj. R-Square |
---|---|---|
0.96 | 0.922 | 0.9 |
Non-Standardized Coefficients | t-Value | Prob > |t| | ||
---|---|---|---|---|
Value | Standard Error | |||
67.8 | 8.047 | 8.426 | 6.536 × 10−5 | |
−1.34 | 0.148 | −9.07 | 4.057 × 10−5 | |
Intercept | 2268.22 | 98.735 | 22.973 | 7.507 × 10−8 |
Test Number | Factor (104 plants/ha) | Factor (kg/ha) | Factor (kg/ha) | Factor (kg/ha) | Yield (kg/ha) |
---|---|---|---|---|---|
16 | 50 | 95.16 | 198.76 | 39.65 | 3453.47 |
17 | 50 | 44.84 | 101.24 | 20.35 | 3354.23 |
18 | 55 | 70 | 150 | 30 | 2845.73 |
Source | Sum of Squares | DF | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 1.59 × 106 | 14 | 1.13 × 105 | 19.16 | <0.0001 | Significant |
A | 27,983.88 | 1 | 27,983.88 | 4.73 | 0.0412 | |
B | 2.89 × 105 | 1 | 2.89 × 105 | 48.85 | <0.0001 | |
C | 89,773.09 | 1 | 89,773.09 | 15.18 | 0.0008 | |
D | 18,186.32 | 1 | 18,186.32 | 3.08 | 0.0941 | |
AB | 4312.55 | 1 | 4312.55 | 0.7292 | 0.4028 | |
AC | 12,327.66 | 1 | 12,327.66 | 2.08 | 0.1636 | |
AD | 1.29 × 105 | 1 | 1.29 × 105 | 21.81 | 0.0001 | |
BC | 2.17 × 105 | 1 | 2.17 × 105 | 36.69 | <0.0001 | |
BD | 1.20 × 105 | 1 | 1.20 × 105 | 20.24 | 0.0002 | |
CD | 1702.39 | 1 | 1702.39 | 0.2879 | 0.5972 | |
A2 | 1.37 × 105 | 1 | 1.37 × 105 | 23.22 | <0.0001 | |
B2 | 87,763.04 | 1 | 87,763.04 | 14.84 | 0.0009 | |
C2 | 4.51 × 105 | 1 | 4.51 × 105 | 76.24 | <0.0001 | |
D2 | 1926.45 | 1 | 1926.45 | 0.3257 | 0.5742 | |
Residual | 1.24 × 105 | 21 | 5914.04 | |||
Lack of Fit | 54,421.12 | 10 | 5442.11 | 0.858 | 0.5916 | Not significant |
Pure Error | 69,773.69 | 11 | 6343.06 | |||
Cor Total | 1.71 × 106 | 35 |
Source | Sum of Squares | DF | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 1.57E + 06 | 10 | 1.57 × 105 | 27.11 | <0.0001 | Significant |
A | 27,983.88 | 1 | 27,983.88 | 4.84 | 0.0372 | |
B | 2.89 × 105 | 1 | 2.89 × 105 | 49.99 | <0.0001 | |
C | 89,773.09 | 1 | 89,773.09 | 15.54 | 0.0006 | |
D | 18,186.32 | 1 | 18,186.32 | 3.15 | 0.0882 | |
AD | 1.29 × 105 | 1 | 1.29 × 105 | 22.33 | <0.0001 | |
BC | 2.17 × 105 | 1 | 2.17 × 105 | 37.55 | <0.0001 | |
BD | 1.20 × 105 | 1 | 1.20 × 105 | 20.72 | 0.0001 | |
A2 | 1.37 × 105 | 1 | 1.37 × 105 | 23.77 | <0.0001 | |
B2 | 87,763.04 | 1 | 87,763.04 | 15.19 | 0.0006 | |
C2 | 4.51 × 105 | 1 | 4.51 × 105 | 78.02 | <0.0001 | |
Residual | 1.45 × 105 | 25 | 5778.55 | |||
Lack of Fit | 74,690.16 | 14 | 5335.01 | 0.8411 | 0.6261 | Not significant |
Pure Error | 69,773.69 | 11 | 6343.06 | |||
Cor Total | 1.71 × 106 | 35 |
Test Number | Factor (104 plants/ha) | Factor (kg/ha) | Factor (kg/ha) | Factor (kg/ha) | Yield (kg/ha) |
---|---|---|---|---|---|
52 | 50 | 95.16 | 198.76 | 39.65 | 3486.8 |
53 | 50 | 44.84 | 101.24 | 20.35 | 3160.65 |
54 | 55 | 70 | 150 | 30 | 2853.97 |
Source | Sum of Squares | DF | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 1.36 × 106 | 14 | 97,270.43 | 28.37 | <0.0001 | Significant |
A | 32,410.56 | 1 | 32,410.56 | 9.45 | 0.0058 | |
B | 2.87 × 105 | 1 | 2.87 × 105 | 83.57 | <0.0001 | |
C | 1.57 × 105 | 1 | 1.57 × 105 | 45.73 | <0.0001 | |
D | 26,573.41 | 1 | 26,573.41 | 7.75 | 0.0111 | |
AB | 1109.56 | 1 | 1109.56 | 0.3236 | 0.5755 | |
AC | 3889.39 | 1 | 3889.39 | 1.13 | 0.2989 | |
AD | 1.42 × 105 | 1 | 1.42 × 105 | 41.31 | <0.0001 | |
BC | 85,141.4 | 1 | 85,141.4 | 24.83 | <0.0001 | |
BD | 68,754.08 | 1 | 68,754.08 | 20.05 | 0.0002 | |
CD | 1114.56 | 1 | 1114.56 | 0.3251 | 0.5746 | |
A2 | 1.85 × 105 | 1 | 1.85 × 105 | 54.02 | <0.0001 | |
B2 | 19,588.47 | 1 | 19,588.47 | 5.71 | 0.0263 | |
C2 | 3.53 × 105 | 1 | 3.53 × 105 | 102.88 | <0.0001 | |
D2 | 284.21 | 1 | 284.21 | 0.0829 | 0.7762 | |
Residual | 72,003.15 | 21 | 3428.72 | |||
Lack of Fit | 43,048.41 | 10 | 4304.84 | 1.64 | 0.2158 | Not significant |
Pure Error | 28,954.73 | 11 | 2632.25 | |||
Cor Total | 1.43 × 106 | 35 |
Source | Sum of Squares | DF | Mean Square | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 1.36 × 106 | 10 | 1.36 × 105 | 43.22 | <0.0001 | Significant |
A | 32,410.56 | 1 | 32,410.56 | 10.33 | 0.0036 | |
B | 2.87 × 105 | 1 | 2.87 × 105 | 91.36 | <0.0001 | |
C | 1.57 × 105 | 1 | 1.57 × 105 | 50 | <0.0001 | |
D | 26,573.41 | 1 | 26,573.41 | 8.47 | 0.0075 | |
AD | 1.42 × 105 | 1 | 1.42 × 105 | 45.16 | <0.0001 | |
BC | 85,141.4 | 1 | 85,141.4 | 27.15 | <0.0001 | |
BD | 68,754.08 | 1 | 68,754.08 | 21.92 | <0.0001 | |
A2 | 1.85 × 105 | 1 | 1.85 × 105 | 59.06 | <0.0001 | |
B2 | 19,588.47 | 1 | 19,588.47 | 6.25 | 0.0194 | |
C2 | 3.53 × 105 | 1 | 3.53 × 105 | 112.48 | <0.0001 | |
Residual | 78,400.87 | 25 | 3136.03 | |||
Lack of Fit | 49,446.13 | 14 | 3531.87 | 1.34 | 0.316 | Not significant |
Pure Error | 28,954.73 | 11 | 2632.25 | |||
Cor Total | 1.43 × 106 | 35 |
Test Number | Factor (104 plants/ha) | Factor (kg/ha) | Factor (kg/ha) | Factor (kg/ha) | Yield (kg/ha) |
---|---|---|---|---|---|
1 | 35 | 139.36 | 147.46 | 12.85 | 2602.61 |
2 | 55 | 118.38 | 201.09 | 19.72 | 2834.55 |
3 | 35 | 21.62 | 98.91 | 12.85 | 2318.74 |
Source | Sum of Squares | DF | Mean Square |
---|---|---|---|
Model | 1.49 × 106 | 14 | 1.07 × 105 |
A | 2.63 × 105 | 1 | 2.63 × 105 |
B | 43,389.17 | 1 | 43,389.17 |
C | 1419.02 | 1 | 1419.02 |
D | 20,874.21 | 1 | 20,874.21 |
AB | 47,390.93 | 1 | 47,390.93 |
AC | 3.55 × 105 | 1 | 3.55 × 105 |
AD | 1.58 × 105 | 1 | 1.58 × 105 |
BC | 1.28 × 105 | 1 | 1.28 × 105 |
BD | 888.91 | 1 | 888.91 |
CD | 1.9 × 105 | 1 | 1.9 × 105 |
A2 | 35,823.18 | 1 | 35,823.18 |
B2 | 12,369.3 | 1 | 12,369.3 |
C2 | 15,809.88 | 1 | 15,809.88 |
D2 | 6152.91 | 1 | 6152.91 |
Cor Total | 1.49 × 106 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, H.; Lv, S.; Wang, F. Optimal Planting Density and Nutrient Application of Soybeans: A Case Study in Northeastern China. Agronomy 2023, 13, 2902. https://doi.org/10.3390/agronomy13122902
Hao H, Lv S, Wang F. Optimal Planting Density and Nutrient Application of Soybeans: A Case Study in Northeastern China. Agronomy. 2023; 13(12):2902. https://doi.org/10.3390/agronomy13122902
Chicago/Turabian StyleHao, Huicheng, Shixin Lv, and Fulin Wang. 2023. "Optimal Planting Density and Nutrient Application of Soybeans: A Case Study in Northeastern China" Agronomy 13, no. 12: 2902. https://doi.org/10.3390/agronomy13122902
APA StyleHao, H., Lv, S., & Wang, F. (2023). Optimal Planting Density and Nutrient Application of Soybeans: A Case Study in Northeastern China. Agronomy, 13(12), 2902. https://doi.org/10.3390/agronomy13122902