Sulfur Application Improves the Nutritional Quality of Maize by Regulating the Amino Acid Balance of Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Region Description
2.2. Experimental Design
2.3. Yield and Its Components
2.4. Measurement of Protein Concentration in Maize Grains
2.5. Analysis of Amino Acid in Maize Grains
2.6. Grain Endosperm Microstructure Measurements
2.7. Data Analysis
3. Results
3.1. Grain Yield and Its Components
3.2. Concentration of Grain Protein
3.3. Concentrations of Amino Acids
3.4. Amino Acids Balance
3.5. Microstructure of Maize Grain Endosperm
3.6. Dietary Amino Acid Requirement Pattern
3.7. Cys in Amino Acid Balance
4. Discussion
4.1. Effects of S Application on Maize Grain Yield and Protein Concentration
4.2. Effects of S Application on Amino Acid Balance of Maize Grains
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
References
- SDG (Sustainable Development Goal). Sustainable Development Goals. 2019. Available online: https://sustainabledevelopment.un.org/sdg2 (accessed on 7 February 2020).
- Fischer, S.; Thomas Hilger, T.; Piepho, H.-P.; Irmgard Jordan, I.; Cadisch, G. Missing association between nutrient concentrations in leaves and edible parts of food crops—A neglected food security issue. Food Chem. 2021, 345, 128723. [Google Scholar] [CrossRef]
- Young, V.E.; El-Khoury, A.E.; Cynober, L. The notion of the nutritional essentiality of amino acids, revisited, with a note on the indispensable amino acid requirements in adults. In Amino Acid Metabolism and Therapy in Health and Nutritional Disease; Reeds, P.J., Ed.; CRC Press: Boca Raton, FL, USA, 1996; pp. 191–232. [Google Scholar]
- Fürst, P. Old and new substrates in clinical nutrition. J. Nutr. 1998, 128, 789–796. [Google Scholar] [CrossRef]
- Ali, M.; Scott, M.P.; Bakht, J. Molecular mechanism of methionine differentiation in high and low methionine maize lines. Afr. J. Biotechnol. 2011, 10, 3747–3752. [Google Scholar]
- Li, C.S.; Xiang, X.L.; Huang, Y.C.; Zhou, Y.; An, D.; Dong, J.Q.; Zhao, C.X.; Liu, H.J.; Li, Y.B.; Wang, Q.; et al. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat. Commun. 2020, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- EPA (Environmental Protection Agency). Predicting the Impact of Coexistence-Guided, Genetically Modified Cropping on Irish Biodiversity. STRIVE Environmental Protection Agency Program 2007–2013. 2020. Available online: http://www.epa.ie/pubs/reports/research/biodiversity/STRIVE_39_Mullins_Genetics_322web.pdf (accessed on 6 April 2020).
- Amegbor, I.; van Biljon, A.; Shargie, N.; Tarekegne, A.; Labuschagne, M. Identifying quality protein maize inbred lines for improved nutritional value of maize in Southern Africa. Foods 2022, 11, 898. [Google Scholar] [CrossRef] [PubMed]
- Tanumihardjo, S.; McCulley, L.; Roh, R.; Lopez-Ridaura, S.; Palacios-Rojas, N.; Gunaratna, N. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Secur. 2019, 25, 100327. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Bodnar, A.L.; Scott, M.P. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor. Appl. Genet. 2009, 119, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Young, V.R.; Pellett, P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, R. Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr. Sci. India 2000, 79, 576–589. [Google Scholar]
- Bhan, M.K.; Bhandari, N.; Bahl, R. Management of the severely malnourished child: Perspective from developing countries. Brit. Med. J. 2003, 326, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Sethi, M.; Kumar, S.; Singh, A.; Chaudhary, D.P. Temporal profiling of essential amino acids in developing maize kernel of normal, opaque-2 and QPM germplasm. Physiol. Mol. Biol. Plants 2020, 26, 341–351. [Google Scholar] [CrossRef]
- Wu, Y.; Messing, J. Proteome balancing of the maize seed for higher nutritional value. Front. Plant Sci. 2014, 5, 240. [Google Scholar] [CrossRef]
- Maqbool, M.A.; Beshir Issa, A.; Khokhar, E.S. Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breed. 2021, 140, 375–399. [Google Scholar] [CrossRef]
- Kopriva, S.; Malagoli, M.; Takahashi, H. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses. J. Exp. Bot. 2019, 70, 4069–4073. [Google Scholar] [CrossRef] [PubMed]
- Gigolashvili, T.; Kopriva, S. Transporters in plant sulfur metabolism. Front. Plant Sci. 2014, 5, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Zenda, T.; Liu, S.T.; Dong, A.Y.; Duan, H.J. Revisiting Sulphur-the once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 2021, 11, 626. [Google Scholar] [CrossRef]
- Maruyama-Nakashita, A.; Ohkama-Ohtsu, N. Sulfur assimilation and glutathione metabolism in plants. In Glutathione in Plant Growth, Development, and Stress Tolerance; Hossain, M.A., Mostofa, M.G., Diaz-Vivancos, P., Burritt, D.J., Fujita, M., Tran, L.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 287–308. [Google Scholar]
- Koprivova, A.; Kopriva, S. Sulfur metabolism and its manipulation in crops. J. Genet. Genom. 2016, 43, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Jephcote, C.; Fraser, A.; Wiltshire, J.; Aston, S.; Rose, R.; Vincent, K.; Roth, B. Do UK crops and grassland require greater inputs of sulphur fertilizer in response to recent and forecast reductions in sulphur emissions and deposition? Soil Use Manag. 2016, 32, 3–16. [Google Scholar] [CrossRef]
- Aula, L.; Dhillon, J.S.; Omara, P.; Wehmeyer, G.B.; Freeman, K.W.; Raun, W.R. World sulfur use efficiency for cereal crops. Agron. J. 2019, 111, 2485–2492. [Google Scholar] [CrossRef]
- Cai, J.; Zang, F.; Xin, L.; Zhou, Q.; Wang, X.; Zhong, Y.; Huang, M.; Dai, T.; Jiang, D. Effects of cysteine and inorganic sulfur applications at different growth stages on grain protein and end-use quality in wheat. Foods 2022, 11, 3252. [Google Scholar] [CrossRef]
- Scherer, H.W. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009, 172, 326–335. [Google Scholar] [CrossRef]
- Hinckley, E.L.S.; Crawford, J.T.; Fakhraei, H.; Driscoll, C.T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 2020, 13, 597–604. [Google Scholar] [CrossRef]
- Chien, S.H.; Gearhart, M.M.; Villagarcia, S. Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact: A review. Soil Sci. 2011, 176, 327–335. [Google Scholar] [CrossRef]
- Kovar, J.L. Maize response to sulfur fertilizer in three Iowa Soils. Commun. Soil Sci. Plant Anal. 2021, 52, 905–915. [Google Scholar] [CrossRef]
- Eriksen, J. Soil sulfur cycling in temperate agricultural systems. Adv. Agron. 2009, 102, 55–89. [Google Scholar]
- Liu, S.; Cui, S.; Zhang, X.; Wang, Y.; Mi, G.; Gao, Q. Synergistic regulation of nitrogen and sulfur on redox balance of maize leaves and amino acids balance of grains. Front. Plant Sci. 2020, 11, 576718. [Google Scholar] [CrossRef] [PubMed]
- Baudet, J.; Huet, J.C.; Jolivet, E.; Lesaint, C.; Mossé, J.; Pernollet, J.C. Chaises in accumulation of seed nitrogen compounds in maize under conditions of sulphur deficiency. Physiol. Plant. 1986, 68, 608–614. [Google Scholar] [CrossRef]
- Galili, G.; Amir, R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol. J. 2013, 11, 211–222. [Google Scholar] [CrossRef]
- Hintch, T.D.; Lauter, A.M.; Kinney, S.M.; Lubberstedt, T.; Frei, U.; Duangpapeng, P.; Edwards, J.W.; Scott, M.P. Development of maize inbred lines with elevated grain methionine concentration from a high methionine population. Crop Sci. 2023, 63, 2417–2425. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Messing, J. Balancing of sulfur storage in maize seed. BMC Plant Biol. 2012, 12, 77–85. [Google Scholar] [CrossRef]
- Planta, J.; Xiang, X.L.; Leustek, T.; Messing, J. Engineering sulfur storage in maize seed proteins without apparent yield loss. Proc. Natl. Acad. Sci. USA 2017, 114, 11386–11391. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cui, S.; Ying, F.; Nasar, J.; Wang, Y.; Gao, Q. Simultaneous improvement of protein concentration and amino acid balance in maize grains by coordination application of nitrogen and sulfur. J. Cereal Sci. 2021, 99, 103189. [Google Scholar] [CrossRef]
- Li, N.; Yang, Y.; Wang, L.Q.; Zhou, C.J.; Jing, J.Y.; Sun, X.; Tian, X.X. Combined effects of nitrogen and sulfur fertilization on maize growth, physiological traits, N and S uptake, and their diagnosis. Field Crop Res. 2019, 242, 107593. [Google Scholar] [CrossRef]
- Gerakis, A.; Baer, B. A computer program for soil textural classification. Soil Sci. Soc. Am. J. 1999, 63, 807–808. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- ISO 5983-1; Animal Feeding Stuffs-Determination of Nitrogen Content and Calculation of Crude Protein Content-Part 1: Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2005; pp. 1–10.
- Gibbon, B.C.; Larkins, B.A. Molecular genetic approaches to developing quality protein maize. Trends Genet. 2005, 21, 227–233. [Google Scholar] [CrossRef]
- Holding, D.R. Recent advances in the study of prolamin storage protein organization and function. Front. Plant Sci. 2014, 5, 276–284. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Joint WHO/FAO/UNU Expert Consultation: Protein and Amino Acid Requirements in Human Nutrition; Technical Report 935; World Health Organization: Rome, Italy, 2007; pp. 1–265. [Google Scholar]
- Yu, B.G.; Chen, X.X.; Zhou, C.X.; Ding, T.B.; Wang, Z.H.; Zou, C.Q. Nutritional composition of maize grain associated with phosphorus and zinc fertilization. J. Food Compos. Anal. 2022, 114, 104775. [Google Scholar] [CrossRef]
- Duvick, D.N.; Cassman, K.G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci. 1999, 39, 1622–1630. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crop Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar]
- Chen, Y.L.; Xiao, C.X.; Wu, D.L.; Xia, T.T.; Chen, Q.W.; Chen, F.J.; Yuan, L.X.; Mi, G.H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur. J. Agron. 2015, 62, 79–89. [Google Scholar] [CrossRef]
- Scott, M.P.; Edwards, J.W.; Bell, C.P.; Schussler, J.R.; Smith, J.S. Grain composition and amino acid content in maize cultivars representing 80 years of commercial maize varieties. Maydica 2006, 51, 417–423. [Google Scholar]
- Zhang, L.; Liang, Z.; He, X.; Meng, Q.; Hu, Y.; Schmidhalter, U.; Zhang, W.; Zou, C.; Chen, X. Improving grain yield and protein concentration of maize (Zea mays L.) simultaneously by appropriate hybrid selection and nitrogen management. Field Crop Res. 2020, 249, 107754. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zhang, H.; Xue, Y.F.; Gao, Y.B.; Qian, X.; Dai, H.C.; Liu, K.C.; Li, Q.Q.; Li, Z.X. Effect of sulfur fertilizer on summer maize grain yield and soil water utilization under different irrigation patterns from anthesis to maturity. Agric. Water Manag. 2021, 250, 106828. [Google Scholar] [CrossRef]
- Sriperm, N.; Pesti, G.M.; Tillman, P.B. The distribution of crude protein and amino acid content in maize grain and soybean meal. Anim. Feed Sci. Technol. 2010, 159, 131–137. [Google Scholar] [CrossRef]
- Depuydt, M.; Messens, J.; Collet, J.F. How proteins form disulfide bonds. Antioxid. Redox Signal. 2011, 15, 49–66. [Google Scholar] [CrossRef]
- Hogg, P.J. Disulfide bonds as switches for protein function. Trends Biochem. Sci. 2003, 28, 210–214. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Luo, X.; Li, J.; Reed, S.A.; Xiao, H.; Young, T.S.; Schultz, P.G. Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA 2016, 113, 5910–5915. [Google Scholar] [CrossRef]
- Maurin, A.-C.; Benani, A.; Lorsignol, A.; Brenachot, X.; Parry, L.; Carraro, V.; Guissard, C.; Averous, J.; Jousse, C.; Bruhat, A. Hypothalamic eIF2α Signaling Regulates Food Intake. Cell Rep. 2014, 6, 438–444. [Google Scholar] [CrossRef]
- Kim, S.W.; Chen, H.; Parnsen, W. Regulatory role of amino acids in pigs fed on protein-restricted diets. Curr. Protein Pept. Sci. 2019, 20, 132–138. [Google Scholar] [CrossRef]
- Wu, Y.R.; Messing, J. RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm. PLoS ONE 2012, 7, e32850. [Google Scholar]
- MacGregor, J.M.; Taskovitch, L.T.; Martin, W.P. Effect of nitrogen fertilizer and soil type on the amino acid content of corn grain. Agron. J. 1961, 53, 211–214. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Warren, H.L.; Huber, D.M.; Bressan, R.A. Interactions between the kernel N sink, grain yield and protein nutritional quality of maize. J. Sci. Food Agric. 1983, 34, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Dweikat, I.; Huber, D.M.; Warren, H.L. Interrelationship of nitrogen nutrition with maize (Zea mays) grain yield, nitrogen use efficiency and grain quality. J. Sci. Food Agric. 1992, 58, 1–8. [Google Scholar] [CrossRef]
- Lošák, T.; Hlušek, J.; Filipčík, R.; Pospíšilová, L.; Maňásek, J.; Prokeš, K.; Bunka, F.; Krácmar, S.; Martensson, A.; Orosz, F. Effect of nitrogen fertilization on metabolisms of essential and non-essential amino acids in field-grown grain maize (Zea mays L.). Plant Soil Environ. 2010, 56, 574–579. [Google Scholar] [CrossRef]
- Habtegebrial, K.; Singh, B.R. Response of wheat cultivars to nitrogen and sulfur for crop yield, nitrogen use efficiency, and protein quality in the semiarid region. J. Plant Nutr. 2009, 32, 1768–1787. [Google Scholar] [CrossRef]
- Holopainen, U.R.M.; Rajala, A.; Jauhiainen, L.; Wilhelmson, A.; Home, S.; Kauppila, R.; Peltonen-Sainio, P. Influence of sulphur application on hordein composition and malting quality of barley (hordeum vulgare L.) in northern European growing conditions. J. Cereal Sci. 2015, 62, 151–158. [Google Scholar] [CrossRef]
- Salamini, S.A.; Soavc, C. Zein: Genetics and biochemistry. In Maize for Biological Research; Sheridan, W.F., Ed.; University of North Dakota Press: Grand Forks, ND, USA, 1982; pp. 155–160. [Google Scholar]
- Coleman, C.E.; Larkins, B.A. The prolamins of maize. In Seed Proteins; Shewry, P.R., Casey, R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 109–139. [Google Scholar]
- Esen, A. Proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J. Cereal Sci. 1987, 5, 117–128. [Google Scholar] [CrossRef]
- Kirihara, J.A.; Petri, J.B.; Messing, J. Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize. Gene 1988, 71, 359–370. [Google Scholar] [CrossRef]
- Swarup, S.; Timmermans, M.C.; Chaudhuri, S.; Messing, J. Determinants of the high-methionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize. Plant J. 1995, 8, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Randall, J.; Sutton, D.; Ghoshroy, S.; Bagga, S.; Kemp, J.D. Co-ordinate expression of β- and δ-zeins in transgenic tobacco. Plant Sci. 2004, 167, 367–372. [Google Scholar] [CrossRef]
- Landry, J. A linear model for quantitating the accumulation of zeins and their fractions (α+δ, β&γ) in developing endosperm of wild-type and mutant maizes. Plant Sci. 2002, 163, 111–115. [Google Scholar]
Sites | Soil Type | Mechanical Composition | Chemical Properties | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | pH | Organic Matter | Total N | Olsen-P | NH4OAc-K | Ca(H2PO4)-S | ||
% | g kg−1 | mg kg−1 | ||||||||
Sankeshu | Clay soil | 32.5 | 25.2 | 42.3 | 6.63 | 23.2 | 1.64 | 38.37 | 191.29 | 13.24 |
Fujiajie | Sandy soil | 79.6 | 9.6 | 10.8 | 5.77 | 16.2 | 1.02 | 24.96 | 160.92 | 11.36 |
Treatment | GN (ear−1) | GW (g) | Yield (kg ha−1) |
---|---|---|---|
Soil type | |||
Clay soil | 538 a | 30.9 a | 10,594 a |
Sandy soil | 439 b | 30.1 b | 7947 b |
Year | |||
2017 | 487 a | 30.1 a | 9169 a |
2018 | 488 a | 30.6 a | 9243 a |
2019 | 492 a | 30.7 a | 9399 a |
S rate | |||
S0 | 480 c | 28.8 d | 8193 d |
S30 | 486 bc | 29.9 c | 8886 c |
S60 | 491 ab | 30.9 ab | 9530 ab |
S90 | 495 a | 31.6 a | 10,050 a |
S120 | 491 ab | 31.1 ab | 9705 ab |
S150 | 489 ab | 30.5 bc | 9259 bc |
ANVOA | |||
Soil type | ** | ** | ** |
Year | ns | ns | ns |
S rate | ** | ** | ** |
Soil type × Year | ns | ns | ns |
Soil type × S rate | ns | ns | ns |
Year × S rate | ns | ns | ns |
Soil type × Year × S rate | ns | ns | ns |
Treatment | Asp | Glu | Ser | Gly | Arg | Ala | Pro | Met | His | Thr | Tyr | Val | Trp | Iso | Leu | Phe | Lys | Cys |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil type | ||||||||||||||||||
Clay soil | 5.1 a | 16.2 b | 3.6 a | 2.93 a | 4.3 a | 3.4 a | 11.4 a | 3.0 b | 2.4 a | 2.9 a | 2.9 a | 3.3 a | 1.2 b | 2.8 a | 9.9 a | 3.2 a | 2.2 a | 3.7 b |
Sandy soil | 5.4 a | 17.6 a | 3.8 a | 3.10 a | 4.6 a | 3.6 a | 12.1 a | 3.2 a | 2.5 a | 3.1 a | 3.0 a | 3.5 a | 1.3 a | 2.9 a | 10.5 a | 3.4 a | 2.4 a | 4.0 a |
S rate | ||||||||||||||||||
S0 | 4.4 b | 14.7 c | 3.0 c | 2.6 c | 3.3 d | 4.3 a | 14.6 a | 2.2 c | 1.5 c | 2.5 b | 1.9 d | 2.1 c | 0.8 c | 3.9 a | 7.5 b | 2.3 d | 1.7 c | 2.7 e |
S30 | 5.6 a | 17.5 ab | 3.1 bc | 3.1 abc | 4.0 cd | 4.1 a | 13.4 a | 2.5 c | 2.4 b | 3.2 a | 2.4 c | 3.1 b | 1.2 b | 3.2 b | 10.3 a | 3.3 bc | 2.1 b | 3.5 d |
S60 | 6.3 a | 17.9 ab | 3.8 ab | 3.5 a | 4.3 bc | 3.5 b | 11.6 b | 3.2 b | 3.0 a | 3.5 a | 2.9 bc | 3.9 a | 1.5 a | 2.8 bc | 11.4 a | 4.0 a | 2.6 a | 3.9 cb |
S90 | 5.7 a | 18.1 a | 3.9 a | 3.2 ab | 4.8 ab | 3.3 bc | 10.7 b | 3.4 b | 2.8 ab | 3.4 a | 3.3 ab | 3.8 a | 1.4 a | 2.6 c | 11.2 a | 3.9 ab | 2.6 a | 4.2 bc |
S120 | 4.7 b | 16.9 ab | 4.1 a | 3.0 abc | 5.0 ab | 3.1 bc | 10.0 b | 3.6 ab | 2.6 ab | 3.1 a | 3.5 a | 3.8 a | 1.3 ab | 2.5 c | 10.6 a | 3.3 bc | 2.5 a | 4.4 ab |
S150 | 4.6 b | 16.2 bc | 4.4 a | 2.8 bc | 5.4 a | 2.8 c | 10.1 b | 3.8 a | 2.6 ab | 2.4 b | 3.5 a | 3.8 a | 1.3 ab | 2.3 c | 10.3 a | 3.1 c | 2.3 ab | 4.7 a |
ANVOA | ||||||||||||||||||
Soil type | ns | * | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | * | ns | ns | ns | ns | * |
S rate | ** | ** | ** | * | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Soil type × S rate | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | EAA (mg g−1) | NAA (mg g−1) | TAA (mg g−1) | EAA/TAA (%) |
---|---|---|---|---|
Soil type | ||||
Clay soil | 37.5 b | 46.8 b | 84.3 b | 44.3 a |
Sandy soil | 39.8 a | 50.2 a | 90.0 a | 44.1 a |
S rate | ||||
S0 | 28.8 c | 46.7 bc | 75.5 d | 38.1 c |
S30 | 37.0 b | 50.7 a | 87.7 bc | 42.2 b |
S60 | 42.6 a | 50.8 a | 93.4 a | 45.6 a |
S90 | 42.4 a | 49.5 ab | 92.0 ab | 46.2 a |
S120 | 41.0 a | 46.9 bc | 87.9 bc | 46.6 a |
S150 | 40.2 a | 46.2 c | 86.4 c | 46.6 a |
ANVOA | ||||
Soil type | ** | ** | ** | ns |
S rate | ** | ** | ** | ** |
Soil type × S rate | ns | ns | ns | ns |
Treatment | His | Iso | Leu | Lys | Met + Cys | Phe + Tyr | Thr | Trp | Val |
---|---|---|---|---|---|---|---|---|---|
Clay soil | |||||||||
S0 | 18 | 51 | 85 | 20 | 50 | 56 | 27 | 10 | 25 |
S30 | 23 | 44 | 103 | 20 | 58 | 62 | 31 | 11 | 34 |
S60 | 26 | 36 | 102 | 23 | 63 | 65 | 31 | 13 | 40 |
S90 | 26 | 35 | 107 | 26 | 72 | 76 | 34 | 13 | 43 |
S120 | 26 | 35 | 103 | 24 | 78 | 60 | 31 | 13 | 42 |
S150 | 28 | 34 | 115 | 25 | 91 | 64 | 25 | 14 | 43 |
Sandy soil | |||||||||
S0 | 19 | 45 | 102 | 20 | 52 | 53 | 28 | 11 | 26 |
S30 | 25 | 41 | 107 | 22 | 65 | 60 | 33 | 13 | 33 |
S60 | 29 | 37 | 109 | 25 | 68 | 65 | 34 | 14 | 39 |
SS90 | 29 | 37 | 116 | 26 | 78 | 72 | 35 | 14 | 39 |
S120 | 28 | 36 | 116 | 28 | 88 | 73 | 33 | 15 | 41 |
S150 | 29 | 35 | 111 | 28 | 95 | 75 | 27 | 16 | 42 |
DAARP | 15 | 30 | 59 | 45 | 22 | 38 | 23 | 6 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Cui, S.; Fu, J.; Gong, H.; Liu, S. Sulfur Application Improves the Nutritional Quality of Maize by Regulating the Amino Acid Balance of Grains. Agronomy 2023, 13, 2912. https://doi.org/10.3390/agronomy13122912
Wang H, Cui S, Fu J, Gong H, Liu S. Sulfur Application Improves the Nutritional Quality of Maize by Regulating the Amino Acid Balance of Grains. Agronomy. 2023; 13(12):2912. https://doi.org/10.3390/agronomy13122912
Chicago/Turabian StyleWang, Honglin, Shuai Cui, Jianan Fu, Huadong Gong, and Shuoran Liu. 2023. "Sulfur Application Improves the Nutritional Quality of Maize by Regulating the Amino Acid Balance of Grains" Agronomy 13, no. 12: 2912. https://doi.org/10.3390/agronomy13122912
APA StyleWang, H., Cui, S., Fu, J., Gong, H., & Liu, S. (2023). Sulfur Application Improves the Nutritional Quality of Maize by Regulating the Amino Acid Balance of Grains. Agronomy, 13(12), 2912. https://doi.org/10.3390/agronomy13122912